
Advances in Science, Technology and Engineering Systems Journal
Vol. 2, No. 3, 100-110 (2017)

www.astesj.com

ASTES Journal
ISSN: 2415-6698

Dependence-Based SegmentationApproach forDetectingMor-
pheme Boundaries

Ahmed Khorsi, Abeer Alsheddi*

Computer Science Department, Al-Imam Mohammad Ibn Saud Islamic University, Kingdom of Saudi Arabia

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 04 March, 2017
Accepted: 01 April, 2017
Online: 10 April, 2017

The unsupervised morphology processing in the emerging
mutant languages has the advantage over the human/
supervised processing of being more agiler. The main drawback
is, however, their accuracy. This article describes an
unsupervised morphemes identification approach based on an
intuitive and formal definition of event dependence. The input is
no more than a plain text of the targeted language. Although the
original objective of this work was classical Arabic, the test was
conducted on an English set as well. Tests on these two languages
show a very acceptable precision and recall. A deeper refinement
of the output allowed 89% precision and 78% recall on Arabic.

Keywords :
Classical Arabic language
Computer science
Corpora
Morpheme boundaries
Unsupervised learning
Word segmentation

1 Introduction

This article is an extension of work originally pre-
sented in Proceedings of 4th Saudi International Con-
ference on Information Technology (Big Data Analy-
sis) [1]. The article discusses one of the main chal-
lenges in computational linguistics is the identifica-
tion of morpheme boundaries [2, 3, 4]. Boundary de-
tection process plays a central role in extracting stems
from words [5]. Moreover, the noisy infixes affect the
performance of some tasks such as similarity compu-
tation [6, 7, 8]. The fascinating results of this pro-
cess performed easily on specific examples made com-
puter learning of language morphology a desirable
approached for a long time; as are simple problems
hiding dissuasive details. As a result of that, Zelig
Harris [9] way of segmenting words into morphemes
by only counting letters that may occur after a prefix
and marking the picks seems to be the first approach
published. Since that, investigations did not cease on
building a model easily maintainable to grasp how
words are coined in a human language. Benefits of
unsupervised approaches step beyond avoiding costly
human efforts on known languages. These approaches
also have the advantage of being fast enough and to
some extent language independent.

In Semitic languages [10, 11] such as Arabic, the

challenge is even harder because of the irregularities,
like mutations and diphthongs situations. Mutation
means that one letter can be replaced by another to fit
the pronunciation. Take the Arabic word “��WR�”
([AD◦TajaE]: lie-down)1 comes from applying the pat-
tern “???�” and then mutates the third letter “�”
([t]: 3rd Arabic letter) to “ª” ([T]: 16th Arabic letter).
This mutation also can be shown with a long vowel2

deleted or replaced by another. For example, the past
tense of the verb “�w�” ([qawl]: say) is “�A�” ([qaAl]:
said) by mutating “¤” ([w]: 27th Arabic letter) into “�”
([A]: 1st Arabic letter), whereas the imperative form of
the same verb is “��” ([qul]: say) with the letter “¤”
([w]: 27th Arabic letter) deleted. The second situation,
diphthong; means that two consecutive identical let-
ters are merged into one letter. For example, the word
“ÄdJ” ([$ad∼]: pull) is originally “Á ÅdJ” ([$ad◦da]).

The proposed approach is developed to the de-
sign of a fully computerized (i.e., unsupervised) ex-
traction of the morphemes. In light of this goal, the
approach uses simple and intuitive statistical feature
extracted by reading a corpus of plain text with no
tag to become able to identify the morphemes bound-
aries. The approach also was compared with an ex-
isted approach named Morfessor [13]. Although the
original goal of this work was to address the much

*Corresponding Author Email: abeer.alsheddi@gmail.com (A. Alsheddi)
1In this article, Arabic is represented in some or all of three variants according to context: ”Arabic word” ([Buckwalter Arabic translit-

eration] [12]: English translation).
2Three Arabic letters have long vowels: “«” or “�” ([A]: 1st Arabic letter), “¤” ([w]: 27th Arabic letter) and “©” ([y]: 28th Arabic letter)

100
www.astesj.com
https://dx.doi.org/10.25046/aj020314

A. Khorsi et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 100-YY (2017)

richer vocabulary of the classical Arabic, the test was
conducted on an English set as well. The results are a
proof of concept that unsupervised techniques can ac-
curately handle a morphology as complex as the one
of a legacy Semitic language.

The study brings the following values:

1. A model: An intuitive but formal model was de-
veloped for morphology learning based on a sim-
ple interpretation of the probabilistic dependence
[14] to segment a word into morphemes.

2. Languages

• Classical Arabic: The performance of the model
was reported on the morphology of the classical
Arabic, which is the language of a huge legacy
literature. Arabic morphology is more compli-
cated than simple languages [15]. Because of
these complex features, some of the methods
widely used in many languages cannot be ap-
plied to Arabic [6, 11]. On the other hand,
two known varieties of Arabic are classical Ara-
bic and Modern Standard Arabic (MSA). MSA is
based on the classical Arabic. However, MSA is
used more in informal speech and can combine
words borrowed from other languages that may
not use Arabic rules. In contrast, the classical
Arabic has been used to write literary legacy and
traditional vocabulary. It contains purer Arabic
words than MSA. Moreover, Arabic morphologi-
cal and semantic rules are derived from the clas-
sical Arabic. At the same time, the researchers on
Arabic are paying most of their attention to MSA.
To the best of our knowledge, the only studies
taking into account the classical Arabic are lim-
ited to religious texts.

