

www.astesj.com 46

Using Leader Election and Blockchain in E-Health

Basem Assiri*

Computer Science Department, Jazan University, 45142, Jazan city, Saudi Arabia

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 13 March, 2020
Accepted: 20 April, 2020
Online: 03 May, 2020

 The development of electronic healthcare systems requires to adopt modern technologies
and architectures. The use of Electronic Personal Health Record (E-PHR) should be
supported by efficient storage such as cloud storage which enables more security,
availability and accessibility of patients’ records. Actually, the increase of availability of
E-PHR enhances parallel access, which improves the performance and the throughput of
the system. Using distributed systems, users are able to communicate and to share
resources to achieve specific goals. Such kind of access needs to have more coordination
to maintain parallelism, which can be provided through leader election algorithms. In
leader election algorithms, users elect one of them as a leader to coordinate the work and
to prevent conflicts. This paper introduces an adoptive leader election algorithm (ALEA)
that considers medical and healthcare specifications, since it uses leader election algorithm
for E-PHR in the cloud environment. The use of ALEA improves performance by allowing
more parallelism and reducing the number of coordinating messages within the system, as
well as facilitating the medical specifications such as having a primary doctor or handling
emergency situations. Moreover, the paper highlights the strengths and weaknesses of using
Blockchain technology in the field of healthcare. In fact, the paper investigates the
implementation challenges of ALEA concepts using Blockchain technology.

Keywords:
Electronic Personal Health
Record
Parallelism
Distributed Systems
Leader Election Algorithms
Blockchain Technology

1. Introduction

Within the last decades, the development of technologies, the
Internet and digital applications makes them essential components
in some other fields such as education and healthcare. This paper
focuses on the development of e-health systems using some
supportive algorithms and modern technologies. Actually, this
paper is an extension of work originally presented in the
2ndInternationalConference on New Trends in Computing
Sciences [1].

The competition among healthcare organizations encourages
them to involve modern and advanced technologies to increase
stakeholders’ satisfaction. These technologies help to improve the
provided services. For examples, a patient can schedule an
appointment online; doctors (physicians) can access, maintain, and
transfer E-PHRs electronically anytime and from anywhere;
doctors would be able to diagnose, complete the required treatment
and even participate in surgery remotely; prescriptions are sent to
the corresponding pharmacy electronically. In addition, these
technologies enable costs and managerial efforts to be reduced.

The services costs can be time, physical space, energy and
infrastructure. Besides that, it gives deep and clear insight for
better administration and decision making. The use of E-PHR as a
digital version of PHR allows information to be accessed, updated
and transferred in an electronic manner [2], which enhances
information accessibility, availability, security, privacy,
completeness and consistency. It also helps to avoid the risk of
having traditional PHR in case of natural disasters such as
Hurricane Katrina [2]-[6].

Moreover, an efficient pattern of storage such as cloud storage
is required to support the use of E-PHR in distributed systems.
Actually the E-PHRs are stored in servers and can be accessed
securely on the Internet [7], [8].

The presence of E-PHR, servers, cloud storage and many
connected devices creates a parallel and distributed system. In
distributed systems, devices are connected through networks to
perform specific tasks. Thus, it helps to improve efficiency and
throughput of the process of sharing resources but it also requires
more control and coordination. Therefore, leader election
algorithms can be used to coordinate the parallel tasks and to
preserve the consistency of E-PHRs [9]. Indeed, having

ASTESJ

ISSN: 2415-6698

*Basem Assiri, 45142 - Jazan University - Jazan City – Saudi Arabia,
+966599933185 & babumussmar@jazanu.edu.sa, bas0911@hotmail.com.

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 46-54 (2020)

www.astesj.com

Special Issue on Multidisciplinary Innovation in Engineering Science & Technology

https://dx.doi.org/10.25046/aj050307

http://www.astesj.com/
mailto:babumussmar@jazanu.edu.sa
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050307

B. Assiri / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 46-54 (2020)

www.astesj.com 47

parallelism could result in conflicts, especially when a process tries
to update an E-PHR, while another one is reading or updating it at
the same time. In fact, having a leader allows for an exclusive
access (token) to an E-PHR, which keeps it consistent.

In addition, Blockchain technology allows decentralized ledger
to be managed within a distributed system. The ledger contains a
chain of blocks (records). In Blockchain many nodes share and
process distributed copies of the same ledger. In fact, when a node
proposes a new block of transactions, the other nodes process it
and vote to commit it if its valid or to abort to if it is not. Based of
the votes of the majority (consensus), the block commits and every
node updates its copy of the ledger or the block is ignored [10].

 Nakamoto uses Blockchain to produce the Bitcoin as a first
cryptocurrency, in which users execute electronic financial
transactions without banks [10]-[12]. After that, Blockchain
technology has been involved in many other areas such as
judiciary, notary, copyrights, education and healthcare [12].

This paper introduces an adoptive leader election
algorithm(ALEA) that is suitable for E-PHRs and healthcare
systems. The paper proposes the principles of a primary and a
secondary leader as well as having multiple tokens. ALEA allows
the number of communication messages to be reduced in case of
failures. Moreover, this work highlights the strengths and
weaknesses of using Blockchain technology in the field of
healthcare to implement the concepts of ALEA.

