

www.astesj.com 34

Dynamic Objects Parameter Estimation Program for ARM Processors Based Adaptive Controllers

Vasiliy Olonichev*, Boris Staroverov, Maxim Smirnov

Department of Automation and Microprocessor Technology, Federal State budgetary Educational Institution of Higher Education
Kostroma State University, Kostroma, Russia

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 08 January, 2020
Accepted: 22 April, 2020
Online: 03 May, 2020

 Modern microcontrollers are capable to realize not only traditional PID-regulators but
also adaptive ones. Object of control parameters estimation is the biggest part of adaptive
control from the point of view of time consumption. The ways to reduce this time for digital
control systems based on ARM-CORTEX 32-bit and 64-bit processors are shown in the
article. These ways include source code refactoring, using vector registers and parallelism
of code. As result of program improvement, a new algorithm for least squares method was
suggested. Intrinsics for vector operations and OMP directives were added to the program
to realize data and code parallelism. All options were tested for time consumption in order
to find out the best decision. The program suggested may be useful while realizing adaptive
controller based on single-board mini-computers and microcontrollers

Keywords
Adaptive control
LSQ parameter estimation
ARM_CORTEX processors
Program optimization

1. Introduction

This work is an extension of conference paper “Optimization
of the Program for Run Time Parametrical Identification for ARM
Cortex Processors” originally presented in "2018 International
Conference on Industrial Engineering, Applications and
Manufacturing (ICIEAM)" [1]. Conference paper has the results
obtained only with the 32-bit armv7 processor. The results
obtained with the 64-bit armv8 processor are added in the current
paper. Also, the questions of alignment data in memory and
leftovers processing during vectorization are considered.

Nowadays most of the micro-controllers are based on
inexpensive but at the same time powerful ARM processors. High
computing abilities of these processors allow to realize not only
simple PID-controllers but more sophisticated adaptive controllers.
Adaptive digital controllers are indispensable for technological
processes which require high quality of control. In this case
oscillation and overshooting are inadmissible and setting time
must be minimal. And digital controllers are able to improve
process control performance significantly. The theory of digital
control systems was developed in 70-80 years of the last century.
In particular, K. Astrom and B. Wittenmark [2] and R. Iserman [3]
showed that digital controllers are the best when aperiodic
transient processes are wanted and described how to make state
variable modal digital controller capable to provide any in advance
known characteristics of the transient process. When an object of

control is timeinvariant it is possible to use experimental data and
find out the coefficients of the digital transfer function of this
object and the coefficients of digital modal controller and digital
observer preliminarily. These calculations are carried out only
once and their results may be used as the constants in the program
for direct digital control. But when the object of control is unstable
i.e. its characteristics drift with the time, or its characteristics are
non-linear and its linear approximation depends on operating point,
all above mentioned calculations must be made repeatedly at run
time within controller itself with the pace of technological process.
And in this case time consumption for such calculations may be
crucial. In other case quality of control may decrease drastically.

2. Using least squares method for parameter evaluation

The most substantial part of calculations in discussion is the
object's parameter estimation, i.e. the process of finding out its
digital transfer function coefficients. And the task of this article is
to show how time consumption of the program for parameter
estimation may be reduced. The novelty of this work is in making
new program realization of the least-squares method that includes
refusing of function decomposition of the code. As a result, some
intermediate matrices may be dropped and outer loops of
sequential stages of calculations may be linked. Such a decision
allows reducing the program's time and memory consumption that
is very significant in the case of real-time applications based on the
microcontrollers. Also, for further optimization, the code

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Vasiliy Olonichev, v_olonichev@ksu.edu.ru

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 34-40 (2020)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj050305

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050305

V. Olonichev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 34-40 (2020)

www.astesj.com 35

parallelism and different ways of data parallelism are added to the
program and a comparison of the obtained results is made.

The general method of the object of control parameter
estimation is the least-squares method or LSQ [4]. Using LSQ, one
can get a transient function of the object in a discrete form. The
coefficients of this transfer function are used to find out parameters
for tuning adaptive dynamic regulators [3].

Despite the fact that LSQ is a rather old method, there are still
a lot of publications connected with it. Each of them is devoted to
special ussue. For example, identification of nonlinear systems [5],
time-varing magnetic field analysis [6], signal processing [7], lines
approximation in multidimentional space [8]. But among them,
researches connected with LSQ utilization at microcontrollers
when amount of RAM is limited and time constraint are strict are
not found.