• Other Languages: The performance of the model
was tested on a concatenative language namely
English. It has a totally different degree of mor-
phological complexity from Arabic [16].

3. Comparison: The performance of another word
segmentation approach named Morfessor was re-
ported on the same dataset.

4. Corpus: It is a language resource defined as a col-
lection of texts stored in a machine-readable for-
mat. To assess the proposed approach, we had to
build a corpus of classical Arabic texts authored in
the period from 431 to 1104 (in Hijri between 130
b.h and 498 h) counting around 122M words in to-
tal and 1M distinct words.

The remaining parts of this article are organized as
follows: Section 2 reviews existing methodologies on
detecting morpheme boundaries. Section 3 intro-
duces the proposed approach and explains its algo-
rithm. Section 4 discusses the tests and the results it
carried out. Finally, section 5 concludes with a sum-
mary of contributions and makes suggestions for fu-
ture research work.

2 Applied Methodologies

One of the oldest published work on unsupervised
word segmentation is due to Harris who suggested
a process to break a phonetic text into morphemes
[9] using only successors numbering. Bordag [17]
partially relies on Letter Successor Variety (LSV) due
to Zelig Harris [9, 2, 3] and combines it with a trie
based classifier [18]. The approach is claimed to reach
67.48% F-measure. Bernhard [19] too combined the
same principle of successors variation with a set of
heuristics to filter out the less plausible segments. The
F-measure is claimed to reach 60.81%.

One of the well-known systems in this area is Mor-
fessor, developed by Creutz and Lagus [13]. Morfessor
tries to capture the morpheme boundaries in a proba-
bilistic model with simplistic features such as the fre-
quency and the length of the morpheme. For compar-
ison, we investigate this approach deeper in Section
4.1.4. Eroglu, Kardes, and Torun [20] tried to make
Morfessor 1.0 accommodate the phonetic features of
the Turkish language. By adding phone-based fea-
tures the tried to measure the phonemic confusabil-
ity between the morphemes. Their results are claimed
to be better than Morfessor’s for Turkish, Finnish and
English. Pitler and Keshava [5] use the forward and
backward conditional probability to build a list of
substantial affixes. They report a 52% F-measure on
their test set and 75% on the gold-standard.

A number of works depend on Markov Models
(MM).Melucci and Orio [21] investigated the use of
the Hidden Markov Models (HMMs). The evaluation
though is done on a whole information retrieval sys-
tem (extrinsic) [22]. Naradowsky and Toutanova [23]
designed a model, which tries to exploit the alignment
of morphemes in a source language to the morphemes
in a target (machine translated to) language. With dif-
ferent settings of the model, the approach is claimed
to reach 84.6 F-measure for Arabic.

Peng and Schuurmans [24] proposed a two-level
hierarchical Expectation Maximization (EM) model.
Their test set holds 10K words and their results are
claimed to reach 69% F-measure. Poon, Cherry and
Toutanova [25] use a log-linear model [26, 27] to cap-
ture the features inherent to the morpheme itself and
its surrounding letters. The authors tested the ap-
proach on supervised and semi-supervised settings as
well. The unsupervised settings reached a 78.1% F-
measure for Arabic and 70% for Hebrew.

It is worth mentioning that, the actual list of sim-
ilar works is longer. Thus, we limited the overview to
the previous works only. Some of the extra works are
in the surveys [28] and [29] that provided for the inter-
ested reader. In light of the proposed goal in this ar-
ticle, this section intentionally avoids supervised ap-
proaches [30].

On the other hand, other works in real environ-
ments use the segmentation technique in their ap-
proaches, such as document image retrieval systems
[31, 32].

www.astesj.com 101

http://www.astesj.com

A. Khorsi et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 100-YY (2017)

3 The Proposed Approach

The word “unbreakable” is coined by concatenating the
prefix “un”, the stem “break” and the suffix “able”.
The vocabulary, which suggests such segmentation,
should contain other words with different combina-
tions of prefixes, stems and suffixes (e.g. “rebreak-
able”, “unbreaking”...etc), which makes the occurrence
of “un” have a weak dependence to the occurrence of
“break” whose occurrence is also relatively indepen-
dent of the occurrence of the suffix “able”. On the
other hand, each morpheme is supposed to be insepa-
rable from neither its first nor its last letter. The pro-
posed approach (Dependence-Based Segmentation) is
all about exploiting these two facts. A good formal
modeling of these facts is the definition of the proba-
bilistic dependence [14].

3.1 Segmentation Algorithm

Algorithm 1 iterates over the word W letter by letter
and computes for every letter wi two dependences: 1.
the dependence of the prefix on wi as its last letter,
2. the dependence of the suffix on wi as its first letter
where the prefix ends (inclusive) at wi and the suffix
starts (inclusive) at it. The difference then points to
which of the two (i.e. the prefix or the suffix) is more
attached to the current letter wi . The algorithm keeps
going until it encounters a change of the direction of
the attachment. The change is done when the prefix
depends on the preceding letter wi−1 more than the
suffix does, and at the same time the suffix depends on
the current letter wi more than the prefix does. Then
between the previous and the current letters a cutting
point (CP) is marked.