The rest of our paper is organized as follows: in Section 2,
some related work is discussed. Sections 3 and 4, introduce our
proposed system model and algorithm. Section 5 discusses many
important issues and techniques such as algorithm correctness,
consistency, synchronization, file sharing, traffic flow and
replication. Finally, Sections 6 and 7 focus on the advantages and
disadvantages of using Blockchain technology, while Section 8
provides conclusion.

2. Related Work

There are many techniques to preserve data consistency in
cloud storage [13], [14]. Some research proposes strict consistency
while the others relax this concept and accept weaker levels of
consistency. Coppieters et al. provide an algorithm with strict
consistency, where they order all concurrent processes on all
replicas. Actually, the concurrent execution of processes should
be matched with a correct sequential execution [15]. Zellag and
Kemme introduce an efficient relaxed consistency model for cloud
storage [16].

 Some others use leader election algorithms for consistency,
whereby a leader grants exclusive access to some memory objects
to prevent conflict [9], [17]. For leader electing, a bully algorithm
[9, 18], enables every user to have a unique identifier (Id) and
every user sends its Id to all other users. So, they select the node
with the maximum Id as a leader. The complexity of this approach
reaches O(n2) messages, which is considered expensive. With a
token ring algorithm [19], the users are structured in a linked-circle
and every user sends its Id to the next one. After receiving the
message, the user compares its own Id with the received one and
sends the greater one to the next user. The complexity of this
approach costs O(n) messages. Numan et al. provide an algorithm
that uses a centralized linked-list queue of all users. The leader is

the head of the queue; and when it fails, another user acquires a
lock and dequeues the old head. The complexity of this approach
is O(1) [20].

 At the same time, many countries and institutions have started
using E-PHRs. For example, at the beginning of 2014, the
American Recovery and Reinvestment Act enforced all healthcare
agencies (public and private) to use E-PHR. This facilitates
accessibility, utilization and management. However, such a change
requires specific technical and infrastructural support to be adopted
[21].

In addition, Blockchain technology helps to allow
decentralized management of E-PHRs, where there is no need for
a third party such as hospitals or healthcare agencies. However,
Blockchain has been enhanced with fairness and freedom [22].
Therefore, Blockchain provides many advantages for many areas
such as health-care systems. First, it supports the availability,
robustness and security of E-PHR. In fact, many projects and
companies, such as Data Gateways, Gem Health Network, Deloitte
and Guardtime have started using Blockchain to manage their E-
PHR [11], [23]. Second, it supports all related financial operations
such as funding, donations and insurance payments through
cryptocurrencies. Third, Blockchain supports scientific clinical
and biomedical research such as in the MedRec Health bank.
Indeed, companies and organizations use Blockchain for data
sharing and verification, ownership proofs and privacy of patients
and organizations. In addition, it could apply the principle of "gain
as you contribute" in scientific clinical and biomedical research.
For example, while Bitcoin (which is the first cryptocurrency) is
earned through solving puzzles, Gridcoin, is another
cryptocurrency that is earned based on the contribution to scientific
research [10], [11] and [24]. Fourth, Blockchain can be used to
manage and process any kind of data such as the records of
employees, healthcare facilities, medical instruments, medicines
and pharmaceutical supply chains.

Laure and Martha use Blockchain as a control manager to
manage the access of E-PHR. Actually, this work focuses on
Blockchain’s advantages such as scalability, security and privacy.
Indeed, the work proposes using a Blockchain system as an access
control manager, so it only has indexes of records, while the real
records are stored in separate storage (out of the Blockchain). This
would help to avoid the negative impact of data redundancy, where
every node in the Blockchain has a copy of all indexes instead of
having a copy of all records [21].

 Kevin et al. suggest the use of Blockchain in healthcare to
solve the issues of hardware and software heterogeneity. The work
focuses on the quality of sharing E-PHR in an understandable and
meaningful manner. So, they use the concept of Fast Healthcare
Interoperability Resources with specific Application Programming
Interfaces as standard for data formatting and presentation [25].

3. The System Model

Before you ALEA is designed according the concepts of in
well-organized bully algorithm for leader election [20]. The well-
organized bully leader election algorithm is implemented using a
linked-list queue to minimize the cost of leader election to O(1).
ALEA is a modified algorithm that is efficiently applicable for
medical and healthcare systems.

http://www.astesj.com/

B. Assiri / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 46-54 (2020)

www.astesj.com 48

ALEA creates a linked-list queue Queue of size Z, where Z is
the number of nodes in the Queue. The Queue is stored in
shared memory, so it is always visible to all nodes. A node
(processor/doctor) is denoted as Nod and is represented with a
unique identifier (doctorId), a pointer that is pointing to the next
node ,and a token flag. The new inserted node (doctor) can read
the E-PHR but it has to get exclusive access to update it. The
exclusive access is given by changing the token value from 0 to 1.
The queue head is the leader (PL). To change the leader, dequeue
the current head node and move the leadership (PL pointer) to the
next node.

