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A Software Defined Network (SDN) architecture is characterized by decoupling the data
plane and control plane. This feature enables the establishment of a programmable environ-
ment in which the control plane acts under the data plane, managing and configuring the
network over a standard protocol, such as OpenFlow. Although there are numerous benefits
to the SDN architecture, security is still a matter of concern, as the decoupling expands the
attack surface on the network. Denial of service (DoS) attacks is one of the major challenges
for the SDN architecture, mainly due to the vulnerabilities existing between the control and
data planes. This paper proposes an enhancement to the SDN architecture enhanced with
DoS attack detection mechanisms. Two techniques have been evaluated to identify of DoS
attacks: entropy and chi-square. Both techniques use OpenFlow switches statistics so that it
is possible to distinguish benign traffic from spurious traffic. Experimental results show that
entropy and chi-square present similar results in terms of spurious flow detection accuracy.
However, on average, chi-square requires about 14.89% fewer packets to detect the attack
when compared to entropy.

1 Introduction

Software Defined Networks (SDN) is an upcoming network archi-
tecture that provides a more simplified and flexible way to manage
a network. One of the main aspects of a SDN network is decoupling
the data plane from the control plane. When this architecture is
employed, the control plane is responsible for managing the entire
network through operational decisions, coordinating and adding
new functionalities. While the data plane is classified as the net-
work infrastructure and its tasks are routing, dropping packets on
the network, as well as transmitting information regarding packets
to the control plane The communication between the two planes
(control and data plane) is carried out through a protocol. The
most widely used protocol is OpenFlow, which is characterized as a
generic method of communication between the controller (control
plane) and switches (data plane) [1]. Despite the numerous benefits
provided by an SDN architecture, network security is still a matter
of concern [2]. Decoupling the two planes presents new challenges
to network security, since in conventional networks, security mech-
anisms are often defined through a combination of configurations
between both planes [3].

Denial of Service (DoS) attacks are one of the major challenges
for a SDN network, mainly due to the vulnerabilities present in the
communication between the two planes [4]. In this architecture, the
main goals of a DoS attack are to exhaust the controller’s process-

ing capacity or reduce the bandwidth of an application, which is
usually accomplished by generating large volumes of traffic through
multiple hosts with spoofed addresses [5].

DoS attack detection has been broadly researched in traditional
networks, where most of the proposed works employ knowledge-
based methods, as can be seen in [6, 7, 8]. However, the use of
statistical methods or machine learning also proves to be effective
for detecting a DoS attack. Such methods are commonly used in
the literature to identify deviations in traffic behavior patterns, pre-
senting high accuracy for this purpose. In [9], for example, the
authors suggested a scheme based on machine learning to detect
DoS attacks in conventional networks, where they propose a neural
network designed to classify legitimate from spurious traffic.

In contrast to the aforementioned works, this article proposes
a DoS attack detection mechanism in SDN. In addition, this paper
proposes an enhancement to the SDN architecture with a mech-
anism that works alongside the controller to detect DoS attacks.
Two techniques are evaluated to detect DoS attacks: entropy [10]
and chi-square [11]. In the OpenFlow protocol, the controller can
collect information about the switches to calculate statistics. These
values are used to differentiate spurious traffic from legitimate traffic.
The main contributions of this paper are a mechanism that allows
the definition of an adaptive detection threshold that may reflect op-
timal network behavior and the use of different OpenFlow protocol
header fields to characterize DoS traffic. Among its features, the
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proposed mechanism encompasses the following characteristics:

1. the implementation resides at the control plane SDN, allowing
it to obtain data from the whole network with greater preci-
sion, instead of a specific switch as used in a conventional
network;

2. development of a mechanism to detect DoS attacks using
OpenFlow switches statistics, thus enabling the use of dif-
ferent OpenFlow protocol header fields to characterize DoS
traffic.

Experimental evaluation of the proposed solutions indicates that the
entropy-based mechanism is slightly more accurate in identifying
spurious flow at the cost of requiring a larger number of packets to
detect attack compared to the chi-square-based mechanism.