LSQ is widely used in many fields of applied calculations and
it's realization is available in many program libraries. First of all
must be mentioned lapack library (https://www.netlib.org/lapack/)
- standard library that may be found in many Unix-like operating
systems. Another widely used library is gnu scientific library or gsl
(https://www.gnu.org/software/gsl/). These libraries use QR-
decomposition [9] for solving LSQ problem. This method is
considered to be one of the fastest for the big dimension tasks.

But the objects of control usually are described with the models
that have order between 2 and 6. So it is reasonable to suggest that
program based on QR-decomposition will spend more time
making preliminary computing than useful one when applied to
such small systems. And with the micro-controllers situation when
it will be not enough memory for such libraries is also possible.

To check this hypothesis the program was written that applied
matrix operations as LSQ suggests [9] and as is shown in (1):

 [] YXXX
B
A TT ⋅⋅⋅=

 −1
 (1)

where X – matrix with the dimension of Nx2M filled with values
taken from input and output of the object with the regular intervals
of time; Y – vector with the dimension of N filled with the values
taken from the output of the object; A – output vector with the
dimension of M having coefficients of transfer function
denominator; B – output vector with the dimension of M having
coefficients of transfer function nominator; L – number of
experimental points; M – order of the object of control; N = L – M
– number of equations.

Covariance matrix is represented in (2):

 [] 1−
⋅= XXC T (2)

Equation (2) that is the part of (1) plays special role and is used for
evaluation of parameters dispersion [10].

How to fill matrix X and vector Y with the experimental values
is shown in [3].

Other reasons to write such program are the following:

At the first, for correct parameter estimation of the object of
control the trace of covariance matrix must be minimal and the

value of this trace depends mainly on sampling period [11]. This
means that at the first stage of parameter estimation time step may
vary and alongside with the model's parameters the trace of
covariance matrix must be computed. Getting the covariance
matrix is the part of LSQ method, so it's trace may be computed
when direct matrix operations are involved. While using library
functions this data are hidden inside them. And to get covariance
matrix one needs to repeat a bigger half of computations already
made.

At the second, during LSQ parameter evaluation some
dynamically allocated matrices are used for storing intermediate
data. Each time when library function is called the memory is
allocated for them and then released. While using our own code
we can allocate memory for intermediate matrices only once and
then use them with every next time step.

As equation (1) shows LSQ consists of matrices multiplication
and matrix inversion. Matrices multiplication may be written from
scratch. An example of matrix inversion can be found in the
Internet (http://www.programming-
techniques.com/2011/09/numerical-methods-inverse-of-nxn-
matrix.html). This program realizes the Gauss-Jordan method [12].

3. Program Testing and Optimization

3.1. General Information about Testing

For realization and testing of the programs singleboard mini-
computers CubieBoard-3 and Odroid-C2 were used. CubieBoard-
3 has two core CPU CORTEX-A7 (ARMv7) with the frequency
1GHz and 2G of RAM. Operating system Linux Ubuntu 18.04.1
with the kernel 4.19.57 is installed on this computer alongside with
gcc compiler v 7.4.0. Odroid-C2 has quad core CPU CORTEX-
A53(ARMv8) with the frequency 1.5GHz and 2G of RAM,
operating system Linux Ubuntu 16.04.09 with the kernel 3.14.79
and gcc compiler 5.4.0. For the conference paper [1] programs
were made with the gcc v 4.6.3, so results presented in this article
may slightly differ, first of all due to the fact that the realization of
optimization in these compilers is not identical.

For program realization, the C++ language was chosen. It's a
common practice nowadays even for embedded systems. If you do
not use classes with the virtual functions, the productivity of the
result code is almost the same, and at the same time, the full power
of C++ as a language of generic programming is available.

All programs were compiled with the -O2 level of optimization.

Working with the matrices, one must decide how to store them
in memory. First way suggests using dynamic one dimensional flat
vectors. Matrix elements in this case are accessible with the
function or overloaded operator () taking as arguments row and
column number. E.g. getElem(X,i,j) or X(i,j). Second way
suggests using dynamic two dimensional arrays. In this case X[i]
is a vector of pointers containing the addresses of matrix's rows
and X[i][j] is an element of matrix. First way is considered to be
slightly faster as the data occupy continues space in memory. But
for an adaptive controller second way is more suitable, because in
this case matrix X must be renewed with every next step in time.
Old data must be removed and new once added. With the flat
vector all elements counted with thousands will be moved within

http://www.astesj.com/

V. Olonichev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 34-40 (2020)

www.astesj.com 36

this vector from the end to the beginning. But with the two-
dimensional array only pointers counted with tens will be moved.