For emergency cases where the PL is not accessible, a
temporary queue TQ is created with a secondary leader called SL.

Figure 1 shows Queue where the list has three doctors, and PL
points to the head of the queue. It also shows the emergency block
which has another list of TQ and SL. In reality, TQ is not usually
there.

Figure 1: Leader election linked-list Queue with a PL pointing to the queue head;

while the emergency linked-list TQ and a SL appear in the emergency block.

It is obvious that many doctors can read files in parallel, but
conflict arises at the time of the update. For instance, the situation
arises when one doctor is reading a file and another updating it. In
this case, the data updated last should be visible to the reader. Also,
when two doctors are writing to (updating) the same files, the two
updating processes conflict with each others. To overcome this
situation, it incorporates the idea of TokenPtr, which shows who
holds the token flag to update the files.

4. Proposed Algorithm

• A hospital creates the patient’s E-PHR with a primary
doctor (leader) PL, (see Function 1). Actually, the node
(doctor) has three attributes as follows: first, data to have
the doctorId; second a pointer pointing to the next node;
and third a token flag. When a new doctor is inserted into
the Queue, the doctor can read the E-PHR directly, but for
update permission, the token has to be changed to 1. The
TokenPtr is another pointer pointing to the node that has
the token (token=1). Finally, it increases the size of Queue.

• If PL cannot be accessed for any reasons, except in the case
of failure, it creates an emergence or temporary queue TQ
with a secondary leader SL, (see Function 2). With the

creation of a new node, the size of TQ is increased and the
same procedures as in Function 1 are used.

• Now Function 3 shows the process of adding a new node
to the Queue. Considering the medical needs, PL can add a
new doctor to the team, by creating and enqueuing a new
node to the Queue. Then it increases the Queue size. This
is also applicable to TQ.

• Sometimes because of medical needs, the leader has to
reorder doctors in the Queue, so it swaps the nodes as
shown in Function 4. Based on the doctor’s Id, TempPtr1
starts searching from the head position, until it finds the
first doctor. Then, TempPtr2 starts searching from the head
position, until it finds the second doctor. After that, it
swaps the doctors by inserting doctorId1 in the node of
TempPtr2 and doctorId2 in the node of TempPtr1.

• When PL retires from leadership of the E-PHR’s team, it
follows the procedures for Function 5. If it is the only
doctor who handles the E-PHR, which means Queue has
one node only, then, the retirement is not allowed. Else, it
uses TPtr to point to the PL node; moves the PL pointer to
the next node; moves the token (if it is needed) and finally
it dequeues the TPtr node and enqueues it again from the
other end of the Queue. This is also applicable for SL and
TQ.

• In Function 6, a doctor leaves the E-PHR’s team (complete
clearness). If it is the only doctor who handles the E-PHR,
which means Queue has one node only, then, the clearness
is not allowed. Else, it is dequeued from the Queue (as in
Function 5), but there is no need to enqueue it again.

• Function 7, explains how to move the token among nodes.
First, PL finds the targeted node according to its doctorId,
then it gives the token (makes token=1), or gets it (makes
token=0). In addition, PL allows parallelism by giving the
token to many nodes simultaneously, which is explained in
details later.

• Function 8, shows the case of a doctor requiring the token,
so it sends an acquiring message to PL and waits for some
time (Timeout). It should wait until the time becomes equal
to T where T=currenttime+Timeout. In fact, it is supposed
to receive a reply message (acknowledgment) from PL.
However, if the timeout finishes without receiving the
reply message, then PL fails, and it calls PLFailure().
Actually many nodes may detect PL failure simultaneously,
so each node has to copy the Id of PL (failed leader’s
doctorId) (more details are given in Function 9).

• Function 9, shows the case of leader PL failing. Upon the
detection of PL failure, the detector node calls
PLFailure(Id). It also passes PL’s doctorId. PLFailure(Id)
moves the PL pointer to the next node and

1. ║ Algorithm 1: ALEA1.

2. 1. Initialization()
3. //To create the linked-list

http://www.astesj.com/

B. Assiri / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 46-54 (2020)

www.astesj.com 49

4. Queue Z=0; //The queue size
5. Nod=newnode();
6. Nod→data=doctorId;
7. Nod→next=NULL;
8. Nod→token=0;
9. PL←node;
10. TokenPtr=PL;
11. TokenPtr→token=1;
12. Z++;
13. Return

14. 2. Emergency()
15. //Adding a new doctor as SL & creating a temporary queue
16. Z=0; //The queue size
17. Nod=newnode();
18. Nod→data=doctorId;
19. Nod→next=NULL;
20. Nod→token=0;
21. SL←node;
22. TokenPtr1=SL;
23. TokenPtr1→token=1;
24. Z++;
25. Return