The remainder of this paper is structured as follows. Section 2
introduces the SDN concepts. Section 3 presents how SDN DoS
attacks work and how chi-square-based and entropy-based attack
detection mechanisms work. Section 4 presents the anomaly detec-
tion techniques (entropy and chi-square) and how they can be used
to detect DoS attacks. In Section 5 presents a brief overview of the
related works. Section 6 introduces the proposed detection method
applied to an SDN. Finally, Section 7 presents the simulation results,
followed by the conclusion in Section 8.

2 Software Defined Networks and Open-
Flow

The OpenFlow protocol is known as one of the first standards for
Software Defined Networks (SDN), it enables communication be-
tween data planes and switch. It also allows the management of the
query table used by the hardware to specify the next step of each
received packet. There is a logical division between the data and
control layers (a.k.a. planes), which establishes a programmable
environment [1]. The planes that make up the SDN architecture are
depicted in Figure 1.

The application layer consists of SDN applications for high-
level management of network resources and support of the control
layer below. The north interface is used for establishing the com-
munication between the application layer and the control layer [12].
The control layer is in charge of programming and managing the
data plane. It is composed of controllers that use the data obtained
by the data layer and establishes all the procedures and actions to
be performed by the network infrastructure [13].

The infrastructure layer (data plane) is made up of forwarding
devices (switches and routers). This layer is responsible for local
information monitoring and statistical collection [1]. The south in-
terface is responsible for the communication between data layer and
controller [14]. The best-known interface is the OpenFlow protocol,
which allows the controller to observe the flow table of the switches,
in order to implement actions through a standardized interface.

The protocol architecture is composed of: (i) OpenFlow
switches that form the data plane; (ii) the control plane, which
includes one or more controllers; and (iii) a secure communication
channel, which links the switches to the control layer. An OpenFlow

switch consists of a flow table and a secure communication chan-
nel. The flow table is formed by a set of input flows in which each
input has an associated behavior, such as discarding, forwarding
and sending the packet to the controller. This table is formed by
actions, rules and counters. The rules are constituted from one or
more header fields and correlated to a set of actions, which specify
how the packets will be processed. The counters store statistics for
switch flows, such as bytes received and transmitted, number of
packets and the elapsed time since the flow was inserted into the
switch. This feature allows the collection of statistics that can be
used for specific purposes, such as detecting network anomalies,
estimating the delay and so on. The collection of statistics can be
achieved with a flow or a group of flows. The secure communica-
tion channel is the path used to transport information between the
controller and the switch and vice versa [15].

SDN Applications
Application Layer

Control Layer
(Control Plane)

Infrastructure Layer
(Data Plane)

Controllers

Northbound Interface

Southbound Interface

Switching Devices

Figure 1: SDN architecture.

The packets processed by the OpenFlow switch are compared
with the flow table and if a corresponding entry is found, the respec-
tive action will be taken. Otherwise, the packet will be forwarded to
the control layer through the secure communication channel and the
switch will wait for instructions from the controller. When receiv-
ing a packet, the controller performs the action that was previously
established in its configuration for this type of flow. For example,
remove or add new information from the flow table and apply the
rule to the switches.

3 Denial of Service in SDN
A denial of service (DoS) attack on an SDN network can target both
the data plane and the control plane [4]. These attacks are often
known for generating excessive amounts of malicious traffic over a
short period of time, in order to exhaust the resources of a victim or
an infrastructure. DoS attacks are characterized by a high volume of
traffic that floods the network, reducing or preventing a victim from
being accessed [5]. In the data plane, this attack can deplete the flow
table entries of the switches, through false streams generated by the
attacker using the same source address [4]. In the control plane, the
attack can cause a bottleneck in the communication channel between
the controller and the switch [4]. In this situation, the attacker can
exhaust the controller’s processing efficiency by forwarding packets
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with different headers that do not correspond to any flow already
defined in the switch. This will force the switch to send control
packets to the controller, since there is no rule to forward that ma-
licious packet. DoS attacks can be even more complex when they
are orchestrated in a distributed way and are known as Distributed
Denial of Service (DDoS) attacks. These attacks can be even more
detrimental to the network, while also increasing the complexity
and the cost to defend the victim.