3.2 Computation of the Dependence

The concept of dependence we use is symmetric [14].
In this context: “the string depends on the letter” means
“the letter depends on the string” and vice versa.

We will call the dependence of a letter a on the pre-
fix α: the forward dependence, and we denote FD(u)

where u=αa is the prefix tailed by the letter under pro-
cessing a. We call the dependence of the letter a on
the suffix β: the backward dependence, and we de-
note BD(v) where v=aβ is the suffix headed by the let-
ter under processing a. We also mark the beginning
and the end of a word by respectively # and $. The
forward dependence is then:

FD(u) =
P (α→ a)
P (a)

(1)

BD(u) =
P (a← β)
P (a)

(2)

Where P (α→ a) is the conditional probability:

P (α→ a) =
Count(αa)
Count(α)

(3)

and P (a← β) is the conditional probability:

P (a← β) =
Count(aβ)
Count(β)

(4)

FD(u) =
Count(αa)
Count(α)P (a)

(5)

BD(u) =
Count(aβ)
Count(β)P (a)

(6)

Where the probability of a letter a: P(a) is esti-
mated by its normalized frequency in the corpus.

P (a) =
Count(a)∑
b∈ACount(b)

(7)

Where A is the alphabet. Count(α) expresses how of-
ten an n-gram α occurs in the corpus.

By the definition of the dependence measure [14],
when both forward and backward dependencies at the
same letter are lower than one, this means that the let-
ter does not depend on the prefix or the suffix. Thus,
we assigned zero to the difference’s value and dis-
carded this position from the segmentation process.
This dependence is called a negative dependence [14].

After segmenting a word using the cutting points,
we supposed that a morpheme with the least fre-
quency among the other morphemes is a stem and the
other morphemes are affixes.

Arabic example: The Arabic word “ A�Atk��”
([Al◦kitaAbaAk]: the two books) contains two cutting
points as shown in Table 1. The first one occurs when
the second letter “�” is more dependence on the pre-
fix ”��#” than the suffix ”$ A�Atk�, while the third let-
ter “�” is more dependent on the suffix ”$ A�At�”
than the prefix ”���#”. The second position is the
sixth letter “
” when the dependence tendency is
changed. Thus, these two cutting points “ �|
At�|��”
produce the following morphemes: “��”, “
At�” and
“ �”. Consequently, the morpheme “
At�” is the
stem depending on the frequency list in Table 3.

Negative dependence example: The Arabic word
“	yt�” ([kutayb]: small book) does not contain any
cutting point as the table 2 shows it. Consequently,
the morpheme “	yt�” is the stem of the word. At
the same time, we can note the second letter “�” ([t]:
3ed Arabic letter) has zero as its difference value. That
means both forward and backward dependencies are
less than one.

English example: Table 4 is a simulation of the al-
gorithm on the word “unbreakable”. The difference at
each letter (FD(u)-BD(v)) points a dependence direc-
tion of that letter. In other words, the positive differ-
ence means that the current letter wi is more attached
to the prefix w1...i than suffix wi...n and vice versa. The
second letter “n” depends on the prefix “#u” more
than it does on the suffix “breakable$”, where the third
letter “b” depends on the suffix “reakable$” more than
it does on the prefix “#un”. This change of the depen-
dence direction makes the point “un|breakable” a cut-
ting point. The same logic applies to the seventh letter

www.astesj.com 102

http://www.astesj.com

A. Khorsi et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 100-YY (2017)

Table 1: Arabic example of the segmentation

i u FD(u) v BD(v) Difference Direction
1 �# 0.991 $ A�Atk�� 7.174 -6.182 ↓
2 ��# 9.349 $ A�Atk� 9.153 0.195 ↑
3 ���# 1.017 $ A�At� 17.174 -16.157 ↓
4 k��# 0.716 $ A�A� 1.210 -0.494 ↓
5 Atk��# 2.532 $ A�� 0.544 1.987 ↑
6
Atk��# 12.067 $ A� 1.552 10.514 ↑
7 A�Atk��# 1.366 $ � 1.865 -0.498 ↓
8 A�Atk��# 4.560 $ 1.792 2.767 ↑

Table 2: Example of the negative dependence

i u FD(u) v BD(v) Difference Direction
1 �# 1.125 $	yt� 5.631 -4.505 ↓
2 �# 0.646 $	y� 0.349 0 0
3 ¨t�# 0.685 $	§ 2.030 -1.344 ↓
4 	yt�# 6.675 $
 0.256 6.419 ↑

Table 3: A frequency list of chosen words

Morpheme Frequency Morpheme Frequency
un 1,986 �� 72,845

break 46
At� 47
able 1,426 � 10,047

Table 4: English example of the segmentation

i u FD(u) v BD(v) Difference Direction
1 #u 0. 46 unbreakable$ 30.97 -30. 51 ↓
2 #un 6. 36 nbreakable$ 5. 84 0. 52 ↑
3 #unb 1. 35 breakable$ 46. 70 -45. 35 ↓
4 #unbr 1. 94 reakable$ 10. 45 -8. 51 ↓
5 #unbre 3. 11 eakable$ 5. 01 -1. 90 ↓
6 #unbrea 6. 79 akable$ 1. 68 5. 11 ↑
7 #unbreak 34. 71 kable$ 1. 50 33. 21 ↑
8 #unbreaka 5. 09 able$ 7. 38 -2. 29 ↓
9 #unbreakab 46. 70 ble$ 9. 89 36. 81 ↑

10 #unbreakabl 9. 72 le$ 2. 76 6. 96 ↑
11 #unbreakable 10. 02 e$ 1. 15 8. 87 ↑

“k” and the eighth letter “a”. Therefore, the result-
ing morphemes will be: “un”, “break” and “able”. The
least frequent morpheme is “break” by using Table 3.

