
Advances in Science, Technology and Engineering Systems Journal
Vol. 5, No. 3, 214-225 (2020)

www.astesj.com
ASTES Journal
ISSN: 2415-6698

Machine Learning Model to Identify the Optimum Database Query Exe-
cution Platform on GPU Assisted Database

Dennis Luqman*, Sani Muhamad Isa

BINUS Graduate Program-Master in Computer Science, Computer Science Department, Bina Nusantara University Jakarta, 11480,
Indonesia

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 20 February, 2020
Accepted: 13 May, 2020
Online: 21 May, 2020

Keywords:
GPU Database
Query Processing
GPU co-processor
Machine Learning

With the current amount of data nowadays, the need for processing power has vastly
grown. By relying on CPU processing power, current processing power is depending on
the frequency and parallelism of the current CPU device. This means this method will lead
to increased power consumption. Current research has shown that by utilize the power
of GPU processing power to help CPU to do data processing can compete with parallel
CPU processing design but in a more energy-efficient way. The usage of GPU to help CPU
on doing general-purpose processing has stimulated the appearance of GPU databases.
GPU databases have gained its popularity due to its capabilities to process huge amount
of data in seconds. In this paper we have explored the open issues on GPU database and
introduce a machine learning model to enhance the GPU memory usage on the system by
eliminating unnecessary data processing on GPU as on certain queries, CPU processing
still outperforms the GPU processing speed. To achieve this, we develop and implement the
proposed approach machine learning algorithm using python 3 languages and OmniSci 4.7
for the database system. The applications are running on Ubuntu Linux environment as the
GPU environment and Docker as the CPU environment and the results we find that KNN
algorithm performs well for this setup with 0.93 F1-Score value.

1 Introduction

The amount of data has proliferated every day, which strengthened
the need for a high-speed database management system. With the
current amount of data that big, very powerful processing powers
need also increased. On the other hand, real-time data processing
needs have pushed the conventional database into its limits. Digital
Universe & EMC estimates that data collected in 2020 will have
nearly 44 trillion gigabytes [1]. This situation stimulates the born of
another database system such as Hadoop system, Big Query, Apache
Spark, ClickHouse, Amazon Athena, etc. All of these databases are
born with enormous processing power which makes big data pro-
cessing much faster. However, their processing capabilities depend
on the number of nodes and parallelism of the current CPU device,
which mean this leads to increased power consumption [2, 3].

In 2013, there is a new database created which gets the atten-
tion of some researchers, this kind of database is using graphics
processing units (GPUs) to help central processing unit (CPU) on
processing the data which makes it very powerful but in an afford-
able way. The name of this new database is OmniSci. GPU is very
famous for its parallel processing [4]. However, due to different

memory architecture between CPU and GPU, data under the main
memory cannot directly be accessed by GPU. Hence the data need to
be transferred into GPU memory to do data processing on GPU [5].
The data transfer between GPU device and main memory is going
through PCI Express bus slot, Nowadays, the latest PCI Express bus
on the market is version 5.0 which have a maximum transfer speed
of 63.02 GB/s, this behaviour caused the huge processing amount
of data on GPU will have I/O bottleneck. Some researchers found
the side effect of using GPU as a co-processor which can make a
query run slower than CPU only processing. The main challenge of
doing data processing on GPU is the data transmission bottleneck
while doing non-numerical type data processing [6]. Hence, the
query execution time using GPU co-processor not guarantee the
processing will be faster compared to the CPU only. Until today, We
cannot find research that fully identifies the components of query
which still not optimized on the GPU nor use a machine learning
model to switch query execution platform between CPU and GPU
in a hybrid way.

In this research, we introduce a hybrid approach to select the
optimum execution platform processing platform between CPU and
GPU with a machine learning model helps. The main focus of this

*Dennis Luqman, Jl. Kebon Jeruk Raya No. 27 Kebon Jeruk Jakarta Barat 11530, +6281807185590, dennis.luqman@binus.ac.id

www.astesj.com
https://dx.doi.org/10.25046/aj050328

214

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj050328


D. Luqman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 214-225 (2020)

research is to find out which query is faster on CPU and which on
GPU co-process, to do that, we will create an automatic query parser
to parse a single query to determine machine learning parameters,
and based on obtained parameters, the machine learning model will
determine which platform is the best to execute the parsed query. By
do query processing platform management, we can also manage the
usage of GPU memory to ensure a GPU type query can be executed
on GPU.