DoS attacks can be classified into two main groups: volumetric
attacks and non-volumetric attacks (low volume or low rate) [16].
The latter covers attacks in which specific vulnerabilities of the com-
munication protocol are exploited, causing the exhaustion of some
of the victim’s resources. The former, on the other hand, includes
attacks where large volumes of traffic flood the victim. It aims to
exhaust the victim’s processing capacity or bandwidth preventing
legitimate requests to reach the victim. Volumetric attacks can be
further divided into direct and reflexive attacks. Direct attacks send
traffic directly to the victim while reflection attacks use intermediate
hosts (reflectors) to flood the victim. In this work, we restrict to
SYN Flood-type attacks, characterized as a direct-volumetric attack.

The SYN Flood attack is based on sending a large number of
TCP connection requests to the server, the SYN segments are sent
with different source addresses, that are usually spoofed. For each
SYN sent, the server must respond with a SYN-ACK segment, wait-
ing for a confirmation message (ACK) to configure the connection.
Since the source address of the SYN packet is usually false, the
ACK response will never arrive because the SYN-ACK was sent
to a nonexistent address. Causing TCP connections to remain in
a semi-open state (SYN-RECV), where the memory resources are
not released. With a large volume of false SYN segments sent, the
server’s TCP connection queue is flooded, causing the server to
eventually crash. This, in turn results in a state in which the server
cannot respond to any requests from TCP clients [17].

4 Anomaly Detection Techniques

Anomaly detection techniques help in identifying patterns outside
the expected behavior. They can be performed through collection,
filtering, and data processing.

Detection mechanisms play a key role in the DoS attack detec-
tion scenario. Beitollahi et al. [18] classifies the detection mecha-
nisms based on the algorithm used for the detection. According to
this classification, there are four groups: (i) statistical techniques;
(ii) wavelets analysis; (iii) point of sequential change; and (iv) ma-
chine learning techniques. In statistical techniques, the profile of
normal traffic flow is provided by the header information in the
packet, which is then compared to the spurious traffic. Wavelet
analysis techniques describe an input signal in terms of spectral
components, which are representations of amplitudes or intensities.
At the point of sequential change, filtered traffic is treated as a time
series, i.e. a collection of observations made sequentially over time.
Detection of a change in time is provided by evaluating all past
data, where one must distinguish between two processes states: out
of control or under control. Finally, machine learning techniques
are capable of transforming data into intelligent actions, allowing
decision-making to be performed automatically. This work focuses

on statistical techniques.
Statistical techniques analyze various properties of specific fields

in packet headers during normal traffic conditions. Then, by using
statistical properties, the system creates a reference model for nor-
mal traffic. When the statistical properties calculated for the traffic
show differences from the reference model, it is possible to ob-
serve traffic conditions that could indicate an attack. This kind of
technique uses two basic components for detection: an observation
window and a detection threshold. The size of the observation win-
dow can be based on the length of time or the number of packets
to be analyzed. The threshold is used to capture variations that go
beyond predetermined limits. Some statistical methods, such as
chi-square and entropy, can report such type of information [6] [19].

4.1 Chi-square (a.k.a. χ2)

Chi-square is a measure that portrays the difference between two
probability distributions. The basic principle of this method is to
compare proportions, that is, the possible divergences between the
frequencies observed and expected for a certain event [20]. The
equation is defined as follows:

χ2 =

m∑
j=1

[
(o j − p j)2

p j

]
, (1)

where m is the total number of occurrences observed in a window
wi, o j is the observed frequency for each class and p j is the expected
frequency for that class. When the frequencies observed are very
close to the expected value, the chi-square value is small. Otherwise,
chi-square will assume high values.

4.2 Entropy

Shannon entropy [10] is a well-known and valuable concept in in-
formation theory. It measures the probability of an event occurring
concerning the total number of events, through which it is possible to
describe the degree of dispersion or concentration of a distribution.
The equation is defined as follows:

H = −

m∑
j=1

p j log p j, (2)

where m is the number of different occurrences in an observation
window wi and p j is the probability associated with each occurrence
j in the window. In other words, p j is the occurrence frequency of
every single item divided by the total number of items. The result
of this calculation varies between 0 and log m [21]. Higher values
indicates more disperse data in the distribution. Lower value indi-
cates maximum concentration in the distribution. In other words, if
the entropy is low then the randomness of the distribution is also
low and vice versa.