Consequently, the morpheme “break” is the stem.

www.astesj.com 103

http://www.astesj.com

A. Khorsi et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 100-YY (2017)

4 Tests and Results

Before describing the test settings, we will list main
steps, that we followed in the study:

1. Build the corpus. (see Section 4.1.1).

2. Make the normalization (see Section 4.1.2).

3. Generate the language model (see Section 4.1.3).

4. Test the proposed approach (see Section 4.1.4) us-
ing materials (see Section4.1.5).

5. Evaluate the performance by using the metrics (see
Section 4.1.6).

4.1 Test Settings

4.1.1 Test Dataset

Arabic The purpose of the research, which drew our
efforts to design this approach, was to address chal-
lenges in processing the morphology of the classical
Arabic. Works we are aware of try to handle MSA.
Actually, MSA is known to include a mixture of words
borrowed from other languages and words just coined
for the convenience, which usually breaks the classi-
cal Arabic rules. Correctly handling the classical Ara-
bic brings three interrelated values: 1. The classical
Arabic vocabulary is much richer in terms of pure
Arabic words. 2. The Arabic rules in the morpho-
logical, grammatical and semantic levels amply docu-
mented since the eighth century have been designed
on the basis of the classical Arabic. 3. A huge legacy
literature is written in the classical Arabic, and most
of the time standing beyond the scope of the super-
vised approaches designed for the MSA. The present
corpus3 gathers Arabic texts dating back from 431 to
1104 (130 b.h and 498 h). It contains around 122M
words in total and 1M distinct words with an aver-
age size of 6.22 letters per word. Table A.1 in the ap-
pendix shows a sample of the index in Arabic that was
published with our corpus. Such dataset is by itself a
valuable resource for researches in NLP field.

English We obtained the English text by merging
the two corpora ”wiki” and ”news”4. This resulted
in more than 1M unique words and more than 8M
words in total, having an average size of 8.00 letters
per word.

4.1.2 Normalization

The normalization process is frequently used to trans-
form text into an approved form, which aids in reduc-
ing the noise and sparsity in the text. In present work,
the following normalization was applied to the Arabic
words:

1. The removal of diacritics.

2. The substitution of all variants of Hamza “º” ([´])
with the form “º” ([´]).

3. The substitution of the letter “�” ([|]) with “�º”
([´A]).

4.1.3 Language Model

The proposed language model extracts all possible q-
grams from a word of n length, where q rises from one
to n. Then it assigns each gram to its occurrence in
the corpus. Algorithm 2 explains the extraction. Ta-
ble A.2 in the appendix shows the n-grams of the two
example words “ A�Atk��” and “unbreakable”.

4.1.4 Test Process

Morfessor 2.05 and the proposed approach
(Dependence-Based Segmentation) are run over the
same corpus, then three samples of 100 words each
are randomly picked out of the whole segmented cor-
pus. The results of these approaches are evaluated
manually. Precision, recall and F-measure of the cut-
ting points are then recorded. This is repeated on each
of the four settings combinations where each setting
combines one of two occurrence settings with one of
two affix settings.

Occurrence Settings

• Distinct: To build the language model, the ap-
proach used distinct words, i.e. each word in the
corpus occurs one time.

• Plain: The number of occurrences is taken into ac-
count during building the model, i.e. a word may
occur more than once.

Affix Settings

• Raw: Results sample is picked randomly with no
restriction.

• Non-empty affix: Samples are picked randomly
only among words for which the proposed ap-
proach has carried out at least one cutting point.
For a number of words, the segmentation simply
did not identify any cutting point. Most of them
were because of the scarcity of the stem or stem.affix
remaining combination. We then tried to assess the
impact of such cases on the performance and how
accurate the identified cutting was.

It is worth noting that our objective was to address the
challenge of segmenting the classical Arabic words.
To the best of our knowledge, there is no suitable gold
standard for TA. We had to build ourselves the set of
words. Then we proceeded to the manual segmenta-
tion of three different randomly picked samples for
each setting.

3https://sourceforge.net/projects/classical-arabic-corpus/
4http://corpora.informatik.uni-leipzig.de/download.html
5One of our objectives is to keep the process entirely unsupervised. Thus, we used the latest version without using any optional

parameters to discard any semi-supervised extension.

www.astesj.com 104

https://sourceforge.net/projects/classical-arabic-corpus/
http://corpora.informatik.uni-leipzig.de/download.html
http://www.astesj.com

A. Khorsi et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 100-YY (2017)

4.1.5 Test Platform

We used the following materials to test the proposed
algorithm:

• Operating system: Ubuntu 12.04, 64-bit.

• Programming language: C++.

• Compiler: GCC 4.9.0.