26. 3. AddDoctor()
27. //Adding a new doctor to Queue
28. Nod=newnode();
29. Nod→data=doctorId;
30. Nod→next=NULL;
31. Nod→token=0;
32. Queue←enqueue();
33. Z++;
34. Return
35.
36. 4. SwapNodes(doctorId1, doctorId2)
37. //Swapping the doctors in Queue
38. TempPtr1=PL;
39. TempPtr2=PL;
40. i=1;
41. while(i ≤ Z) do
42. {
43. if (TempPtr1→data, doctorId1) then
44. {
45. TempPtr1=TempPtr1→next;
46. i++;
47. }
48. else
49. {
50. //First doctor is found, now find the other one
51. Break;
52. }
53. }
54. i=1;
55. while(i ≤ Z) do
56. {
57. if (TempPtr2→data, doctorId2) then
58. TempPtr2=TempPtr2→next;
59. i++;
60. }
61. else

62. {
63. //Now Second doctor is found, so swap them
64. TempPtr1→data=doctorId2;
65. TempPtr1→token=0;
66. TempPtr→data=doctorId1;
67. TempPtr2→token=0;
68. Break;
69. }
70. }
71. Return

72. 5. Rretirement()
73. //Retiring from the leadership
74. if (PL→next=NU LL) then
75. Return False;
76. else
77. {
78. TPtr=PL;
79. PL=PL→next;
80. if (TokenPtr=TPtr) then
81. {
82. TokenPtr→token=0;
83. TokenPtr=TokenPtr→next;
84. TokenPtr→token=1;
85. }
86. TPtr.dequeue();
87. T Ptr.enqueue();
88. }
89. Return

90. 6. Clearness()
91. //Clearness
92. if (PL→next=NU LL) then
93. return False;
94. else
95. {
96. TPtr=PL;
97. PL=PL→next;
98. if (TokenPtr=TPtr) then
99. {
100. TokenPtr→token=0;
101. TokenPtr=TokenPtr→next;
102. TokenPtr→token=1;
103. }
104. TPtr.dequeue();
105. }
106. Return

dequeues the failed leader. If many nodes detect PL failure
simultaneously, all of them invoke PLFailure(Id), which may
cause multiple unnecessary dequeues. Thus, it is mandatory to use
a Compare-and-Swap atomic operation (CAS statement), by which
only one node changes the leader [26]. Using a CAS statement,
one node checks if the PL is still in a failure (PL’s doctorId=Id),
and it invokes Clearness(). In Clearness(), PL (failed leader) is
dequeued and another leader is elected. Therefore, the other nodes
that detected the failure of PL also use CAS, but find PL’s
doctorId≠Id, since they find doctorId of the new PL that is not
equal to the value of Id, and do nothing.

http://www.astesj.com/

B. Assiri / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 46-54 (2020)

www.astesj.com 50

107. 7. Leadership(doctorId1)
108. //Moving the token among nodes
109. //Getting the token
110. TokenPtr→token=0;
111. //Find the targeted node based on Id
112. i=1;
113. while(i ≤ Z) do
114. {
115. if (TokenPtr→data, doctorId1) then
116. {
117. TokenpPtr=TokenPtr→next;
118. i+ +;
119. }
120. else
121. {
122. //Give the token
123. TokenPtr→token=1;
124. Break;
125. }
126. }
127. Return

128. 8. Reminder()
129. //Node sends a message to acquire the token
130. Sendmsg(PL, ”Acquire token”);
131. //Waiting (Timeout)
132. T=CurTime()+Timeout;
133. while(receiveack() = false && CurTime() < T) do
134. wait();
135. //Timeout finishes and no response (PL fails)
136. if (receiveack()=false) then
137. {
138. Id=PL→data;
139. PLFailure(Id);
140. }
141. Return

142. 9. PLFailure(Id)
143. //Leader still in failure
144. CAS (PL→data, Id, Clearness());
145. Return

Figure 2 is an example of a failed leader. Node 3 and 4

discover that the leader has failed. In Figure 2 (a), the two detector
nodes elect a new leader in parallel, so both dequeue and move PL
pointer. This causes one unnecessary dequeue. In Figure 2 (b) the
two nodes elect a new leader in parallel using CAS (the lock can
also be used), so both of them copy the doctorId of the PL in Id
(Id=1). Both of them apply CAS such that one node will have
successful CAS, and it dequeues the failed leader. However, since
a new leader is already there, the doctorId of the new leader does
not equal to Id anymore. Obviously, the doctorId is 2, while Id=1.
As a result of this, the other node gets a failed CAS, so it does
nothing.
5. Analysis
5.1. Correctness

For ALEA correctness, the correctness of concurrent
operations, that are made by doctors, are proved by satisfying

Linearizability [26]. This requires the concurrent operations to be
ordered to match a correct (valid) sequential execution. Indeed,
ALEA is considered an event-based model [9], where a doctor
performs the operations(a read/update) on the E-PHR, and each
operation is represented by two instantaneous events (begin() and
end()). A complete execution is a sequence of operations where
there is no pending operation and every operation has the two
events. For the correctness and legality of all operations, it is not
difficult to argue about the correctness and legality of a sequential
execution where all operations are running in one processor and
one after another. This helps to prove the memory consistency and
to predict the situation of the file, before and after each operation.
Since ALEA has two kinds of operations which are update and
read, an update operation is legal if it appears instantaneously and
all later reads read it, until another update takes place. A read
operation is legal if it reads the last written data, and all later reads
read the same data until another update takes place. A sequential
execution is legal if all its operations are legal. Then, the
concurrent execution is correct and the memory is consistent if the
order of concurrent execution (including events of all concurrent
operations) matches the order of a legal sequential one; this is
known as Linearizability [26].

