
 

www.astesj.com     293 

 

 

 

 

Scapy Scripting to Automate Testing of Networking Middleboxes 

Dr. Minal Moharir1,*, Karthik Bhat Adyathimar2, Dr. Shobha G3, Vishal Soni4 

1Associate Professor, Computer Science and Engineering, RV College of Engineering, Bengaluru-560059, India 
2Student, Computer Science and Engineering, RV College of Engineering, Bengaluru-560059, India 

3Professors, Computer Science and Engineering, RV College of Engineering, Bengaluru-560059, India 

4Senior Manager, Engineering at Citrix Systems Inc, Bengaluru-560042, India 

A R T I C L E  I N F O  A B S T R A C T 
Article history: 
Received: 28 December, 2019 
Accepted: 22 February, 2020 
Online: 23 March, 2020 

 Middleboxes like load balancers are being used by all the corporations to manage and 
support their infrastructures. These devices see a large amount of bandwidth every day. 
This might include a range of protocols which might be varying from network layer to the 
application layer. This traffic can be corrupt or malicious thus causing these devices to fail 
or get exploited. Citrix NetScaler Application Delivery Controller (ADC) is one of such 
ADC which provides supple transportation services for conventional, containerized and 
microservice applications from the data centre or any cloud. NetScaler supports robust 
security, excellent L4-L7 load balancing, authentic Global server load balancing (GSLB), 
and enhanced uptime. Scapy is one of the most powerful and interactive packet 
manipulation software. Scapy is a powerful network manipulation module which is 
distributed as a python module. Python being a powerful scripting language helps in 
exploring this in various use cases. In this paper we discuss using Scapy with Python to 
script application layer protocols with controlled packet structure which helps in testing 
these middleboxes. We use these modules to explore Citrix Netscaler ADC which is widely 
being used. Our present work involves development of server-client Model for the following 
protocols namely FTP, HTTPS and TFTP. FTP protocol developed using scapy has support 
for both IPv4 and IPv6. All these scripts built using scapy are open sourced. 

Keywords:  
Automatic Identification System 
Anomaly Detection  
Vessel traffic Behavior  

 

 

1. Introduction 
Scapy is a software developed in Python. It supports low level 

packet manipulation. It can be used to build tools to support 
testing and exploitation of networking modules. Scapy can easily 
interpret packets of a different variety of protocols, push them on 
the wire, and capture them. It can send requests and responses. 
The various functions of Scapy tool is as shown in figure 1. Scapy 
can handle most traditional undertakings like filtering, 
tracerouting, examining, unit tests, assaults or system revelation 
without much of a stretch [1]. Scapy can supplant hping, arpspoof, 
arp-sk, arping, p0f and even a few sections of Nmap, tcpdump, 
and tshark. 

Scapy likewise performs extremely well on a considerable 
measure of other explicit assignments that most different tools 
can't deal with, such as sending invalid packets, infusing your 
own 802.11 layers, joining procedures (VLAN hopping ARP 

store harming, VOIP translating on WEP scrambled channel). 
The thought is straightforward. Scapy primarily completes 
couple of major functions such as sending packets and in turn 
accepting responses. We can build the packets with the required 
parameter let that be a TCP/UDP or even the lower layer details 
like window size, acknowledgement number. This has the huge 
favourable position over tools like Nmap or hping that only lets 
you deal with known packets. Scapy lets the user to listen to the 
packets on the network, filter the required ones and 
alter/forge/forward them [2]. 

Scanning Fingerprinting 

Testing       Attacking 

Packet Forging Sniffing 
Figure 1: Scapy Functions 

ASTESJ 

ISSN: 2415-6698 

* Dr. Minal Moharir,  minalmoharir@rvce.edu.in 
 

 

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 293-298 (2020) 

www.astesj.com   

https://dx.doi.org/10.25046/aj050238 

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050238


M. Moharir et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 293-298 (2020) 

www.astesj.com     294 

2. Methodology of Protocol Enhancement to Scapy 

Scapy has a Python module which lets a developer script the 
required features and test them easily. It is currently supported 
with both Python2 and Python3. It can be simply imported and its 
function for packet manipulation can be used. This was made use 
of to develop different Server-Client modules of protocols FTP, 
TFTP and HTTPS. These were the major requirement for the 
testing of Citrix Netscaler ADC. The methodology followed for 
packet manipulation to Scapy is shown in figure 2[3]. 