3.2. Comparison of Code Using Library Functions and Code
Using Direct Operstion with the Matrices

To compare time consumption for LSQ 3 programs were
written. The first used function dgel from the lapack library, the
second used function gsl_linalg_QR_lssolve from the gnu
scientific library and the third realized equation (1) using self-
written functions for matrix multiplication and inversion. Time
consumption for the calculations was found out as the difference
between the time measured before and after the calculations. To
measure time the function clock_gettime was used.

Time consumption were determined with the matrices of the
following dimensions MxN: 2x40, 3x60, 4x80, 5x100, 6x120,
7x140, 8x160 and 10x200. Objects of higher orders require more
experimental points. But this does not mean that to evaluate
parameters of the for example 4 order object, one must use exactly
80 experimental points. It is just an average value.

The matrix X and vector Y were filled with the random
numbers because we need to get not the results of LSQ-evaluation
but only time consumption for getting them.

Calculations for each program and for each dimension were
repeated 5 times. Maximum and minimum were removed and out
of the rest three measures, an average value was calculated. To run
programs, calculate time consumption and to make plots the
special script in Python language was written. The resulting plots
with the time consumption against object order are shown in
Figure 1 for CubieBoard3 and Figure 2 for Odroid-C2.

Figure 1: Time consumption for LSQ parameter estimation against object's order

by the programs with the double precision numbers on CubieBoard-3.

The plots in Figures 1 and 2 show that the program that uses
matrix operations takes less time then library functions for the
tasks of small dimensions. But this program must be rearranged in
order further to improve its efficiency.

First, decision must be made is there any sense to replace the
double precision variables with the single precision variables or
with the fixed-point ones.

3.3. Time consumption for Carring out Arithmetic Operations
For this purpose, it will be useful to find out how many time

take arithmetic operations with the operands of the different types.
And proper program with the three operands expression was
written and run on CubieBoard-3 and Odroid-C2 computers:

a = b # c

where # in turn is + - * and /; b=2; c=3.

The results are shown in Table 1.

Figure: 2. Time consumption for LSQ parameter estimation against object's order
by the programs with the double precision numbers on Odroid-C2.

Table 1: Time Consumption in μs for Carrying out 1000 Operations on Single-
Board Computers CubieBoard 3 and Odroid-C2

Variable
type

Operation

Addition Subtraction Multiplication Division

CubieBoard-3

int 13,5 13,5 14,6 30,2

long 13,5 13,5 14,6 30,3

float 14,6 14,6 14,6 29,2

double 14,6 14,6 17,7 43,8

Odroid-C2

int 7,1 7,1 8,5 8,5

long 7,1 7,1 9,1 8,5

float 9,8 9,8 9,8 15,6

double 9,8 9,8 9,8 21,5

As Table 1 shows, the time consumption for processing integer
variables is less than the time for processing floating point
variables by 8% for armv7 and 28% for amrv8. But realization of
LSQ in adaptive controller requires support of numbers in wide
range of values. For example, parameter evaluation of the 3 order
object using the experimental results where input varies between
0.0 and 1.0 and output between 0.0 and 200.0 will give values in
the intermediate matrices varying from 1.0e-3 to 1.0e6. Obviously,
integer values can't be used for such computing.

http://www.astesj.com/

V. Olonichev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 34-40 (2020)

www.astesj.com 37

Time consumption for single precision and double precision
floating point variables is identical for addition, subtraction and
multiplication at both platforms. But division takes considerably
more time especially for double precision variables.

3.4. Using Single Precision Variables and Parallelism of Code

Time consumption of the program depends not only on time
required for the computing but also on cache misses [13]. Float
variable takes 4 bytes and double takes 8 bytes. That means that
the processor's cache can hold more data in case of float variables
and so, cache misses will be met less often.

There is one more reason to use variables of single-precision:

• The vector unit of ARM-CORTEX-A (ARMv7)
processes only single-precision floating-point
numbers, and vectorization is a significant source of
increasing program efficiency.

• Microcontrollers STM32 has hardware support only
for single precision, and software emulation of double
precision is rather slow.