2 Background & Related Works

2.1 GPU Architecture

GPU is a device that commonly used on a computer or notebook.
GPU’s primary purpose is to do intensive graphical functions such
as watching videos, gaming, or video rendering. As the time be-
ing, GPU was started to be used as general-purpose processing [7].
GPU become very popular on general-purpose processing due to
its Single Instruction Multiple Data (SIMD) characteristics which
will help to boost processing performance on data-intensive compu-
tations [5, 8]. However, apart from its processing power, there is a
challenge that needs to be faced while utilizing the GPU processor
as a CPU co-processor due to its memory architecture.

Figure 1: CPU - GPU Architecture [9]

As shown on Figure 1, GPU usually called as a device system,
while CPU is called as a host system, the device system is connected
to the host system using PCI express bus. Each host and device
has its own memory and processors, typically the host and device
memory do not share the same address space, which means the
device system cannot directly access the host’s memory and vice
versa. Therefore, to do data processing on GPU, the data need to be
transferred into the device memory first. In general, data are stored
on a hard drive or solid-state drive, this resulting the data need to
pass through host memory then device memory and after the device
has finished on processing the data, it will send the data back to host
memory in order to show the data to the users [9]. Due to these I/O
procedures, the GPU will not help much to improve the processing
speed if there is an I/O bottleneck on the system [10].

2.2 OmniSci

When first released, OmniSci is named as Mapd, OmniSci is an
open-source SQL-based, relational and columnar type of database
which developed to leverage the data processing needs nowadays by
utilizing the use of GPU processing power. Its ability to outperform
the current big data platform makes it popular to be an alternative
solution for big data processing.

A vital component of the OmniSci SQL engine performance
advantage is the hybrid or parallelized execution of queries. A par-
allelized code allows a processor to compute multiple data items
simultaneously. This is necessary to achieve optimal performance
on GPU, which contains thousands of execution units.

Figure 2: OmniSci Advanced Memory Management [11]

Figure 2 shows that OmniSci has advanced memory manage-
ment with three-tier caching in their system. The caching contains
two layers of computation, storage layer, and compute layer. On
the storage layer, it is started with the data itself. The data can be
sourced from various sources, i.e. data lake, data warehouse, or sys-
tem of records, then continue to the third tier of caching called cold
data, in this tier the data will be cached on SSD or NVRAM Storage.
Moving to the compute layer, there lay second-tier caching called
warm data, in this tier the caching will happens in host memory, or
usually, we call it RAM, and the first tier called warm data where
the caching is happens on the device memory. All three tiers meant
to eliminate the transfer overhead between CPU and GPU.

During the query execution, OmniSci system adapts query vec-
torization and hybrid execution system. This feature allows the
system to vectorize the code and compute multiple data items simul-
taneously across multiple GPUs and CPUs [11].

2.3 Scikit-learn

For machine learning, this paper will use help from Scikit-learn,
Scikit-learn is a python framework which provides many popular
machine learning algorithm implementations. It is easy to use inter-
face, and well-integrated with python language make this framework
can easily be used by data analysis who not specialized in the soft-
ware and web industries [12]. In this paper, we will test our model
using Random Forest, Nave Bayes, Logistic Regression, KNN, and
Adaptive Boosting classifier algorithm.

2.3.1 Random Forest

Random Forest is an ensemble machine learning algorithm that
can be used to do data classification and regression. Random For-

www.astesj.com 215

http://www.astesj.com


D. Luqman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 214-225 (2020)

est is prevalent due to its excellent performance on many data
sets. In many cases, Random Forest achieved the best in class
performance with higher accuracy than another machine learning
algorithm [13, 14], hence we wanted to try this machine learning
algorithm with our model to see how it performs.

2.3.2 Nave Bayes

Nave Bayes classification is a straightforward probabilistic model.
The model is based on Bayes rule along with a robust assumption
of independence. The main characteristic of the Nave Bayes Clas-
sifier is a powerful assumption (naive) of independence from each
condition or event. The advantage of using Nave Bayes method is
that it only requires a small amount of training data to determine
the estimated parameters needed in the classification process, and
words are conditionally independent of each other. As the drawback,
this assumption will slightly affect the accuracy of text classification.
However, as an advantage, it will make the high-speed classification
algorithm applicable to the problem [15, 16]. Nave Bayes character-
istics are matched with what we are looking for in this paper, which
is a high-speed classification machine learning algorithm with the
highest accuracy.