Figure 2: (a): As result of the failure of the leader, two nodes are electing a new
leader in parallel, which causes one more unnecessary dequeue: (b) As result of
the failure of the leader, two nodes use CAS to elect a new leader in parallel, so
one node dequeues the failed leader and the other does nothing

http://www.astesj.com/

B. Assiri / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 46-54 (2020)

www.astesj.com 51

In ALEA, there are two kinds of operations, some operations
process the linked-list queue and the other operations process the
E-PHR. The first kind is to modify the linked-list queue of doctors.
To update the queue, there are operations such as enqueue,
dequeue (even electing new leader is conducted through
dequeuing) or move the token. In fact, ALEA maintains a queue
of linked-list, so it follows the concepts of Michael and Scot [27],
that is considered as one of the best lock-free algorithms in the
field. Actually the enqueue and dequeue operations are conducted
based on Michael and Scot’s algorithm [27], which is linearizable.
For the operation of moving the token, it is executed only by the
leader, so it is serialized. The read operation simply tries to find
the current leader which is always able to see the last change. In
fact, the linked-queue is stored on a shared memory which makes
all updates visible instantaneously. The second kind of operations
is to update the E-PHR. Actually, some procedures that prove the
correctness of the bully leader election algorithm [9, 18], and the
well-organized bully leader election algorithm [20], are applicable
in ALEA. To update the E-PHR it has to use the token which gives
exclusive access, so it does not conflict with other operations and
the operations can be ordered based on the token movement. On
the other hand, all read operations are executed concurrently and
are ordered with respect to the real-time order. Indeed, ALEA
satisfies Linearizability.

5.2. Synchronization
Processes synchronization allows resources to be shared

without causing any conflicts (it preserves consistency). Clearly,
ALEA uses application level synchronization, but at some points
it also relies on operating system primitives such as using locks
and CAS atomic operation. Focusing on how to order events,
Linearizability follows the real-time order of the concurrent
operations (execution). In fact, when there is one thread, events are
not interleaved on the same object. However, when there are many
threads the synchronization satisfies a happens-before relationship.
Therefore, the synchronization of events respects a well-formed
clock. Actually, the order depends on the exact time in terms of
where and when the operation takes effect. However, having
multiple time zones of doctors and patients due to remote access
or travel; challenges the use of physical clock. Therefore, a logical
clock such as Lamport’s logical clock [9, 23], is preferred.
Lamport’s logical clock is one of the famous approaches that uses
the happens-before (|) relationship such that, for any two
operations a and b, it is said a happens-before b (a|b) if and only if
the end() of operation a occurred before the begin() of b. However,
if there is an overlap between operations then the two possibilities
are considered (a|b) or (b|a). Using ALEA, it orders the operations
even if they are executed in multiple processors since all of them
are executed on a single version of E-PHR. The read operation
isordered easily, while the update operation gets exclusive
access(token), so it is also ordered based on the token movements.

5.3. Parallel Access of E-PHR
In this part, it is suggested the E-PHR to divided into multiple

sections s, and doctors are able to access different sections
concurrently. Therefore, ALEA has to use multiple tokens, let say
k tokens, where k=s (a token for each section). Now, the leader
gives a suitable token to a doctor according to the needed section.
Thus, TokenPtr of the original ALEA is replaced with a two-
dimensional array of pointers (with k rows and 2 columns). Each

row of this array shows the doctor’s id and the corresponding
section.

5.4. Traffic Flow
Processes It is known that the election of a new leader requires

a number of messages to passed and that may costn2messages for
n nodes [17, 18]. On the other hand, having one leader has severe
negative impacts on the system in case of leader failure. To handle
this situation, decentralized leader election algorithms enable
many replicas for each file and more than one leader. To access
any replica, voting is conducted and access is allowed according to
the majority (consensus). Such type of permission requires
approximately 2n messages [17, 18]. However, with ALEA the
number of messages is reduced to 0, as it dequeues the head node
(leader) and the new head will be the new leader (no traffic). In
addition, other messages are sent to acquire the token. In ALEA
the leader can hold a token or move it to the targeted node as
needed with no messages. Rarely, if a doctor needs to get the token,
the doctor sends an acquire message (as shown in Function 8), and
it receives a reply message from the leader, which causes no traffic.

5.5. Fairness and Starvation (timeout)
This part focuses on fairness of the leader election process and

fairness of token movements. For the fairness of leader election
process, the leadership appointment has to follow the queue
property first-in-first-leader. However, this is relaxed to
approximate-first-in-first-leader to handle medical and healthcare
requirements. Indeed, in ALEA, the leader is able to swap the
doctors in the queue based on the medical needs, which is
completely fair from the medical point of view. On the other hand,
ALEA allows the leader to move token among nodes as needed,
which is also fair from the medical point of view.