Usually, it's recommended to avoid single precision variables
in calculations [14]. But in our case, the dimension of the task is
not big. And if to use in the experiments optimal sampling period,
well-conditioned matrices will be obtained [11]. LSQ
identification of the same object made with double precision and
single precision numbers is almost identical. For these calculations,
real experimental results obtained with the object with orders 3 and
4 were used.

There is also one more source of program efficiency improving.
It is parallelism of code. And gcc compiler supports OpenMP
specification, which provides parallelism or multi-threading. The
results obtained are presented in Figures 3 and 4.

Figure 3. Time consumption for LSQ parameter estimation against object's order
by the programs with the single precision numbers on CubieBoard-3.

The CubieBoard3 computer has 2 core processor and Odroid-
C2 has 4 core processor.

Figures 3 and 4 show that using single precision variables
instead of double has given about 25% increase in productivity. At
the other hand on CubieBoard-3 parallelism has given expected
results. I.e. while working with the small matrices synchronization
between threads takes more time then parallelism saves it. And for

objects with order 7 and higher parallel program becomes faster.
But the results obtained on Odroid-C2 show that parallelism
instead of increasing productivity reduces it in the whole range.
The explanation of this fact may be following. The program calls
several functions, and directives for parallel code are placed within
them. So OMP preprocessor generates code that creates and
cancels threads within each function. At CubieBoard-3 more
modern gcc compiler was used with this problem fixed.

Figure 4. Time consumption for LSQ parameter estimation against object's order

by the programs with the single precision numbers on Odroid-C2.

3.5. Refactoring of the Code

Next stage of optimization is concerned the code itself.

The first stage is also connected with the problem of cache-
missing. In the programs written in C, matrices are allocated in
memory row-wise. During multiplication one of the matrices is
scanned row by row, and a big piece of data is loaded into cache.
But another matrix is scanned column by column, and getting the
next element may come to a cache-miss. If preliminary to
transpose another matrix it will be also scanned row by row [13].

There is a division in the inner loops of the function that makes
matrix inversion. If to calculate the inverse number in the outer
loop and replace division with the multiplication we can get
another source of the productivity raising.

From the point of view of the structural programming the code
must be divided into functions each of them makes logically
complete operation. In our case these are matrix multiplication and
inversion. But its also known that such structural decomposition
may reduce productivity of the program.

If to make one function that makes all calculations in one step
it will be possible to take into account specific properties of
computing. Informational matrix XT·X is symmetric and it's
possible to calculate only half of it. And also, it's possible to get
away two intermediate matrices with the sizes [2*M][2*M]. And
intermediate matrix [2*M][N] may be replaced with a vector with
the size [N]. As a result, the number of cache-misses and total
consumption of memory will be reduced. The last is especially
significant for STM32 microcontrollers with limited RAM. In this
one function, it's also possible to improve an algorithm. In this new
program, the next stage of calculation will be started within an
outer loop of the previous stage.

http://www.astesj.com/

V. Olonichev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 34-40 (2020)

www.astesj.com 38

Alongside with the algorithm improvement, OMP directives
were added to the code in order to apply parallelism. The resulting
program was compiled twice. First time with an OMP flag to get
parallel code. And second time without this flag to get code
without multithreading.

Calculations were repeated with the same data. The results are
presented in Figures 5 and 6.

Figure 5: Time consumption for LSQ parameter estimation against object's order
by the programs with the optimized function on CubieBoard-3.

Figure 6: Time consumption for LSQ parameter estimation against object's order
by the programs

Plots in Figures 5 and 6 show that optimization of code gave
increasing in speed about 80% for CubieBoard-3 and 50% for
Odroid-C2. And using parallelism in one function has given results
on Odroid-C2. But also as one can see parallel code is faster only
with 7 and higher-order object models. For the object's model with
the order from 2 to 6 nonparallel code is faster and it may be
recommended for practical utilization.

And more significant is the fact that the optimized program is
faster than programs using lapack and gsl libraries in the whole
range from 2 to 10 at both mini-computers.

3.6. Using Vector Operations

Vectorization is another way to increase program efficiency.
ARM-CORTEX-A processors have the vector unit named NEON.
This unit has 128-bit registers that enough to keep 4 floating-point
numbers. The vector instructions process all numbers in the
vectors at one time. Theoretically, it can increase efficiency by 4

times. But usually, this value is less because switching processor's
pipeline between vector and regular registers takes a lot of time.
(https://developer.arm.com/products/processors/cortex-m/).