2.3.3 Logistic Regression

Logistic Regression is a technique that can be used for traditional
statistics as well as machine learning. Logistic Regression will
work by predicts if something is true or false, 0 and 1, or Yes and
No. Logistic Regression is widely used on some classification tasks
due to its simplicity and lightweight, and it does not need many
computational resources to operate. We choose this algorithm to test
with is because it fits our model, whereas there is only two decision
that needs to be made, CPU or GPU [16, 17].

2.3.4 K-Nearest Neighbor

K-Nearest Neighbour is a supervised learning algorithm where the
result of a new instance classified based on the majority of the near-
est K-neighbor category. KNN become popular among classifier
algorithms is because of its simplicity, practical, robust, and con-
ceptual clarity. It also can achieve higher accuracy on unknown or
non-normal distributed data set [18]. We are choosing KNN as one
of 5 machine learning algorithms we test in this paper is because it
can perform well in unknown or non-normal distributed data sets,
which will fit on our model where usually most user’s ad-hoc query
is non-predictable.

2.3.5 Adaptive Boosting

Adaptive boosting or in short AdaBoost is a machine learning algo-
rithm introduced in 1995 by Freud and Schapire. The advantage of
this algorithm is it fast, simple, and easy to program due to there is
only one parameter that needs to be tuned which is the number of
rounds [14, 19].

2.4 TPC-H Dataset & Query set

The TPC Benchmark H (TPC-H) is a benchmark dataset for a de-
cision support system. The queries and information provided by
TPC-H were selected to make the dataset can have excellent rel-
evance with the industry-wide but in ease of implement manner.
TPC-H dataset size can freely be customized based on the user’s
needs. TPC-H also contains query set for system testing; the query
set consist of 22 query type with various complexity. As shown on
Figure 3, TPC-H has eight tables, and every relation for each table
is one to many relationship[20].

Figure 3: TPC-H Schema [11]

www.astesj.com 216

http://www.astesj.com


D. Luqman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 214-225 (2020)

2.5 Related Works

The research on GPU processing sector started in 2004, in this year
[21] do research to create graphics card as a co-processor to do
data processing. In their research, they focus on speeding up ba-
sic database queries such as select and aggregation and got 108x
speedup over CPU. This research got more attention from other
researchers to continue to investigate the possibility to create a fully
operational GPU database. The research on this sector is continued
by [4]; they create and implement the use of GPU processing power
to SQLite. In their research, they demonstrate the main principle
of the GPU database that data processing efficiency on a GPU card
depends on the I/O cost. They explain that GPU cannot help to
increase the data processing performance if the data need to be
processed from physical hard drive due to I/O limitation from hard
drive to GPU. This research got 35x speedup over CPU. This re-
search then also continued by [22] by enhancing the Bakkum model
to be able to do a Relational database join by translate SQL code
into opcode, and as a result, they get 20 to 30 processing times
speedup over the CPU processing time.

In 2011, [10] did research on the data transfer between main
memory to GPU memory; they explain even though GPU can do
a very vast data processing, we also need to pay attention to the
transfer time between main memory to GPU. If the transfer time
overshadowing the processing time, there will be no speedup ob-
tained from GPU. Hence, they suggest on PCI-Express port usage.

Another research done by [23], they recommend the use of
column-major storage is very recommended to maintain the data
transfer between host memory and device memory. In their research,
they also found that the efficiency of data processing on GPU will
depend on the amount of data that will be processed. In the case of
small data, the CPU will be the best platform to process the data.

[1] In 2016 conduct an experiment to test GPU as a query ac-
celerator, they are testing geospatial data computation on GPU
with help from Mi-Galactica as a GPU accelerator. As the results,
they found if the framework execution time is outperforming the
Spark one, and they state that GPU based data processing can be an
alternative to Big Data.

In 2017, [6] trying to find the problem of GPU speedup which
hugely depends on the amount of data processed by creating an al-
gorithm to make a hybrid approach to select the processing platform
between CPU and GPU. They call the algorithm as Hybrid Query
Processing algorithm.

Figure 4: Related Work Framework [6]

As shown in Figure 4, the algorithm works by splitting 1 query
into subquery block, from this block system will identify which
operator being used, what the data type, how big the data and the
aggregation type, then the system will do speed comparison to see
which platform complete the query faster. However, in this algo-
rithm, the data used to compare the speed is only a sample of 10 top
rows which might not represent all rows in the table.