5.6. Replication
This part It would never be advisable to use a single centralized

copy of the E-PHR since there is no way for recovery in case
anything goes wrong. In this regard, the idea of having multiple
replicas of the same file is integrated, which is very important for
reliability and performance. Firstly, many replicas allow recover
of files if the reis an issue with a server, security problem, file
corruption or failed operation (read/update). Secondly, the replicas
allow improved performance as they can be distributed based on
system capabilities, competences, load balancing or geographical
distribution. However, having many replicas requires more effort
to keep them consistent. For such an issue, it is suggested that the
number of replicas be reduced to three copies. The main
(permanent) replica is stored in a suitable place bearing in mind
the geographical location of the patient and all doctors accessing
this replica. The second replica (backup1) should be stored in the
same system or in a very close one, so it can be used easily for
recovery. The third replica (backup2) must be stored in a different
server that is geographically located far away from the main one;
so it can be used in case of natural disasters, for example. In order
to maintain consistency in replicas, it is suggested to use the
eventual consistency criteria where the consistency of file is
relaxed [9, 15]. Eventual consistency is very suitable to E-PHRs
and cloud storage. Using eventual consistency, read operations do
not cause any harm, as the replicas remain consistent, but this
scenario will be different in the update operation because the
update operation changes the content of the replica. After

http://www.astesj.com/

B. Assiri / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 46-54 (2020)

www.astesj.com 52

confirmation of an update, the change should be reflected in all
other replicas in an asynchronous manner (over the network). In
ALEA, the token can be given to more than one doctor working on
different parts of the file, which causes a write-write conflict.
Therefore, every update is labeled with two timestamps, which are
the timestamp when the update takes effect, and the timestamp of
the last update before this one took place. This helps all replicas to
order the changes and maintain consistency among all of them.
Another way is to use Primary-Based Protocol to conduct remote
write/update; in this scheme, the user holds a local copy of a file
and after performing the update operation locally, it sends are quest
to the server for final approval [9]. This way, the main server takes
responsibility for preventing conflicts. To avoid any type of
conflict, it updates the other replicas instantly. This protocol (of
maintaining the local replica) is an actual support for mobile
applications, where the user works on those selected files from
different locations, which may affect the connection with the
server. Besides this, a huge number of update operations on the
system and the processes of maintaining replica consistency result
in very high contention on the network. To solve this difficulty,
the techniques below is effective:

• Directly, send the modified part of a file to replicas. This
can be used in case of a considerable number of update
operations.

• Only send a notification to invalidate the other replicas.
The invalidation notification has a smaller size compared
to the update messages. Indeed the invalidation can be
more specific to tell which part of the replica is not valid
anymore. Then, the system denies access to that part until
it finds a suitable time to update it.

• For some kind of update, send the computation itself, so
the others process it locally and make the update
themselves.

6. The Use of Blockchain

Blockchain technology is a distributed ledger that is shared and
processed by nodes according to consensus [10, 11]. In fact,
Blockchain algorithms have three major phases which are
proposing a new block, voting on the new block, committing or
aborting it based the consensus [10, 11, 22]. The implementation
of ALEA concepts using Blockchain technology requires some
modifications. The creation of a new queue in Functions 1 and 2,
will be based on the consensus of users, rather than hospitals or
healthcare agencies. Moreover, adding, removing and swapping
doctors (in Functions 3, 4, 5 and 6) will not be executed by the
leader; instead, they have to make a proposal, vote and then take a
decision according to the majority. The same thing is applicable
to token movements in Functions 7 and 8, as well as in case of the
failure of the leader in Function 9.

6.1. Transaction's Validation
The Blockchain consists of a number of nodes (processors).

Each node can access the patients’ E-PHRs and has a copy of the
ledger. The ledger contains blocks and each block contains a
number of transactions. The transaction contains some operations
that are executed on E-PHRs. The operations on the E-PHR are
either read or update (the update includes creating, editing and
deleting E-PHR). After the execution of transactions, the miners

validate the transactions by validating the output of the operations
of those transactions. Indeed, the miners also consider the
concurrency of transaction and can use some standard property for
such issues such as Opacity [28]. According to this correctness
property, a valid transaction commits and is placed on the blocks,
while an invalid transaction aborts [29]. Note that more than one
miner may validate the same transaction and every one places it in
a different block. or heads, are organizational devices that guide
the reader through your paper. There are two types: component
heads and text heads.

6.2. Block's Validation
When the block is full (based on the size of the block), it is

proposed to the validators (who are the team of doctors), so they
validate the correctness of the block, considering the concurrent
blocks as well. In fact, the content of the block is hashed to secure
it. The hashing can be produced in many ways such as Proof-of-
Work (PoW) or Proof-of-Stack (PoS) [30]. In addition, validators
validate the signature of the proposer node to verify that the block
has been created by a legitimate node. Actually, the validators
validate the identity of the proposer through its digital signature,
the PoW and content of the block. According to this, validators
vote to commit the block or abort it.