5 Related Works
Research on the use of statistical methods to detect DoS attacks has
grown over the years [20]. Statistical methods such as chi-square
and entropy are great representatives of this class, as they present
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excellent results for this purpose in traditional networks [22], [23],
[7], [21].

One of the major problems with using such detection mecha-
nisms in traditional networks is that each edge switch has only local
network traffic, so it is not possible to have a global network scan-
ning scenario. Therefore there is no mechanism that can provide a
network overview. Such a limitation can make it difficult to detect
an attack when it is distributed throughout the network. In addition,
there is a relatively high cost of deploying the detection mechanism
on each edge device that make up the network, which may become
unfeasible depending on the infrastructure.

In the SDN context, there are some works that proposed the use
of statistical analysis to evaluate possible changes in traffic from a
DoS attack. In [24], the authors suggested a detection mechanism
that uses data plane entropy from a programmable switch. The au-
thors in [25] proposed the use of entropy in the control plane, taking
advantage of the controller overview to detect traffic changes that
may characterize the DoS attack. Although the mentioned works
use entropy, they do not present the volume of packets necessary for
the detection of the attack and other methods are not explored in the
presented proposals.

This work proposes a solution for detecting DoS attacks in SDN
that takes advantage of the controller’s network traffic knowledge.
That is, unlike traditional network approaches where each switch
implements local strategies, we take advantage of the controller
overview to detect anomalies. To be more specific, this paper imple-
ments and evaluates statistical DoS detection mechanisms, entropy
and chi-square, which are incorporated at the controller. The de-
tails of the proposed solution are presented and evaluated in the
subsequent sections.

6 Proposed solution to detect DoS attacks
in SDN

In the SDN architecture, traffic flow monitoring and the execution
of pre-established actions are performed by the control plane. The
controller operates with the OpenFlow switches, exchanging infor-
mation and statistical data via specific communication channels [3].
This data includes the number of bytes, the number of packets and
the elapsed time that the flow was established on the switch. These
can be forwarded to the controller in an organized way, through a
timer, which requests the current set of data from the switch for a
group of flows or a certain flow. All input streams are managed by
flow tables in the switch. If a stream is not configured in its flow
table, the switch sends an asynchronous message named packet in
to the controller. Otherwise, the stream follows the behavior de-
termined by its flow table. This message is sent whenever there
is no corresponding flow entry in the switch flow table. Thus, the
controller will add a flow rule or eliminate flows from the flow table.

The use of spurious IP addresses is common in DoS attacks.
In the course of an SYN Flood DoS attack, all spoofed source IP
addresses target the victim’s IP. In an SDN, there will be no entries
in the flow tables for spoofed addresses, so the spurious flows will
be forwarded to the controller via packet in. If the packet rate is too
high, such as in a DoS attack, the controller’s resources will start
to run out. In this situation, a high rate of spoofed addresses can

overload the controller. The consequence of this will be the flooding
of the communication channel between the data and the control
plane, making it impossible for legitimate streams to be routed to
their destination. Considering that it is possible to identify a new
stream in the network and that during a DoS attack, this stream
will have non-standard characteristics of the normal traffic. Then
it is possible to measure this divergence through techniques that
detect anomalies like chi-square and entropy. These techniques can
identify changes in traffic that can be characterized as a DoS attack.

To develop the DoS attack detection mechanism using statisti-
cal analysis techniques it is necessary to define four components:
observed field, observation window, statistical method, and the
detection threshold.

6.1 Observed field

The available packet header fields to be analyzed include source IP
address, destination IP address, source port, destination port, packet
size, and etc. It is possible to extract packet header information at
runtime. Each strategy should define the field to be analyzed that
allows characterizing spurious traffic from legitimate traffic during
a denial of service attack.

6.2 Observation window

The observation window corresponds to the number of packets
(window size L) that will be analyzed by the mechanism. Within
each observation window wi, the frequency at which the field to be
observed appears is computed in O(L2) time. The probability of
occurrence of the fields of interest is measured as follows:

p j =
o j

L
, (3)

where o j, (1 ≤ j ≤ L) is defined as the frequency of the observed
fields in wi, |wi| = L is the number of packets in wi and p j is the
probability of occurrence of the field observed in wi.