Figure 5: Proposed Framework

3 Proposed framework
In this section, we discuss the detail of the proposed framework.
Figure 5 show the overall of the proposed framework. There are four
main sections: input, Query Processing, Decision, and Output. The
process started by query inputted into the system, then the system
will process any inputted query by split the query and extract the
information from it. The extracted information then will be pass to
the machine learning model, which has a crucial role to determine
which platform will be used to run the query. Finally, the system
will show the query result in the output section.

Figure 6: Sub Query Split Illustration

3.1 Query parser

After queries are submitted, the system will process the query by
parsing it into several parts and extract the information. Query
parser part is the most crucial part of the framework because if the
system cannot identify a query correctly, the result accuracy will
also not be convinced. To do that, we need to identify if there are
any subqueries or not. Figure 6 show a scenario where subqueries
exist on a query. In this scenario, the system will split the query into
two parts, the main query, and the subqueries.

After the query become several parts, the system then will iden-
tify query components from each part of inputted queries starting
from the number of columns, aggregation type, number of joins,
join type, number of filters, number of wild cards, having filter, and

www.astesj.com 217

http://www.astesj.com


D. Luqman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 214-225 (2020)

group by and order by columns. Finally, the system will merge the
analyzing result of each part of the query then pass it into machine
learning.

Figure 7: Identical Feature Generated Sample

In some scenarios illustrated in Figure 7, we found that the query
parser result might generate some same result while the selected
columns are different. The difference between 2 queries on Fig-
ure 7 is only on the column selection. The first query is selecting
L ORDERKEY while the bottom query is selecting S ADDRESS,
but the execution result is showing the bottom query runs faster on
GPU co-processor.

Figure 8: Column to ASCII Conversion Illustration

To overcome this kind of situation, we make the system identify
the uniqueness of the selected column by converting the selected
column into ASCII number, as shown in Figure 8.

The number then will be summed up and converted into a 5-digit
float, i.e., 30873177894140434 will become 30873.177894140434.
By using this method, we can get a unique feature combination
of the generated data. The real calculation result is shown in Fig-
ure 7 on the column variance feature, while the number of column
feature is the same, but the ASCII calculation is showing different
results.

3.2 Machine Learning Model Methodology

The machine learning model is the second most crucial part of
the framework. This part will become the brain of the framework,
which will decide the best query execution platform for each in-
putted query. As illustrated on Figure 9 The machine learning model
will work after the system has successfully extract information from
the inputted query. The extracted queries become dataset. 75% of
the dataset will be sent to the machine learning model to train the
model, while another 25% of the dataset will be sent to the trained

machine learning model to decide which platform will be selected
to run the query.

Figure 9: Machine Learning Methodology

For machine learning algorithms itself, we are testing five ma-
chine learning algorithms, Random Forest, Nave Bayes, logistic
Regression, KNN, and adaptive boost classifier module from scikit-
learn. The reason we choose these five machine learning algorithms
is due to their simplicity, effectiveness, robustness, and performance
reputation on doing the classification. Out of five algorithms, we
will choose a machine learning which has the least testing time and
high accuracy. Hence the machine learning decision timing will not
overshadow the query processing time itself. The machine learning
model will make a decision based on the inputted parameters listed
in Table 1. These parameters were chosen based on the previous
paper [6].

3.3 Generate Training Data

To make machine learning model can effectively select the best
platform to run a query, the machine learning need to be trained first.
To train the machine learning, we need to create a dataset which
will be inputted into the machine learning model and become its
knowledge.

To create a dataset, we use the TPC-H queries test set as a base
and use a binary model to generate alternatives query. The TPC-H
queries test set contains 22 queries, and after using a binary model
to generate alternative for each query type, it contains 3365 queries
as shown in Table 2.

This binary model was created to make the system can cover
all query possibilities which usually user use, the binary model as
described in Figure 10.