• Database management system: MySQL Server
5.5.43.

• C++ external Library: libmysqlcppconn-dev 1.1.0-
3build1 to connect C++ with MySQL server.

• CPU: Intel(R) Xeon(R) CPU E5530 @ 2.40GHz * 16.

• RAM: 6 GB for RAM and 12 GB for Swap.

4.1.6 Performance Metrics

For evaluating, we used three metrics: recall, preci-
sion and F-measure [33], where we took into account
a number of cutting points during the evaluation.

1. Recall: This metric measures how many correct po-
sitions are found among all the existing correct po-
sitions. The higher the recall, the more correct po-
sitions are found and returned.

Recall =
correct cutting points in the result

all correct cutting points in the sample

2. Precision: Precision measures how many positions
are actually correct among all the positions that the
algorithm found. The high precision indicates that
the algorithm found significantly the correct posi-
tions more than incorrect positions.

P recision =
correct cutting points in the result

all found cutting points in the result

3. F-measure: A weighted average of the recall and
the precision is measured.

F −measure = 2 ∗ Recall ∗ P recision
Recall + P recision

4.2 Result

4.2.1 Arabic Results

Compared to the English, the results of the
proposed approach (Dependence-Based Segmenta-
tion)are clearly lower on Table 5. The two obvious
causes might be the irregularities in Arabic morphol-
ogy and the typos in the test set. The latter is con-
firmed by results obtained when the sample is re-
stricted to the words with a relatively high frequency
(thresholded) as shown in Figure 1. Thresholded de-
notes an additional filter applied to non-empty affix
sample, where a segmentation is picked only if the af-
fix reappears in more than 1K other segmentations. It

is worth noting that we omitted this filter in the En-
glish tests because we observed a rise in values of the
standard deviation between the three samples. It has
fluctuated around 0 to 29 words. Reasons for this de-
viation need to be investigated more closely in a sep-
arate work, and we paid our attention in this work to
Arabic results.

Another reason affects the performance which is
the lack of a dataset. The proposed approach works
totally with the unsupervised method and depends
only on the count of words in the corpus. How-
ever, it is difficult to include all possible derivatives in
the corpus. For example, the derivative “�A�A��³�”
([Al◦<ij◦HaAfaAt]: the prejudices) appears one time
in the dataset; that is, there is no other derivative that
appears in the dataset without the prefix ”��”, for in-
stance. Indeed, the word ”�A�A���” would be more
dependent on the prefix ”��” and the proposed ap-
proach does not learn that the prefix ”��” can be cut
off from the word ”�A�A��³�” as shown at the top of
Table 6. This problem will be removed if we add the
word ”�A�A���” into the dataset. The approach then
finds the segmentation position ”�A�A���|��” as it ap-
pears at the bottom of Table 6.

The segmentation seems to be the best when the
word counts are omitted (distinct). This seems to be
due to the diversity of affixed in the classical Arabic.
Indeed some stems/affixes may not appear more than
once in the whole corpus (e.g. “����” ([kajux◦f])as
a deep sleep).

Surprisingly, Morfessor was unable to detect any
boundary. The expected reason is that Morfessor may
not be able to deal effectively with non-Latin letters,
such as Arabic letters. We then evaluated Morfessor
using Buckwalter Arabic transliteration [12]. Despite
the simplicity of the proposed approach, the results
of Morfessor is close to the results of the proposed ap-
proach especially after applying the filter.

Running the proposed approach over the whole
corpus resulted in around 1,805,231 morphemes and
596,358 distinct morphemes with an average size of
5.94 letters per morpheme.

4.2.2 English Results

With no restriction on the results sample, Morfessor
outperforms the proposed approach (Dependence-
Based Segmentation) in terms of precision where the
latter has a better recall as shown in Table 7 . This
matches well the results given in [34]. The low re-
call of Morfessor explains the worsening of its per-
formance with affixed words while the proposed ap-
proach improves. The F-measure shows that the over-
all performance of the proposed approach is better as
shown in Figure 2.

When the counts of the words are involved in the
computation of the dependence, Morfessor improves.
The dependence-base’s precision increases too, where
its recall worsens.

www.astesj.com 105

http://www.astesj.com

A. Khorsi et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 100-YY (2017)

Table 5: Arabic results

Distinct Plain
Dependence Morfessor Dependence Morfessor

Raw
Precision 81.21±2.76 86.0215±0.61 78.66±6.73 83.6547±4.32
Recall 48.11±1.32 76.0147±1.94 44.88±3.98 75.9473±1.74
F-measure 60.62±1.47 80.7091±1.08 57.14±4.96 79.6149±1.67

Non-empty affix
Precision 78.73±4.97 83.2916±3.37 78.02±1.96 83.9520±5.34
Recall 74.96±2.44 75.1702±4.66 69.26±1.90 72.0343±5.03
F-measure 76.80±2.54 79.0228±4.08 73.38±1.90 77.5379±5.19

Thresholded
Precision 89.36±5.18 90.1493±4.60 85.80±8.13 89.9908±4.07
Recall 78.69±2.30 73.5789±1.29 72.78±7.89 73.0709±2.74
F-measure 83.69±3.49 81.0256±2.57 78.76±7.90 80.6530±2.43