There are many options to use vectorization: special libraries,
auto-vectorization of compiler, OMP directives, NEON intrinsics,
and assembly code. In our case, the best decision is to use intrinsics.
They provide access to all vector instructions and allows them to
apply total control of instruction flow comparing with the auto-
vectorization. The efficiency of such code is close to the assembly
one.

For matrices processing, data parallelism may be used in two
different ways. In the first case, the elements of the matrix are
loaded into the vector register horizontally, first elements of the
row with the indexes from 0 to 3, then from 4 to 7 and so on. For
each subset of data vector instruction multiplication with
accumulation is used. After the loop is finished, the dot product is
obtained as a sum of four elements of the vector register. This
method may be called horizontal vectorization and is simple for
realization both for matrices multiplication and matrix inversion.

The second approach that may be called vertical vectorization
requires source matrices to hold data in a vector format of type
float32x4_t in columns
(https://community.arm.com/processors/b/blog/posts/coding-for-
neon---part-3-matrix-multiplication). In this case, code for
matrices multiplication is very simple and efficient. But during
matrix inversion, non-vector variables are used rather often.

To compare these variants of vectorization, the programs were
made for both of them. These programs run on CubieBoard3 and
Odroid-C2 computers with the same initial data as previous
programs. Resulting plots of these tests are shown in Figure 7 and
8.

Figure 7. Time consumption for LSQ parameter estimation against object's order
by the programs using vector unit NEON on CubieBoard-3.

As one can see in both cases horizontal vectorization gives
better results. And further improvements and checks will be
connected only with it.

3.7. Data Alignment

The next problem is data alignment. Old gcc compilers for
armv7 required the directives explicitly showing that elements of
the matrix rows and vector variables are aligned in memory at the
boundaries multiple for 64
(http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dd

http://www.astesj.com/

V. Olonichev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 34-40 (2020)

www.astesj.com 39

i0344k/Cihejdic.html). To find out the effect of the data alignment
program with horizontal vectorization was modified. Compiler’s
directives __attribute__((aligned (64))) and builtin_assume
aligned were addad to it.

Figure 8. Time consumption for LSQ parameter estimation against object's order
by the programs using vector unit NEON on Odroid-C2.

For comparison, together with 64, the numbers 8, 16, 32 and
128 were used for alignment. Running these programs along with
the program without alignment directives has shown that there is
no any difference between their time consumption. That means
that modern gcc compiler makes data alignment without the
additional directives.

3.8. Working with the Leftovers

The next problem one always meets while working with the
vectorization is leftovers. ARM NEON vector register holds 4
single precision floating point numbers. The matrices sizes in real
tasks are not multiple to 4, so the leftovers which can't be loaded
into the vector register directly must be processed in some manner.
Two ways to solve this problem are suggested
(https://community.arm.com/developer/ip-
products/processors/b/processors-ip-blog/posts/coding-for-neon--
-part-2-dealing-with-leftovers). The first is to process the leftovers
as non-vector data. And the second is to extend matrices to the
sizes multiple to 4 and fill the edges with the zeros. The second
way is considered to be faster because the vector's processing is
not interrupted with the non-vector operations.

In our case using extended matrices makes the code more
sophisticated. Function for parameter evaluation takes two
additional parameters and intermediate matrix S, holding
informational and covariance square matrices side by side must be
filled and processed in a not obvious way. As a result, the code of
the function is tightly coupled with the rest of a program.

To avoid such a problem, the third way to solve leftovers
problem were suggested. In this case function for parameter
evaluation has local floating point arrays with the sizes equal to 4.
The leftovers are loaded into these arrays before the main cycle of
processing and the arrays are processed after the main cycle. These
local vectors are extending each row of the matrix in a turn. As a
result, all specific features connected with the vectorization are
hidden within the function.

All three programs with different ways of solving the leftovers
problem were checked for time consumption. The results are
presented in Figures 9 and 10 for CubieBoard-3 and Odroid-C2
correspondingly.

Plots in Figures 9 and 10 show that variant with the local
vectors is the worst from the point of view of time consumption,
and the best is variant with the extended matrices. The difference
for the object's order from 4 to 6 is about 50% for armv8 processor
and 75% for armv7. This difference is significant, so using
extended matrices for the solving of leftovers problem must be
recommended.