6.3 Statistical method

The statistical method consists in applying one of the methods de-
fined by the mechanism, chi-square (Equation 1) or entropy (Equa-
tion 2), defined as δ, from the observed frequency (o1 . . . o j) and the
probability of occurrence of the field (p1 . . . p j) in the window (wi).
The calculated values are stored in a list containing the previously
calculated values. These values will serve as the basis for setting
the detection threshold.

6.4 Detection threshold

The detection threshold Twi defines the sensitivity of the proposed
mechanism. The calculation of the threshold is given as:

Twi =

{
Twi , i = 1
Twiα + (1 − α)Twi−1 , i > 1 (4)

where Twi represents the current value of the applied anomaly
method calculated, Tw−1 represents the estimated value in the previ-
ous window (wi−1) without attack and α is the smoothing coefficient.
The coefficient α assumes values (0 ≤ α ≤ 1), then that the closer
to 1, the greater the weight applied to recent information and the
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closer to 0 the greater the weight applied to past information. In this
way, the threshold can be adjusted according to the characteristics
of the network to reduce the incidence of false alarms.

6.5 DoS Attack Detection Mechanism

Based on the components above, this work presents a new statistical
DoS attack detection mechanism for an SDN architecture. Note
that, unlike other works presented in the literature, the proposed
strategy can adjust the DoS detection threshold limits at runtime.
The proposal is presented in Algorithm 1.

Algorithm 1 DoS Attack Detection Mechanism
Input: Tw1 , L, α

1: i← 2
2: attack ← “ f alse”
3: while true do
4: wi ← {}

5: while |wi| ≤ L do
6: f ← extract the observed field from packet in
7: wi ← wi ∪ { f }
8: end while
9: Compute o j and p j ∀ j ∈ wi

10: δ← S tatisticalMethodResult(wi)
11: if !attack then
12: Twi ← Twiα + (1 − α)Twi−1

13: end if
14: if δ > Twi then
15: attack ← “true”
16: else
17: attack ← “ f alse”
18: i← i + 1
19: end if
20: end while

Initially, the controller receives as input the initial threshold
value (Tw1 ), window size (L) and smoothing coefficient (α). It is
assumed that in the first window there is no attack and that the first
threshold (Tw1 ) has already been calculated (lines 1 – 2). The con-
troller starts a loop that always keeps analyzing all packet in’s (line
3). As packets enter the OpenFlow controller input queue, the con-
troller start window as empty (line 4) and then extracts the field to
be parsed by the proposed detection engine (lines 5 – 8). The parsed
field corresponds to a predefined field from the available header
fields in the packets. The observation window wi is composed of
these fields until they reach a predetermined size.

In this article, we employ sizes of 20, 60, and 100 packets parsed
for the source IP address field, as we will see in Section 7. When
the observation window is filled, that is, when |wi| = L, the observed
frequency (o1 . . . o j) and the probability of occurrence (p1 . . . p j),
for all fields in the window (wi), as calculated in (line 9). With
all observed frequency values and all calculated probabilities, it is
possible to perform the statistical analysis defined for the detection
mechanism (chi-square or entropy) in wi, where δ is defined (line

10). If the variable denoting the attack is set to f alse (line 11), then
the window threshold (Twi ) is updated. If the value of the statistical
method is above the threshold (δ > Twi )

1 the DoS attack is detected
(lines 14 – 16), otherwise, it will be considered as legitimate traffic
(attack = “ f alse”), increments i and the loop runs again.

6.6 Complexity Analysis

The time complexity of the proposed solution is analyzed as follows.
To calculate the frequency of the observed field, it is necessary to
analyze the entire observation window, of size m, for each element,
so its time complexity is O(m2). To calculate chi-square or entropy
it is necessary to calculate the number of distinct occurrences in
the window. So in the worst case, we have window size m, thus
O(m). Thus, overall, the total time complexity of window detection
analysis is O(m2).

7 Experiments
In order to evaluate the proposed architecture, we implemented the
proposed detection model and analyzed its performance. The follow-
ing sections present the experimental environment, the methodology,
the metrics considered in our analysis and the results observed in
the experiments.