Table 6: Example of the lack of a dataset

i u FD(u) v BD(v) Difference Direction
1 �# 0.991 $�A�A��³� 7.174 -6.182 ↓
2 ��# 9.349 $�A�A��³ 12.204 -2.855 ↓
3 ³�# 2.637 $�A�A��� 26.555 -23.917 ↓
4 �³�# 2.096 $�A�A�� 5.499 -3.402 ↓
5 ��³�# 1.019 $�A�A� 3.443 -2.423 ↓
6 A��³�# 4.484 $�A�� 1.404 3.079 ↑
7 �A��³�# 11.911 $�A� 1.296 10.614 ↑
8 A�A��³�# 3.587 $�� 2.422 1.164 ↑
9 �A�A��³�# 17.184 $� 0.885 16.298 ↑
i u FD(u) v BD(v) Difference Direction

1 �# 0.991 $�A�A��³� 7.174 -6.182 ↓
2 ��# 9.349 $�A�A��³ 6.102 3.246 ↑
3 ³�# 2.637 $�A�A��� 26.555 -23.917 ↓
4 �³�# 2.096 $�A�A�� 10.081 -7.984 ↓
5 ��³�# 1.019 $�A�A� 3.374 -2.714 ↓
6 A��³�# 4.484 $�A�� 1.411 3.072 ↑
7 �A��³�# 11.911 $�A� 1.298 10.612 ↑
8 A�A��³�# 3.587 $�� 2.422 1.164 ↑
9 �A�A��³�# 17.184 $� 0.885 16.298 ↑

Table 7: English results

Distinct Plain
Dependence Morfessor Dependence Morfessor

Raw
Precision 71.60±1.68 87.36±2.64 74.99±1.14 90.72±4.83
Recall 78.11±3.98 70.90±4.84 79.66±1.88 71.98±4.73
F-measure 74.71±2.17 78.27±3.57 77.25±0.73 80.27±2.52

Non-empty affix
Precision 75.82±1.98 89.73±1.74 76.26±2.34 91.37±1.24
Recall 88.10±5.73 67.11±6.12 84.19±4.61 68.77±3.40
F-measure 81.50±3.43 76.79±4.64 80.03±2.81 78.47±1.88

www.astesj.com 106

http://www.astesj.com

A. Khorsi et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 100-YY (2017)

(A) Raw sample

(B) Non-empty affix sample

(C) Thresholded sample

Figure 1: Arabic results of the two approaches

5 Conclusion and Future Work

We investigated the use of an intuitive yet formal def-
inition of event dependence in the detection of mor-
pheme boundaries. The initial target of our work was
the classical Arabic, which is a Semitic language rec-
ognized to have a complex morphology and a vocab-
ulary richer in pure Arabic words than the Modern
Standard Arabic (MSA). The test also was conducted
on an English set as well. Results on the classical
Arabic and on English have been compared to the re-
sults of another unsupervised complicated segmen-
tation approach so-called Morfessor that initially de-

signed for European languages. As simple and ele-
gant as is the proposed approach (Dependence-Based
Segmentation) , it seems to be more committed to the
recall where the latter’s precision is better on English
words. This has been confirmed when the evaluation
focused on affixed words. On Arabic, Morfessor could
not identify boundary. The results are a proof of con-
cept that unsupervised techniques can decently han-
dle a morphology as complex as the one of a legacy
Semitic language like Arabic.

In addition, required for the evaluation, we care-
fully built a pure classical Arabic dataset. Where such
linguistic resource is abundant in languages like En-

www.astesj.com 107

http://www.astesj.com

A. Khorsi et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 100-YY (2017)

(A) Raw sample

(B) Non-empty affix sample

Figure 2: English results of the two approaches

glish, we are not aware of any other classical Arabic
dataset.

One of the things made possible by morpheme
boundaries identification is the automated word gen-
eration. The segmentation of a small set of well-
chosen words will result in a set of diverse mor-
phemes. The generation of new words is then a proper
concatenation of the resulting morphemes. The chal-
lenge is then two folds: to build a suitable word-set
of a decent size, which allows an accurate segmenta-
tion and a wide coverage of the different morphemes,
then to find the appropriate concatenation strategy to
minimize the number of irrelevant words.

References

[1] A. Khorsi and A. Alsheddi, “Unsupervised detec-
tion of morpheme boundaries,” in 2016 4th Saudi
International Conference on Information Technol-
ogy (Big Data Analysis) (KACSTIT), Nov 2016,
pp. 1–7.

[2] Z. Harris, Morpheme Boundaries Within Words:
Report on a Computer Test, ser. Pennsylvania.
University. Dept. of Linguistics. Transformations
and discourse analysis papers. University of
Pennsylvania, 1967.

[3] M. A. Hafer and S. F. Weiss, “Word segmentation
by letter successor varieties,” Information Storage
and Retrieval, vol. 10, no. 11–12, pp. 371 – 385,
1974.

[4] J. R. Saffran, E. L. Newport, and R. N. Aslin,
“Word segmentation: The role of distributional
cues,” Journal of Memory and Language, vol. 35,
no. 4, pp. 606 – 621, 1996.

[5] S. Keshava and E. Pitler, “A segmentation ap-
proach to morpheme analysis,” in Working Notes
for the CLEF Workshop 2007, Hungary, 2007, pp.
1–4.