Figure 9. Time consumption for LSQ parameter estimation against object's order by
the programs using vector unit NEON and different ways of leftovers handling on
CubieBoard-3.

Figure 10. Time consumption for LSQ parameter estimation against object's order
by the programs using vector unit NEON and different ways of leftovers handling
on Odroid-C2.

3.9. Compare of all Results Obtained

All experimental data received in this work are presented in
Table 2.

Types of the programs: 1 – QR-decompozition and dgels
form lapack library; 2 – QR-decompozition and lsqsolve form
gsl library; 3 – direct realization with the double precision
numbers; 4 - direct realization with single precision matrices; 5

http://www.astesj.com/

V. Olonichev et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 34-40 (2020)

www.astesj.com 40

- direct realization with single precision matrices and
multithreading; 6 – optimized function code; 7 – optimized
function code and multithreading; 8 optimized function code
with horizontal vectorization; 9 – optimized function code with
vertical vectorization; 10 – optimized function code with
horizontal vectorization and extended matrices; 11 – optimized
function code with horizontal vectorization and non-vector
leftovers.

Table 2. Time Consumption in μs for LSQ Parametrical Identification on Single-
Board Computers CubieBoard-3 and Odroid-C2 for different Types of the Programs

Typ
e

Object's order
2 3 4 5 6 7 8 9 10

CubieBoard-3
1 675,8 675.0 765.4 897,4 1086,1 1250,7 1568,6 1873,9 2255,9
2 295.6 399.3 447.3 565.0 736.3 999.8 1399.4 1728.7 2228.7
3 64.7 198.3 243.2 452.7 765.3 1259.5 1915.6 2852.7 3925.8
4 37.5 92.3 191.4 355.8 596.5 981.2 1377.6 2125.9 2943.5
5 440.3 442.8 510.3 564.7 710.7 885.3 1270.5 1746.3 2100.6
6 18.8 50.5 110.5 215.2 348.6 545.3 828.2 1160.9 1551.4
7 419.0 440.4 461.9 483.3 592.3 718.2 915.9 1086.5 1329.3
8 29.5 59.8 109.5 175.7 272.3 384.7 540.6 746.7 944.2
9 16.5 52.7 98.3 207.5 350.6 543.8 746.6 1135.2 1518.2
10 13.02 31.8 56.0 104.8 156.5 250.7 339.8 497.4 636.3
11 14.9 39.8 60.8 127.1 167.3 294.3 357.7 567.0 670.1

Odroid-C2
1 200.0 222.7 251.0 295.0 357.3 436.3 542.3 669.7 827.0
2 111.3 130.0 163.7 211.7 280.0 370.0 487.3 639.7 894.0
3 23.7 57.6 121.0 231.6 391.3 655.0 1031.7 1432.3 2007.3
4 24.0 57.0 120.0 226.7 383.0 595.7 884.3 1243.7 1771.0
5 543.3 547.0 627.7 819.3 925.3 1266.7 1478.3 1955.0 2422.3
6 17.0 40.3 84.3 162.3 269.0 417.0 616.7 882.4 1203.4
7 254.6 271.0 281.7 304.0 330.0 418.7 462.0 548.0 633.4
8 19.3 32.0 52.0 77.3 119.0 161.7 233.7 294.7 401.0
9 9.0 28.7 53.7 114.3 174.0 297.7 407.0 622.0 800.0
10 10.7 22.7 31.7 54.3 81.3 126.3 166.7 241.0 307.5
11 12.7 27.33 33.0 70.7 84.3 155.7 173.0 286.6 312.5

As Table 2 shows, the measures taken to optimize the code of

function for LSQ parameter estimation of the object of control
have allowed to reduce time consumption in 4.7 times for the
processor armv7 and in 3.5 times for armv8 for the objects with
the order from 4 to 6. Such significant productivity-increasing may
allow to widen substantially the area of utilization of the adaptive
digital controllers.

The sourse code of the programs tested in this article is
available for free downloading under GPL license
(https://github.com/basv0/lsq_armv7).