7.1 Experimental Setup and Methodology

The experiments were performed using Mininet as an emulator of
an SDN architecture [26]. In Mininet the switches and controllers
operate under the OpenFlow protocol enabling the implementation
of SDN applications. The controller used was POX, which enables
rapid prototyping in the Python language to create features in the
network [27]. The controller has been implemented to collect source
IP addresses of new incoming packets. A function was developed
for calculating packet statistics. The experiments were performed
on the Ubuntu 16.04 LTS operating system, using a core i5 7400
3.0 GHz CPU with 4Gb of RAM.

The proposed detection mechanism is not influenced by the
size of the network, but by the volume of packets that make up the
observation window. To this end, using a network topology was con-
sidered in order to allow balancing the workload between the victim
and the attacker. The topology consists of 4 OpenFlow switches, 9
hosts and 1 controller POX. The IPs range from 10.0.0.1 to 10.0.0.9,
with host 10.0.0.3 being the victim server and host 10.0.0.7 the
attacker. The range of spurious IPs are generated at random. The
bandwidth of each link is 100 Mbps, as shown in Figure 2. The
victim’s host is located on the “Switch OpenFlow 2” network and
the DoS attacker performs the attack from the “Switch OpenFlow 4”
network.

The generation of legitimate packets is performed using the
Scapy [28]. Scapy is a tool that allows creating TCP and UDP
packets. The spoofed SYN packets are generated using the tool
Hping [29]. This tool is used for security testing on networks oper-
ating as a packet generator for the TCP/IP protocol. Two types of

1The relationship between the δ and Twi depends on the field to be analyzed. For example, if the field is the source IP, use δ > Twi , if the field is the destination IP, use
(δ < Twi ).
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traffic were generated: normal traffic and spurious traffic. Normal
traffic is used to obtain the statistical values used by the detection
mechanisms of anomalies (chi-square and entropy) under normal
conditions. With this, it is possible to define the detection thresh-
old, based on Equation 4. Spurious traffic is injected to verify the
behavior of the solution.

Hosts

Switch
OpenFlow 3

Victim Attacker

HostsHosts

Controller

Switch
OpenFlow 1

Switch
OpenFlow 2

Switch
OpenFlow 4

Figure 2: Network topology.

To analyze the proposed solution, SYN Flood attack were simu-
lated by calculating the entropy and chi-square values using source
IP addresses with different observation window sizes and smoothing
coefficients (threshold) to identify the attack traffic. In the experi-
ments, 20,500 packets were considered. The observation windows
had the following sizes: 20, 60 and 100 packets. The window is
moved sequentially with the same number of packets from the previ-
ous window without overlap, as shown in Figure 3. The smoothing
coefficients (α) evaluated were: 0.1, 0.5 and 0.9. The simulation
time of each experiment was 200 s, and in the hundredth second the
SYN Flood attack was started at a rate of 250 packets per second
from a host belonging to the “Switch OpenFlow 2” network. The
rate of legitimate packets is 5 packets per second. Five simula-
tions of each method were performed to analyze the behavior of the
solution.

Packets

Window: 20 Window: 20

Figure 3: Moving windows

Figures 4 and 5 show the outputs of the chi-square and entropy
values. Such values are obtained by Equations (1) and (2), respec-
tively. The observed field was the source IP address, the observation
windows have the size of 60 packets and the smoothing coefficient
of 0.5 for the detection threshold.

The observation period shows 200 seconds of analysis, which at
a rate of 250 packets per second generates about ≈833 windows of
60 packets. Before the onset of the attack, the chi-square and entropy
measurements are in the range of 180 to 220 for the chi-square and
0.44 to 0.49 for the entropy for the normal traffic. During the attack,
there is a considerable increase in these values in both techniques.
The reason for this is that the source IP address is changed in each
new packet, due to the attack characteristic, which causes the source

IP address quantities to increase substantially filling the entire obser-
vation window, causing an anomaly. In the case of the chi-square, a
peak is observed at the beginning of the attack injection, but during
and after the attack, the values return to a normal traffic situation.
entropy, in turn, best classifies the beginning and end of the attack,
differentiating the attack period from a normal traffic situation. It
is important to note that the chi-square is asymmetric, generating a
peak only at the beginning of the attack, after the end of the attack
there is a slight change between the observed values.
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Figure 4: DoS attack identification using chi-square.
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Figure 5: DoS attack identification using entropy.