[6] S. H. Mustafa, “Character contiguity in n-gram-
based word matching: The case for Arabic text
searching,” Information Processing & Manage-
ment, vol. 41, no. 4, pp. 819–827, Jul. 2005.

[7] S. H. Mustafa, “Word-oriented approximate
string matching using occurrence heuristic ta-
bles: A heuristic for searching Arabic text,” Jour-
nal of the American Society for Information Science
and Technology, vol. 56, no. 14, pp. 1504–1511,
Dec. 2005.

[8] A. Khorsi, “On morphological relatedness,” Nat-
ural Language Engineering, vol. 19, no. 4, pp. 537–
555, Oct. 2013.

www.astesj.com 108

http://www.astesj.com

A. Khorsi et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 100-YY (2017)

[9] Z. S. Harris, “From phoneme to morpheme,”
Language, vol. 31, no. 2, pp. 190–222, Jun. 1955.

[10] G. A. Kiraz, Computational Nonlinear Morphology
with Emphasis on Semitic Languages. Cambridge,
England: Cambridge University Press, 2001.

[11] S. Wintner, “Morphological processing of semitic
languages,” in Natural Language Processing of
Semitic Languages, ser. Theory and Applications
of Natural Language Processing, I. Zitouni, Ed.
Springer Berlin Heidelberg, 2014, pp. 43–66.

[12] N. Habash, A. Soudi, and T. Buckwalter, “On
Arabic transliteration,” in Arabic Computational
Morphology, ser. Text, Speech and Language
Technology, A. Soudi, A. v. d. Bosch, and G. Neu-
mann, Eds. Springer Netherlands, 2007, no. 38,
pp. 15–22.

[13] M. Creutz and K. Lagus, “Unsupervised mod-
els for morpheme segmentation and morphol-
ogy learning,” ACM Transactions on Speech and
Language Processing, vol. 4, no. 1, pp. 1–34, Jan.
2007.

[14] R. Falk and M. Bar-Hillel, “Probabilistic de-
pendence between events,” The Two-Year College
Mathematics Journal, vol. 14, no. 3, pp. 240–247,
Jun. 1983.

[15] D. Jurafsky and J. H. Martin, Speech and language
processing: an introduction to natural language
processing, computational linguistics, and speech
recognition. Prentice Hall, 2009.

[16] I. Al-Sughaiyer and I. Al-Kharashi, “Arabic mor-
phological analysis techniques: A comprehen-
sive survey,” Journal of the American Society for
Information Science and Technology, vol. 55, no. 3,
pp. 189–213, Feb. 2004.

[17] S. Bordag, “Unsupervised and knowledge-free
morpheme segmentation and analysis,” in Ad-
vances in Multilingual and Multimodal Informa-
tion Retrieval. Springer, 2008, pp. 881–891.

[18] D. Morrison, “Patricia—practical algo-
rithm to retrieve information coded in alphanu-
meric,” JACM: Journal of the ACM, vol. 15, no. 4,
pp. 514–534, Oct. 1968.

[19] D. Bernhard, “Simple morpheme labelling in
unsupervised morpheme analysis,” in Advances
in Multilingual and Multimodal Information Re-
trieval. Springer, 2008, pp. 873–880.

[20] O. Eroglu, H. Kardes, and M. Torun, “Unsuper-
vised segmentation of words into morphemes,”
2009.

[21] M. Melucci and N. Orio, “A novel method for
stemmer generation based on hidden markov
models,” in Proceedings of the twelfth interna-
tional conference on Information and knowledge
management. ACM, 2003, pp. 131–138.

[22] A. Clark, C. Fox, and S. Lappin, The Handbook of
Computational Linguistics and Natural Language
Processing. John Wiley & Sons, 2013.

[23] J. Naradowsky and K. Toutanova, “Unsupervised
bilingual morpheme segmentation and align-
ment with context-rich hidden semi-Markov
models,” in Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies-Volume 1. As-
sociation for Computational Linguistics, 2011,
pp. 895–904.

[24] F. Peng and D. Schuurmans, “A hierarchical EM
approach to word segmentation,” in In 6th Nat-
ural Language Processing Pacific Rim Symposium
(NLPRS2001) Shai Fine, Yoram Singer, and Naftali
Tishby.1998, 2001, pp. 475–480.

[25] H. Poon, C. Cherry, and K. Toutanova, “Unsu-
pervised morphological segmentation with log-
linear models,” in Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics. Association for
Computational Linguistics, 2009, pp. 209–217.

[26] R. Christensen, Log-Linear Models and Logistic
Regression, ser. Statistics. Springer Verlag, 1997.

[27] S. Haberman, The Analysis of Frequency Data.
Chicago: The University of Chicago Press, 1974.

[28] B. Can and S. Manandhar, “Methods and algo-
rithms for unsupervised learning of morphol-
ogy,” in Computational Linguistics and Intelligent
Text Processing. Springer, 2014, pp. 177–205.

[29] H. Hammarström and L. Borin, “Unsupervised
learning of morphology,” Comput. Linguist.,
vol. 37, no. 2, pp. 309–350, Jun. 2011.

[30] J. Goldsmith, “Unsupervised learning of the
morphology of a natural language,” Comput. Lin-
guist., vol. 27, no. 2, pp. 153–198, Jun. 2001.