6.3. Consensus
Blockchain uses consensus to consider the validation processes

of all validators. If the majority votes to commit the block, then it
is added to the ledger, otherwise it is ignored (and then there is no
need for a leader like in ALEA). The majority of votes means more
than 50% is needed, and in some systems they increase it to 67%
[31, 22]. In addition, the order of the committed blocks in the
ledger is decided based on who gets PoW first. Some work uses a
unique timestamp for each block, so the one with a smaller
timestamp is added first [22]. The blocks are chained in the ledger
using the hash number, as every block has the hash of the previous
one; thereforethe ledger is unchangeable.

7. Discussion on the Use of Blockchain

The implementation of ALEA’s concept using Blockchain has
some strengths and weaknesses. Thus, this section discusses the
issues of security, privacy, immutability, decentralization,
robustness, availability, ownership, computational costs and
system traffic flow [10, 11, 24, 21].

7.1. Security, Privacy and Immutability
Using Blockchain technology the identities of doctors are

hidden. The E-PHRs and the operations on them are hashed and
encrypted. Such security and privacy are positive points that
encourage everyone to use Blockchain. On the other hand, users
will be untraceable and that is an issue for healthcare systems,
especially in terms of tracking suspicious and illegal behaviors.

In addition, using Blockchain guarantees immutability, since
the ledger (that has the records of all operations on E-PHRs) is
unchangeable. Obviously, this is a positive point; however, such a
system does not allow to rollback.
7.2. Decentralization

To avoid the presence and the control of the centralized third
party such as a hospital, decentralization enables queue to be

http://www.astesj.com/

B. Assiri / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 46-54 (2020)

www.astesj.com 53

created or emergency to be handled using consensus. The negative
impact of consensus is the voting delays; as well as having non-
trusted nodes or misleading votes.

7.3. Robustness
To The distribution of Blockchain technology helps to prevent

a single point of failure, especially in the case of leader failure.
Instead, the work will continue as long as the majority of nodes is
still working.

7.4. Availability
Blockchain provides high availability, since all nodes have

replicas of the files. The large redundancy of replicas requires
more space (memory), communication and processing (to preserve
the consistency of the replicas). To avoid such an issue, it is
proposed to use Blockchain as an access control manager that
shares copies of indexes rather than the real records, and the
records are stored in separate centralized storage [21], as shown in
Figure 3.

Figure 3: Blockchain with indexes and separated centralized storage of records.

7.5. Performance Cost
The use of Blockchain technology results in huge increases in

computational and communication costs. In ALEA, the
computation is executed by one node, while in Blockchain all
validators execute the computation to confirm its correctness. In
addition, when a node proposes a new block, it broadcasts to all
validators, so if there are n validators, it broadcasts n messages.
After the validators execute the computation, they send votes to all
nodes, let’s say m nodes, which costs m2 messages. Actually, the
set of the validators is a subset of all nodes in the Blockchain.
Then, every node calculates the majority and broadcasts messages
of the decision (commit/abort), which also costs m2 messages.
Finally, in case of commit, all nodes update their own copy of the
ledger, rather than a limited number of replications. Thus, the use
of Blockchain negatively affects the speed of the system and its
traffic flow.

7.6. Fault Tolerance
The consensus is a fault tolerant correctness property, where

some validators do not confirm the validity of the block. In medical

cases, it is not suitable to ignore the votes of 49% or even 33% of
doctors because they are not the majority. This means, the
Blockchain may still allow for some errors, which is very critical
for healthcare specifications.

8. Conclusion

This paper proposes an adaptive algorithm, for E-PHRs in a
cloud environment, so it can be easily used with minimal
infrastructure. ALEA enhances parallelism using an alternative
and modified leader election technique that suits medical and
healthcare systems. This work investigates the performance and
the characteristics of the ALEA in comparison to Blockchain
technology, which shows that the use of Blockchain technology
may result in some negative impacts

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Basem Assiri. Leader election and blockchain algorithm in cloud
environment for e-health. In2019 2nd International Conference on new
Trends in Computing Sciences (ICTCS), pages 1–6. IEEE, 2019.

[2] Paul C Tang, Joan S Ash, David W Bates, J Marc Overhage, and Daniel Z
Sands. Personal health records: definitions, benefits, and strategies for over-
coming barriers to adoption. Journal of the American Medical Informatics
Association, 13(2):121–126, 2006.

[3] Selena Davis, A Roudsari, and Karen L Courtney. Designing personal health
record technology for shared decision making. Studies in health technology
and informatics, 234:75–80, 2017.

[4] Janet Woollen, Jennifer Prey, Lauren Wilcox, Alexander Sackeim, Susan
Restaino, Syed T Raza, Suzanne Bakken, Steven Feiner, George Hripcsak,
and David Vawdrey. Patient experiences using an inpatient personal health
record. Applied clinical informatics, 7(02):446–460, 2016.

[5] Arloc Sherman and Isaac Shapiro. Essential facts about the victims of
hurricanekatrina.Center on Budget and Policy Priorities, 1:16, 2005.

[6] Shayne Sebold Taylor and Jesse M Ehrenfeld. Electronic health records and
preparedness: lessons from hurricanes katrina and harvey. Journal of medical
systems, 41(11):173, 2017.

[7] Mu-Hsing Kuo. Opportunities and challenges of cloud computing to improve
health care services. Journal of medical Internet research, 13(3):e67, 2011.