It can be observed that both methods can identify anomalies in
the network based on the deviation of the traffic distribution. The
two methods were compared to identify which method has the high-
est detection rate and the lowest false alarm rate in the proposed
SDN architecture model.

7.2 Metrics

The quality of the results was measured using a confusion matrix.
Table 1 exemplifies the matrix model used. The matrix is composed
of predicted values (results obtained) and actual values (expected
results) of normal traffic and spurious traffic, based on the rates of
false negative (FN), false positive (FP), true negative (T N) and true
positive (T P).

Table 1: Confusion matrix.

Predicted Actual
Attack Normal

Attack TP FP
Normal FN TN
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The FN rate is given by the number of packets classified as
normal (negative) but that are confirmed as attack packets (posi-
tive). The FP rate is given by the number of packets classified as
attack packets (positive) but they are confirmed as normal (nega-
tive) packets. On the other hand, T N rate indicates the number of
packets correctly classified as legitimate (negative) and T P rate rep-
resents the number of packets correctly classified as attack packets
(positive).

In this work, we use precision, recall and F1-score to evaluate
the effectiveness of the proposed DoS detection mechanisms.

Precision represents the proportion of positive identifications
that were correctly identified. This metric measures the quality of
the results and is defined as follows:

Precision =
T P

T P + FP
. (5)

Recall is the proportion of positives that have been identified cor-
rectly, measuring the completeness of the mechanism. This metric
is defined as follows:

Recall =
T P

T P + FN
. (6)

F1-score is defined as a harmonic mean between precision and
recall, aiming to bring the balance between both, to indicate the
overall performance of the technique. High F1-score values indicate
that the detection technique presents more accuracy. this metric is
defined as follows:

F1 =
(2 ∗ T P)

(2 ∗ T P + FP + FN)
. (7)

7.3 Results

The confusion matrix for the entropy and the chi-square can be seen
in Table 2 and 3, respectively. The data in the table was obtained
based on the simulation results for each statistical method presented.
The smoothing coefficient can be observed immediately to the left
at the beginning of each method analyzed.

The smoothing coefficient plays an important role in the defini-
tion of detection thresholds since it is responsible for defining the
detection sensitivity of the proposed method. Through it is possible
to assign weights to the values and thus the threshold represents
an exponential weighted moving average, whose latest values have
more weight. A very low coefficient may leave the solution more
sensitive to small variations in the values obtained, providing a
higher detection, but this sensitivity may cause an increase in the
FP rate. On the other hand, a very high coefficient provides greater
freedom for the change in the values obtained and consequently
a lower detection resulting and an increase in the rate of FN. It is
therefore ideal to seek a balance for the smoothing coefficient in
order to provide it with an appropriate threshold that reflects well
the characteristics of the network and can reduce these rates while
maintaining an acceptable level of accuracy.

The size of the window is related to the accuracy of attack de-
tection. We can note that the larger the window, the greater the
accuracy in detecting the attack, this is due to the large number of

packets that fill the window reflect in a greater representativity of
the data to be observed, however this size can cause a greater con-
sumption of resources by part of the controller and slower detection
because the number of packets the solution needs to fill the window
is larger. For a small window, we can observe a low precision in
the results, because the observed values represent a small part of
the total set to be analyzed, in contrast, we obtain a faster detection,
providing a lower consumption of resources.

Considering the analyzed parameters of the smoothing coeffi-
cients and observation windows, the mechanisms had similar be-
haviors, although the entropy was 0.59% more accurate on average
than the chi-square, due to the reduction of the FP and FN rate in
both cases.

Figure 6 shows the result of the Precision. We can see that the
mechanism can correctly identify spurious traffic in an acceptable
way, avoiding false positives. Figure 7 shows the result of the Recall.
The results show that the mechanism can effectively separate what
is spurious traffic from legitimate traffic.