To achieve easy prototyping initially a TCP module is built 
using Scapy scripting. This lets us write any application layer 
protocol over it. Scapy has easy to use function for listening on 
the network i.e packet sniffing with the packet filters. This lets us 
intervene with an ongoing TCP connection on the network. This 
TCP module had 2 parts, listener and responder. The listener is a 
background thread which listens to the packets on the network 
with the given filter and acknowledge them. This was achieved by 
maintaining Sequence and Acknowledge number on which 
atomic operations for read and update were performed. Once the 
TCP data is received, this was placed in a synchronized Queue 
which then can be accessed using the APIs. This was built so that 
any higher layer protocol built can make use of it directly without 
worrying for the lower level details of packet filters and packet 
parsing. This module opens sourced and is later used with FTP 
and HTTPS. TFTP is a UDP protocol and it is simpler to build 
hence no such module had to be scripted. The main objectives of 
this paper is, to explore Scapy Tool with its different features 
support. Further to enhance TFTP, FTP, HTTPS protocol support 
to scapy. 

sr ( )

match

stimulus

response

Implicit packet set

Result

Unanswered packets 

N
e

tw
o

rk
 

 

Figure 2: Packet Manipulation in Scapy 

3. Protocol Enhancement to Scapy 

3.1. FTP 

FTP: File Transfer Protocol (FTP) is one of the most popular 
and preferred Internet protocols for sending and receiving huge 
files between computer systems over TCP/IP connections. FTP is 
a best example of client-server architecture. FTP is implemented 
on two communications channels between purchaser (client) and 
server. FTP comprised of two channels namely control and data 
channel. The overall architecture controlling is implemented by 
control channel. The file transmission is carried out using data 
channel. The clients send connection request to server before 
downloading any data from server side. FTP allows purchaser to 
upload, download, remove, and rename, flow and replica files on 

a server. The working of FTP protocol is as shown in figure 3. 
Generally, a user officially gets activated on to the FTP server to 
manage their desired records or files. On the other hand servers 
make a few or all in their content to be had without login, also 
referred to as anonymous FTP [4]. 

Passive FTP

Computer

Active FTP

Server

FTP control connection to 
port 21 from high port

Client 
Computer Server 

Port 20
High Port

FTP data connection initiation from 
port 20 on server to high port on client

Computer

Server

FTP control connection to 
port 21 from high port

Client 
Computer Server 

High Port High Port

FTP data connection initiation from high 
port  on client to high port on the server  

Figure 3 FTP working Principle 

FTP sessions can be implemented in two modes namely 
passive and active mode. The active mode is implemented by 
initiating a client’s a command channel request. In response the 
server initiates a data connection and starts sending data. On the 
other hand, in passive mode, the server uses the command channel 
to send the client the information it needs to open a data channel. 
As in passive mode the client initiates all connections, it works 
well across firewalls and Network Address Translation gateways. 
The code snippet used to implement FTP client is as shown in 
figure 4. 

 

 
Figure 4: Code Snippet FTP client 

Now a day’s most of the file transfer applications are 
implemented using HTTP. Moreover, FTP is still widely used to 
transfer files "behind the scenes" for banking applications, the 
services which are used to build websites like Wix or SquareSpace 
and etc. It is also used in Web browsers, to download new 
applications [5]. The code snippet used to implement FTP server 
is as shown in figure 5. 