[31] R. Tavoli, E. Kozegar, M. Shojafar, H. Soleimani,
and Z. Pooranian, “Weighted pca for improving
document image retrieval system based on key-
word spotting accuracy,” in 2013 36th Interna-
tional Conference on Telecommunications and Sig-
nal Processing (TSP), July 2013, pp. 773–777.

[32] M. Keyvanpour, R. Tavoli, and S. Mozaffari,
“Document image retrieval based on keyword
spotting using relevance feedback,” Interna-
tional Journal of Engineering-Transactions A: Ba-
sics, vol. 27, no. 1, p. 7, 2014.

[33] C. D. Manning, P. Raghavan, and H. Schütze, In-
troduction to information retrieval. Cambridge
University Press, 2008.

[34] M. Creutz and K. Lagus, “Unsupervised mod-
els for morpheme segmentation and morphology
learning,” ACM Transactions on Speech and Lan-
guage Processing (TSLP), vol. 4, no. 1, 2007.

www.astesj.com 109

http://www.astesj.com

A. Khorsi et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 100-YY (2017)

Appendix

Table 1: Sample of index of the corpus

�
F
�

�
l
m
�
�

At
k
�
�
�
F
�

�
�
¥
m
�
�

T
n
F

A�
w
�
�

Ak
�

®
y
m
�
�

Ak
�

A�
w
�
�

d
�

�
Am
l
k
�
�

C
d
O

m
�
�

0.
1.

tx
t

�
r
q
�
�

�
§
r
k
�
�

-
-

-
-

78
,2

45
h
t
t
p
:
/
/
k
s
u
c
o
r
p
u
s
.
k
s
u
.

e
d
u
.
s
a

44
.1

.t
xt

�
r
q
�
�
¨
�
A`
�

¢
�
�r
�
�
¤

�
A�

F
�
w
�
�

�
y
¡
�r
�
�
,�

A�
z
�
�

�
h
F

�
�
©
r
s
�
�
�
�

31
1

A
H

�d
�
�

�d
�
�

55
8,

23
8

h
t
t
p
:
/
/
k
s
u
c
o
r
p
u
s
.
k
s
u
.

e
d
u
.
s
a

52
.4

.t
xt

©
E
A�
m
�
�

¢
l
�
�
d
b
�

w
�
�

d
m
�
�

,©
d
�
�w
�
�

¨
m
l
F
±
�

20
7

A
H

T
n
§
d
m
�
�

C
w
n
m
�
�

�d
�
�

27
9,

63
2

h
t
t
p
:
/
/
s
h
a
m
e
l
a
.
w
s

19
8.

1.
tx

t
�
¶
AS

�

�
r
q
�
�

¢
�
¤
®
�
¤

d
b
�

,�
S

f
�
�
w
�
�

�
�
�
m
�
r
�
�

©
E
�r
�
�

45
4

A
H

T
k
�

T
�
r
k
m
�
�

C
w
�
As

y
�

12
,2

45
h
t
t
p
:
/
/
s
h
a
m
e
l
a
.
w
s

19
8.

2.
tx

t
�
Ð
¨
�
�
§

A�

�

¢
l
¡
�
¤

�
®
k
�
�

d
b
�

,�
S

f
�
�
w
�
�

�
�
�
m
�
r
�
�

©
E
�r
�
�

45
4

A
H

T
k
�

T
�
r
k
m
�
�

C
w
�
As

y
�

80
,9

45
h
t
t
p
:
/
/
s
o
u
r
c
e
f
o
r
g
e
.

n
e
t
/
p
r
o
j
e
c
t
s
/

n
e
w
a
r
a
b
i
c
c
o
r
p
u
s

Table 2: Sample of N-grams table

N -gram Frequency
1,138,616
�# 157,361

��# 120,542
���# 2,856
k��# 119
Atk��# 42

Atk��# 21
A�Atk��# 4

 A�Atk��# 1
$ A�Atk�� 3
$ A�Atk� 3
$ A�At� 4

$ A�A� 10
$ A�� 142
$ A� 1,871
$ � 29,092
$ 111,887

$ 1,138,616

1,180,304
u 17,387
#un 7,583
#unb 219
#unbr 29
#unbre 9
#unbrea 6
#unbreak 4
#unbreaka 2
#unbreakab 2
#unbreakabl 1
#unbreakable 1
unbreakable$ 2
nbreakable$ 2
breakable$ 5
reakable$ 5
eakable$ 7
akable$ 14
kable$ 85
able$ 2,949
ble$ 4,069
le$ 19,211
e$ 135,377
$ 1,180,304

www.astesj.com 110

http://ksucorpus.ksu.edu.sa
http://ksucorpus.ksu.edu.sa
http://ksucorpus.ksu.edu.sa
http://ksucorpus.ksu.edu.sa
http://shamela.ws
http://shamela.ws
http://sourceforge.net/projects/newarabiccorpus
http://sourceforge.net/projects/newarabiccorpus
http://sourceforge.net/projects/newarabiccorpus
http://www.astesj.com

	Introduction
	Applied Methodologies
	The Proposed Approach
	Segmentation Algorithm
	Computation of the Dependence

	Tests and Results
	Test Settings
	Test Dataset
	Normalization
	Language Model
	Test Process
	Test Platform
	Performance Metrics

	Result
	Arabic Results
	English Results

	Conclusion and Future Work