Figure 10: Query Generation Example

www.astesj.com 218

http://www.astesj.com


D. Luqman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 214-225 (2020)

Table 2: Total Number of Generated Dataset

Row Labels CPU GPU Total
Type 1 3 5 8
Type 2 254 0 254
Type 3 68 443 511
Type 4 0 14 14
Type 5 164 90 254
Type 6 1 15 16
Type 7 503 8 511
Type 8 511 0 511
Type 9 24 6 30
Type 10 6 219 225
Type 11 30 0 30
Type 12 0 30 30
Type 13 0 12 12
Type 14 1 127 128
Type 15 0 14 14
Type 16 14 0 14
Type 17 2 126 128
Type 18 2 508 510
Type 19 21 107 128
Type 20 0 15 15
Type 21 0 15 15
Type 22 7 0 7
Grand Total 1611 1754 3365

The binary model will work to generate the column selection,
grouping and sorting. While for the table name, relation, and ag-
gregation will be determined based on the TPC-H query set. After
the query set has been generated, the queries will be run on GPU
and CPU sequentially to get the GPU TIME and CPU TIME infor-
mation. The result then will be used to determine the label on each

query. The query labelling will use the following rules:

• CPU TIME > (GPU TIME-GPU TIME REBATE) -> GPU
Execution

• CPU TIME ≤ (GPU TIME-GPU TIME REBATE) -> CPU
Execution

On the GPU there is a variable called GPU TIME REBATE,
this variable is defined to give advantage for CPU, in this paper
we give GPU TIME REBATE value of 0.5 seconds. This value
may be variable depends on each user’s tolerance. We give CPU
advantage due to during our experiment is because we found that
many queries have almost similar execution time for both CPU and
GPU. Meanwhile, GPU memory was considered more expensive
than host memory, therefore if a query runs on GPU but there is
no much time gained over CPU, it will be waste of GPU memory,
the OmniSci was using caching in their system, and if there is no
enough GPU memory for a query to be executed on GPU, those
queries will be passed to host system to be processed using CPU.
In this case, if the GPU memory was full because of a query that
did not have much gain over CPU while there is a query which will
have more time gain over CPU need to be executed on GPU but
failure due to memory is full, it will be very unfortunate.

3.4 Machine learning model Training

To train the machine learning model, the dataset will be split into
a training set and test set with 75 - 25 ratio, 75 % used to train the
model, and 25 % used to validate. As shown in Table 3 for machine
learning able to cover all query scenarios, the data is divided on the
query type level. To validate the results, we also use cross-validation
with amounts of 5 folds.

Table 1: Extracted Feature

Feature Data Type Description
NUMBER OF JOINS Integer Showing total number of joins
NUMBER OF LEFT JOINS Integer Showing number of left joins
NUMBER OF INNER JOINS Integer Showing number of inner joins
NUMBER OF FILTER Integer Showing number of filters
NUMBER OF COUNT Integer Showing number of count
NUMBER OF SUM Integer Showing number of sum
NUMBER OF MIN Integer Showing number of min
NUMBER OF AVG Integer Showing number of avg
NUMBER OF COLUMN Integer Showing number of columns
NUMBER OF GROUPBY Integer Showing number of groupby
NUMBER OF ORDERBY Integer Showing number of orderby
NUMBER OF HAVING Integer Showing number of having
NUMBER OF WILDCARD Integer Showing number of wildcards
NUMBER OF SQUERY Integer Showing Number of Sub Queries
COLUMN VARIANCE Float Result of ASCII value from selected column
GPU TIME Float Showing GPU execution time
CPU TIME Float Showing CPU execution time
DECISION varchar (3) Showing label for machine learning

www.astesj.com 219

http://www.astesj.com


D. Luqman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 214-225 (2020)

Table 3: Training and Test data Split Result

Row Labels Total Training Test
Type 1 8 6 2
Type 2 254 190 64
Type 3 511 383 128
Type 4 14 10 4
Type 5 254 190 64
Type 6 16 12 4
Type 7 511 383 128
Type 8 511 383 128
Type 9 30 22 8
Type 10 225 168 57
Type 11 30 22 8
Type 12 30 22 8
Type 13 12 9 3
Type 14 128 96 32
Type 15 14 10 4
Type 16 14 10 4
Type 17 128 96 32
Type 18 510 382 128
Type 19 128 96 32
Type 20 15 11 4
Type 21 15 11 4
Type 22 7 5 2
Grand Total 3365 2517 848

4 Experimental Evaluation

4.1 Experimental Setup

The proposed approach has been conducted on a PC with Core i7
3770 processor, 16gb of Ram, Nvidia GTX 970 with 4gb GDDR5
memory. The running OS is Ubuntu 18.04 with CUDA 10, on
the software side, we are using scikit-learn version 0.21.3, Om-
niSci 4.7, and the code is written under python 3 languages. For
the database setup, we are using JDBC connection to connect to
OmniSci database. Each OmniSci database has been injected with
TPC-H dataset; the dataset size was generated with amount of 3gb.
We are choosing 3gb to ensure each query can be processed on
GPU without memory limit restriction. While configuring database
connection, we found that OmniSci GPU/CPU setup cannot be
changed dynamically using JDBC, hence to overcome this, we in-
stall another set of OmniSci database on docker and configure it
to always using CPU as the main processing power, on the other
hand OmniSci installed on the Linux is configured to use GPU
as the main processing power, the port also needs to be different
between them otherwise there will be port conflict and the docker
version of OmniSci services won’t start. As there is an environmen-
tal difference between Linux and docker, we conduct a preliminary
study to compare if there is any performance difference between
OmniSci running on native Linux and OmniSci running on docker
under Linux environment. Furthermore, the result is that there is no
performance difference between them.