4. Conclusion

Wide using of the microprocessors systems that may provide
high quality of technical objects control is restrained with the
complexity of parameters estimation of these objects. As a result,
the adaptive control may take more time than the technological
process allows in hard real-time systems. This conclusion follows
from the results of time consumption comparison for LSQ
parameter estimation by the programs using function dgel from the
linear algebra library lapack, function lsqsolve from scientific
library gsl and functions for matrix multiplication and inversion.
The tests show that direct realization of the matrix operations is

more preferable for the tasks of not big dimensions and that using
a single-precision floating-point variable instead of double
precision ones does not decrease the calculations accuracy for the
objects with the order less than 10.

Applying multi-threading showed that it gives productivity-
increasing only for the objects with the order higher than 7 while
in practice objects with the order between 2 and 6 are mainly met.
Increasing productivity in the whole range from 2 to 10 may be
achieved by the code refactoring and using intrinsic functions for
the vector computations.

An optimized function using horizontal vectorization and
extended matrices with the dimensions multiple by 4 has shown
the best results. And this function is recommended for practical
utilization despite the fact that matrix extension makes the code
more sophisticated.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] V.V. Olonichev, B. A. Staroverov and M. A. Smirnov, "Optimization of
Program for Run Time Parametrical Identification for ARM Cortex
Processors," 2018 International Conference on Industrial Engineering,
Applications and Manufacturing (ICIEAM), Moscow, Russia, 2018, pp. 1-5.
doi: 10.1109/ICIEAM.2018.8728595.

[2] K. Astrom and B. Wittenmark, Computer Controlled Systems. Prentice-Hall,
Inc., 1984.

[3] R. Izerman. Digital Control Sytems. Springer-Verlag, Berlin, Heidelberg,
New York, 1981.

[4] L. Ljung, System Identification: Theory for the User. Prentice-Hall, 1987.
[5] Z. Tan, H. Zhang, J. Sun et al., “Research on Identification Process of

Nonlinear System Based on An Improved Recursive Least Squares
Algorithm”, Proceedings of the 31st Chinese Control and Decision
Conference, CCDC 2019 8832530, pp. 1673-1678.

[6] M. Arehpanahi, H R. Jamalifard, "Time-varying magnetic field analysis using
an improved meshless method based on interpolating moving least squares",
Iet Science Measurement Technology, vol. 12, no. 6, pp. 816-820, May. 2018.

[7] H. Li, J. Zhang, J. Zou, "Improving the bound on the restricted isometry
property constant in multiple orthogonal least squares", IET Signal Processing,
vol. 12, no. 5, pp. 666-671, Apr. 2018.

[8] V. Skala, "A new formulation for total Least Square Error method in d-
dimensional space with mapping to a parametric line ICNAAM", 2015 AIP
Conf. Proc.1738, pp. 480106–1-480106–4, 2016.

[9] H. Leslie, Handbook of Linear Algebra. – CRC Press, 2013.
[10] C.F. Jeff Wu, Michael S. Hamada Experiments: Planning, Analysis, And

Optimization. Wiley, New Jersey, 2009.
[11] B.A. Staroverov, V.V. Olonichev and M.A. Smirnov, “Optimal samplinig

period definition for the object identification using least squares method”,
Vestnik IGEU, vol 1, pp 62-69, 2014. (article in Russian with an abstract in
English)

[12] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes
in C: The Art of Scientific Computing. Cambrige University Press,
Cambridge, New York, Port Chester, Melbourne, Sydney, 1992.

[13] U. Drepper. What Every Prorgammer Shoud Know About Memory.
https://www.akkadia.org/drepper/cpumemory.pdf.

[14] B. Stroustrup, The C++ Programming language. Addison-Wesley, 1997.

http://www.astesj.com/
https://ieeexplore.ieee.org/author/37087006592
https://ieeexplore.ieee.org/author/37085480888
https://ieeexplore.ieee.org/author/37086288201
https://ieeexplore.ieee.org/document/8832530/
https://ieeexplore.ieee.org/document/8832530/
https://ieeexplore.ieee.org/document/8832530/

	2. Using least squares method for parameter evaluation
	3. Program Testing and Optimization
	3.1. General Information about Testing
	3.2. Comparison of Code Using Library Functions and Code Using Direct Operstion with the Matrices
	3.3. Time consumption for Carring out Arithmetic Operations
	3.4. Using Single Precision Variables and Parallelism of Code
	3.5. Refactoring of the Code
	3.6. Using Vector Operations
	3.7. Data Alignment
	3.8. Working with the Leftovers
	3.9. Compare of all Results Obtained

	4. Conclusion
	Conflict of Interest
	References