http://www.astesj.com/


M. Moharir et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 293-298 (2020) 

www.astesj.com     295 

TFTP service runs on well-known UDP port of 69. TFTP has 
to furnish its own session support as it used UDP an unreliable 
connectionless service. The file transferred using TFTP account 
for an independent exchange. The requesting client node sends 
either an RRQ (read request) or WRQ (write request) packet, 
along with the filename and the transfer mode to be used. As a 
response a server sends ACK (acknowledgement) packet to a 
received DATA packet if it is a WRQ message. Server responds 
with a DATA packet if it is an RRQ message (the client port is 
shown). On receiving each ACK message the sending host sends 
numbered DATA packets to the destination host. The last message 
contains a full-sized block of data. The numbered ACK packets is 
sent by the destination node for each received DATA packet [7]. 
The code snippet used to implement TFTP client is as shown in 
figure 7 

 

Figure 5 Code Snippet FTP Server 

3.2. TFTP 

The tiny and fastest file transfer can be implemented using 
Trivial File Transfer Protocol (TFTP). TFTP is companion of 
User Datagram transport Protocol (UDP) which is layered on the 
UDP. It can be used along with Internet Protocol both the version 
IPv4 or IPv6. TFTP is an elementary simple file transfer protocol. 
It was developed around 1980. TFTP provides functionality to 
copy files across a network (a very basic form of FTP). It is 
officially published in [RFC2347]. As it is so simple, it occupies 
very small amount of memory which makes it more convenient to 
use. Therefore, booting or loading the configuration of systems is 
implemented using TFTP. It includes thin client, wireless base 
stations without any storage and routers. TFTP does not support 
any security features such as authentication or encryption 
mechanisms. All the files in the TFTP directory can be directly 
accessible to the user. The working of TFTP protocol is as shown 
in figure 6. The absence of security feature makes TFTP 
dangerous over the open Internet which makes TFTP suitable only 
on private local area networks. It is an alternative to FTP when 
FTP is costlier or tougher to implement. The example of these 
services includes down-loading firmware, software and 
configuration data to network devices [6]. 

TFTP Client TFTP Server

1. Send Write request 
with File Nature

3. Receive Acknowledgement,
 send Data bytes 1 to 552

5. Receive Acknowledgement,
 send Data bytes 513 to 1024

7. Receive Acknowledgement,
 send Data bytes 1025 to 1200

9. Receive Acknowledgement,
 File Transfer Complete

WRO
2. Receive Write Request 
send  Acknowledgement,

4. Receive Block F1,
send  Acknowledgement,

6. Receive Block F2, 
send  Acknowledgement,

8. Receive Block F3, 
send  Acknowledgement,

DATA 
(Block #2)

DATA 
(Block #3)

ACK 
(Block #3)

ACK 
(Block #0)

DATA 
(Block #1)

ACK 
(Block #1)

ACK 
(Block #2)

 
Figure 6: TFTP working Principle 

TFTP service runs on well-known UDP port of 69. TFTP has 
to furnish its own session support as it used UDP an unreliable 
connectionless service. The file transferred using TFTP account 
for an independent exchange. The requesting client node sends 
either an RRQ (read request) or WRQ (write request) packet, along 
with the filename and the transfer mode to be used. As a response 
a server sends ACK (acknowledgement) packet to a received 
DATA packet if it is a WRQ message. Server responds with a 
DATA packet if it is an RRQ message (the client port is shown). 
On receiving each ACK message the sending host sends numbered 
DATA packets to the destination host. The last message contains 
a full-sized block of data. The numbered ACK packets is sent by 
the destination node for each received DATA packet [7]. The code 
snippet used to implement TFTP client is as shown in figure 7. 

 
Figure 7: Code Snippet TFTP client 

This is just like simple Automatic Repeat Request (ARQ) 
protocol, extended to retransmission of packet when there is a 
packet is lost. The last DATA packet must contain less than a 
maximum-sized block of data. It shows that it is the last block of 
the transfer. In TFTP data transmission happens in lockstep [8]. It 
means only one packet (either a block of data or an 
‘acknowledgement’) is ever in flight on the network at any point 
of time. This windowing limitation makes TFTP low throughput 
and high latency protocol over links. The code snippet used to 
implement TFTP server is as shown in figure 8. 