[8] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey of
mobile cloud computing: architecture, applications, and approaches. Wireless
communications and mobile computing, 13(18):1587–1611, 2013.

[9] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems:
principles and paradigms. Prentice-Hall, 2007.

[10] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, Manubot, 2019.

[11] Tsung-Ting Kuo, Hyeon-Eui Kim, and Lucila Ohno-Machado. Blockchain
distributed ledger technologies for biomedical and health care applications.
Journal of the American Medical Informatics Association, 24(6):1211–1220,
2017.

[12] Michael Crosby, Pradan Pattanayak, Sanjeev Verma, Vignesh
Kalyanaraman,et al. Blockchain technology: Beyond bitcoin. Applied
Innovation, 2(6-10):71, 2016.

[13] Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah
Mokhtar, Abdullah Gani, and Samee Ullah Khan. The rise of “big data” on
cloud computing: Review and open research issues. Information systems,
47:98–115, 2015.

[14] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Big data and cloud
computing: current state and future opportunities. In Proceedings of the 14th
International Conference on Extending Database Technology, pages 530–
533, 2011.

[15] Tim Coppieters, Wolfgang De Meuter, and Sebastian Burckhardt. Serializable
eventual consistency: consistency through object method replay. In
Proceedings of the 2nd Workshop on the Principles and Practice of
Consistency for Distributed Data, pages 1–3, 2016.

[16] Kamal Zellag and Bettina Kemme. How consistent is your cloud application?
In Proceedings of the Third ACM Symposium on Cloud Computing, pages
1–14, 2012.

http://www.astesj.com/

B. Assiri / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 46-54 (2020)

www.astesj.com 54

[17] Gerard Tel. Introduction to distributed algorithms. Cambridge university
press, 2000.

[18] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems:
Concepts and design edition 3.System, 2(11):15.

[19] P Beaulah Soundarabai, J Thriveni, HC Manjunatha, KR Venugopal, and LM
Patnaik. Message efficient ring leader election in distributed systems. In
Computer Networks & Communications (NetCom), pages 835–843.
Springer, 2013.

[20] Muhammad Numan, Fazli Subhan, Wazir Zada Khan, Basem Assiri, and Nas-
rullah Armi. Well-organized bully leader election algorithm for distributed
system. In 2018 International Conference on Radar, Antenna, Microwave,
Electronics, and Telecommunications (ICRAMET), pages 5–10. IEEE, 2018.

[21] Laure A Linn and Martha B Koo. Blockchain for health data and its potential
use in health it and health care related research. In ONC/NIST Use of
Blockchain for Healthcare and Research Workshop. Gaithersburg, Maryland,
United States: ONC/NIST, pages 1–10, 2016.

[22] Basem Assiri and Wazir Zada Khan. Enhanced and lock-free tendermint
blockchain protocol. In 2019 IEEE International Conference on Smart
Internet of Things (SmartIoT), pages 220–226. IEEE, 2019.

[23] Marc Pilkington. Blockchain technology: principles and applications. In Re-
search handbook on digital transformations. Edward Elgar Publishing, 2016.

[24] Usman W Chohan. Environmentalism in cryptoanarchism: Gridcoin case
study. Available at SSRN 3131232, 2018.

[25] Kevin Peterson, Rammohan Deeduvanu, Pradip Kanjamala, and Kelly Boles.
A blockchain-based approach to health information exchange networks.
InProc. NIST Workshop Blockchain Healthcare, volume 1, pages 1–10, 2016.

[26] Maurice Herlihy and Nir Shavit.The art of multiprocessor programming.
Morgan Kaufmann, 2011.

[27] Maged M Michael and Michael L Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceedings of the
fifteenth annual ACM symposium on Principles of distributed computing,
pages267–275, 1996.

[28] Rachid Guerraoui and Michal Kapalka. On the correctness of transactional
memory. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pages 175–184, 2008.

[29] Nir Shavit and Dan Touitou. Software transactional memory. Distributed
Computing, 10(2):99–116, 1997.

[30] Iuon-Chang Lin and Tzu-Chun Liao. A survey of blockchain security issues
and challenges. IJ Network Security, 19(5):653–659, 2017.

[31] Basem Assiri and Costas Busch. Approximate consistency in transactional
memory. International Journal of Networking and Computing, 8(1):93–123,
2018.

http://www.astesj.com/

	2. Related Work
	3. The System Model
	4. Proposed Algorithm
	5. Analysis
	5.1. Correctness
	5.2. Synchronization
	5.3. Parallel Access of E-PHR
	5.4. Traffic Flow
	5.5. Fairness and Starvation (timeout)
	5.6. Replication

	6. The Use of Blockchain
	6.1. Transaction's Validation
	6.2. Block's Validation
	6.3. Consensus

	7. Discussion on the Use of Blockchain
	7.1. Security, Privacy and Immutability
	7.2. Decentralization
	7.3. Robustness
	7.4. Availability
	7.5. Performance Cost
	7.6. Fault Tolerance

	8. Conclusion
	Conflict of Interest
	References