Figure 8 shows the result of the F1 score. Although entropy
provides higher accuracy when compared to chi-square results, it
requires a larger packet volume to detect any change in traffic, which
can increase detection time. For example, for the 60-packet win-
dow with a smoothing coefficient of 0.1 (α = 0.1), the entropy
needed to analyze approximately 582 packets to detect the attack,
the equivalent of ≈10 windows, while the chi-square needed only
478 packets, the equivalent of ≈8 windows, reducing the volume
of packets evaluated by about 17%, as shown in Figure 9. This is
because chi-square allows the comparison between two consecutive
distributions, allowing to detect much changes faster. Unlike en-
tropy, which represents the dispersion of several values in a given
probability distribution. In summary, chi-square has reduced on
average by 14.89% of the number of packets to be analyzed in the
observation windows used.

It is important to note that the results presented do not take into
account the attack rate, because the proposed solution focuses on an-
alyzing the behavior of the observation windows and the sensitivity
of the detection thresholds, finding the ideal balance between these
components in order to meet the needs of the network operator.
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Table 2: Entropy confusion matrix.

Window 20 Window 60 Window 100
Actual Actual ActualPredicted Attack Normal Predicted Attack Normal Predicted Attack Normal

Attack 95.5% 8.9% Attack 95.7% 8.6% Attack 95.9% 8%
α = 0.1

Normal 4.5% 91.1% Normal 4.3% 91.4% Normal 4.1% 92%

Window 20 Window 60 Window 100
Actual Actual ActualPredicted Attack Normal Predicted Attack Normal Predicted Attack Normal

Attack 95.1% 7.2% Attack 95.5% 6.7% Attack 95.6% 6.6%
α = 0.5

Normal 4.9% 92.8% Normal 4.5% 93.3% Normal 4.4% 93.4%

Window 20 Window 60 Window 100
Actual Actual ActualPredicted Attack Normal Predicted Attack Normal Predicted Attack Normal

Attack 94.4% 6.6% Attack 94.7% 6% Attack 94.8% 5.9%
α = 0.9

Normal 5.6% 93.4% Normal 5.3% 94% Normal 5.2% 94.1%

Table 3: Chi-square confusion Matrix

Window 20 Window 60 Window 100
Actual Actual ActualPredicted Attack Normal Predicted Attack Normal Predicted Attack Normal

Attack 95% 9.7% Attack 95.2% 9.6% Attack 95.6% 9.3%
α = 0.1

Normal 5% 90.3% Normal 4.8% 90.4% Normal 4.4% 90.7%

Window 20 Window 60 Window 100
Actual Actual ActualPredicted Attack Normal Predicted Attack Normal Predicted Attack Normal

Attack 94.7% 7.6% Attack 95.1% 7.1% Attack 95.3% 7%
α = 0.5

Normal 5.3% 92.4% Normal 4.9% 92.9% Normal 4.7% 93%

Window 20 Window 60 Window 100
Actual Actual ActualPredicted Attack Normal Predicted Attack Normal Predicted Attack Normal

Attack 93.8% 6.9% Attack 94% 6.5% Attack 94.1% 6.3%
α = 0.9

Normal 6.2% 93.1% Normal 6% 93.5% Normal 5.9% 93.7%
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Finally, Figure 10 shows the result of time detection. The
smoothing coefficient plays an important role in this regard as it
allows manipulating the sensitivity of the mechanism which can
result in faster or slower detection. For example, coefficient 0.1
provides more immediate alerts, unlike coefficient 0.9, at the cost of
higher FP and FN rates. This is due to the weight of information
given to the mechanism for calculating the detection threshold.
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8 Conclusion
This paper proposes a solution for the detection of DoS attacks
based on the use of any mechanism for the detection of network
anomalies. The mechanism works alongside the controller. Two
techniques are evaluated for the detection of DoS attacks: entropy
and chi-square. Both techniques were evaluated in terms of the rate
of false positives and false negatives. From the experimental results,
chi-square and entropy could detect the TCP-SYN Flood attack with
an acceptable accuracy rate. The entropy was a little more accurate
due to the reduction in the number of false positives and false nega-
tives, around 0.59%, while the chi-square detects the anomaly with
a smaller number of packets, on average 14.89% less entropy. One

of the main benefits of the proposed solution is its versatility. Any
parameter in the solution can be changed to suit the characteristics
of the network. The detection field (i.e, source IP, destination IP,
source port and source port), detection threshold and window size
can be configured to meet SDN requirements. As future work, we
want to handle this information to establish mitigation strategies
in SDN architectures under different scenarios and different attack
rates.
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