Figure 8: Code Snippet TFTP Server 

http://www.astesj.com/


M. Moharir et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 293-298 (2020) 

www.astesj.com     296 

http
Username me password mypassword

Welcome me here is your data

Communication over http

Communication over https
Communication over http and https

Webserver

Webserver

Browser

Browser

http
x234sthslv;seralgyu”d3y2e523st

mQrs35d^41$2osqr845<”765

 
Figure 9: HTTPS working Principle 

3.3. HTTPS 

HTTPS is a Hyper Text Transfer Protocol Secure. The secure 
communication between two systems e.g. the browser and the web 
server is implemented using HTTPS [9]. The difference between 
communication over http and https is as shown in figure 9. 

We can analyse form the above figure, the data transfer using 
http between the browser and the web server is in the hypertext 
format, on the other side https transfers data in the encoded format. 
Thus, https safeguards data from hackers for eavesdropping and 
changing it during the transmission between browser and 
webserver. Further, though the hackers able to hack the 
transmission, they will not be able to read it because the message 
is in encoded format. HTTPS uses the Secure Socket Layer (SSL) 
or Transport Layer Security (TLS) protocols to setup a secure link 
between the browser and the web server. TLS is the extended 
version of SSL [10]. 

Secure Socket Layer (SSL): SSL establishes an encrypted 
link between the two systems to implement data security for 
secure communication. The HTTPS code snippet is as shown in 
figure 10 
 

Figure 10 Code Snippet HTTPS 

The communication can be in the form of browser to server, 
server to server or client to server. The main aim of SSL to ensure 
secure and private data transfer between the two systems. The 
https is essentially http over SSL. SSL sets up an encrypted link 
using an SSL certificate. This certificate is also known as a digital 
certificate. 

4. Results 

Scapy uses the Python interpreter as a command board. That 
means that you can directly use the Python language (assign 
variables, use loops, define functions, etc.) The paper is 
implemented by creating wrapper classes in Python to support 
different protocol using Scapy. 

FTP module [11] has both server and client modules. This also 
has support for both IPv4 and IPv6. One of the features of the client 
module is to let the user specify the source IP and port for 
communication. This is not supported by any of the existing FTP 
clients. This helps in analyzing the working of the load balancer 
on how it performs when a large number of requests come in with 
different source IP/port. To achieve this, there is one more feature 
of selecting the number of concurrent connections to the server. 
Now this lets us test the middleboxes when the traffic floods in. 
This also supports different commands to be used on different 
concurrent connections with the help of command file as input. All 
these features are exposed as command line parameters. Also, all 
the features can be read with the help command (python client.py 
-h). Also further information is explained in detail in repo’s 
readme. 

The FTP protocol support is as shown in the following figures. 
The wrapper class was developed to support FTP with Scapy for 
IPV4 and IPV6 shown in figure 11 and figure 12 respectively. 

 

 

 

 
Figure 11: FTP IPV4 sessions 

The file transfer with IP format with different read/write 
session is shown in screen shot for both IPV4 and IPV6. 

 

 

 

 

 

 
Figure 12 FTP IPV6 sessions 

The implementation also supports multiple files transfer to 
single connection or single file transfer to multiple connections as 
shown in figure 13 and figure 14 respectively. 

 

 

 

 
 

 

Figure 13 FTP IPV6 Multiple connections 

http://www.astesj.com/


M. Moharir et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 293-298 (2020) 

www.astesj.com     297 

The output shows different connection has received same file. 

 

 

 

 

 

 
 

Figure 14 FTP IPV6 Multiple connections 

Similarly HTTPS module was built to support various 
parameters to be used during SSL/TLS negotiation. This made use 
of one more Python module scapy-ssl_tls. This has support for 
selecting the Ciphersuite, TLS version as well as TLS extensions. 
All the features are exposed as command line parameters and can 
be viewed using help (python client.py -h). The HTTP request to 
be sent can be given as an input file specifying all the HTTP 
parameters and the output will be written to the file specified in the 
command line. It also supports curl like command by specifying 
the URL in the command line. 

The execution of the developed wrapper class to support 
HTTPS with Scapy is shown in figure 15. 

 

 

 

 

 

 
 

Figure 15 HTTPs client 

TFTP module was also built using Scapy. TFTP is a simple 
request response protocol and has a simpler architecture. Similar 
to FTP various features like multiple concurrent requests, source 
IP/port options etc which are exposed as command line 
parameters. The connectionless small is transfer is generally 
implemented using trivial File Transfer (TFTP). The TFTP client 
server protocol support is as shown in figure 16 and 17 
respectively 

 
Figure 16 TFTP Client usage 

 

 
 
 
 
 
 

Figure 17 TFTP Server usage 

5. Conclusion 

There have been issues where when the load balances see a 
new/broken packet structures it fails to parse and causing 
undefined behavior. This cannot be found out general test cases 
since a malicious user is capable of injecting malicious packets 
which are not handled by the design. These cases can be very 
frequent and the middleboxes needs to be robust. Here we have 
developed python modules for protocols like FTP, TFTP and 
HTTPS where the packets can be generated with varied parameters 
like controlled TCP source IP/port, number of parallel 
connections, encryption parameters etc. This lets us test the load 
balancer with various packet structure which might not be a part of 
everyday traffic but might be capable of crashing or compromising 
of the middleboxes. For this purpose, we develop the protocol 
support to the system such that it we can craft our own packets 
from the raw structure and manipulate as we need. Using Scapy 
we can add additional functionalities to the protocol and use it. 
With Scapy it is easy to play with packets and hence it is a very 
powerful tool. 

The enhancement to this paper can implemented as addition of 
data link layer protocol support to the scapy, build interactive GUI 
for usage, Secure protocols such as SFTP, FTPS etc can be 
implemented. 

Conflict of Interest 

The authors declare no conflict of interest. 

Acknowledgment 

The authors would like to thank Team Citrix for their support 
and guidance while implementing this project work. 

References 

[1] RFC4346] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC 
2246, DOI 10.17487/RFC2246, January 1999, <https://www.rfc-
editor.org/info/rfc2246> SSL/TLS packet structure, handshake protocol 
implementation, ciphers supported. Creating reliable and private 
connection 

[2] [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) 
Protocol Version 1.1", RFC 4346, DOI 10.17487/RFC4346, April 2006, 
<https://www.rfceditor. org/info/rfc4346>. Change in ciphers supported 
from previous versions. Difference and improvements in security 
parameters. 

[3] Rohith Raj S, Rohith R, Minal Moharir, Shobha G, SCAPY- A powerful 
interactive packet manipulation program, IEEE International Conference 
on Networking, Embedded and Wireless Systems (ICNEWS), 27-28 Dec. 
2018 

[4] Khamar Ali Shaikh, A Karthik Bhat, Minai Moharir, A Survey on SSL 
Packet Structure, IEEE 2nd International Conference on Computational 
Systems and Information Technology for Sustainable Solution (CSITSS), 
21-23 Dec. 2017.DOI: 10.1109/CSITSS.2017.8447634 

http://www.astesj.com/


M. Moharir et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 293-298 (2020) 

www.astesj.com     298 

[5] A. Soumya Mahalakshmi et al., "A study of tools to develop a traffic 
generator for L4 – L7 layers", 2016 International Conference on Wireless 
Communications Signal Processing and Networking (WiSPNET), pp. 114-
118, 2016 DOI: 10.1109/WiSPNET.2016.7566102 

[6] S Bansal, N Bansal, "Scapy – A Python Tool For Security Testing", J 
Comput Sci Syst Biol, vol. 8, pp. 140-159, 2015System Application,” Ph.D 
Thesis, Chongqing University, 2005. 

[7] https://github.com/karthikbhata97/ScapyTCP 
[8] https://github.com/karthikbhata97/scapy-ftp 
[9] https://github.com/tintinweb/scapy-ssl_tls 
[10] https://github.com/karthikbhata97/scapy 

 

http://www.astesj.com/

	1. Introduction
	2. Methodology of Protocol Enhancement to Scapy
	3. Protocol Enhancement to Scapy
	3.1. FTP
	3.2. TFTP
	3.3. HTTPS

	4. Results
	5. Conclusion
	Conflict of Interest
	Acknowledgment
	References