4.2 Experimental Results

To benchmark the machine learning quality, we are using F1-Score
to measure the quality of each machine learning algorithm, in order
to validate the result, we are using a cross-validation method with
five folds. As the main objective is to find the fastest machine learn-
ing algorithm with high accuracy, we also show the training time
and testing time. As shown in Table 4 we found that the Random
Forest has the best accuracy, while the Nave Bayes algorithm has
the best training time Table 5, and logistic Regression algorithm has
the best testing time. However, it also has the least accuracy. Based
on this result, we choose Random Forest as the most compatible
machine learning algorithm, although its training time is higher than
Nave Bayes and KNN, the testing time and accuracy is considerably
good.

Table 5: Machine Learning Training and Testing Time

Algorithm Train Time Test Time
Random Forest 0.033s 0.004s
Nave Bayes 0.003s 0.094s
Logistic Regression 0.073s 0.002s
KNN 0.004s 0.003s
Adaboost 0.722s 0.024s

To illustrate how we calculate f1-score on Table 4, we use the
first fold of Random Forest number as an example. To calculate
f1-score, we need precision and recall value. We get recall value
using the ratio of true positive / (true positive + false positive) which
resulting :

Precision =
401

401 + 15
= 0.96394

Next, we calculate recall value using ratio of true positive / (true
positive + false negative) which resulting :

Recall =
401

401 + 21
= 0.95024

After we get precision and recall value, we can calculate f1-score
using following formula, F1 = 2 * (precision * recall) / (precision +

recall) which resulting :

F1 − S core =
2 ∗ 0.96394 ∗ 0.95024

0.96394 + 0.95024
= 0.95704

4.3 Experimental Analysis

The usage of GPU to help CPU on doing general-purpose processing
has stimulated the appearance of GPU databases. GPU databases
have gained its popularity due to its capabilities to process a massive
amount of data in seconds. However, in this research, we found that
not all query not always run faster on GPU, as shown on Figure 11,
we found that on query type 5, 7, 8, 11, 16, and 22, GPU execution
time is not giving much time gain over CPU, while query type 6, 10,
15, 19 have much higher time gain on GPU.

www.astesj.com 220

http://www.astesj.com


D. Luqman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 214-225 (2020)

Table 4: Machine Learning Results

Random Forest
1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold Avg

Precision 0.96 0.95 0.95 0.94 0.95 0.95
Recall 0.95 0.95 0.95 0.94 0.95 0.95
F1-score 0.96 0.95 0.95 0.94 0.95 0.95

Nave Bayes
1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold Avg

Precision 0.92 0.91 0.92 0.91 0.92 0.92
Recall 0.91 0.89 0.92 0.89 0.91 0.90
F1-score 0.91 0.89 0.91 0.89 0.9 0.90

Logistic Regression
1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold Avg

Precision 0.22 0.24 0.22 0.24 0.23 0.23
Recall 0.47 0.49 0.47 0.49 0.48 0.48
F1-score 0.3 0.32 0.3 0.32 0.31 0.31

KNN
1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold Avg

Precision 0.94 0.93 0.92 0.93 0.93 0.93
Recall 0.94 0.93 0.92 0.93 0.93 0.93
F1-score 0.94 0.93 0.92 0.93 0.93 0.93

AdaBoost
1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold Avg

Precision 0.95 0.93 0.94 0.94 0.94 0.94
Recall 0.95 0.93 0.94 0.94 0.94 0.94
F1-score 0.95 0.93 0.94 0.94 0.94 0.94

Figure 11: CPU vs GPU Average Run Time

To get closer information, we group the query type 1, 5, 7, 8, 11,
16, 22 and query type 6, 10, 15, 19 and breakdown into the attribute
information as shown on Figure 11 There is three information pro-
vided by this figure, The black bars, orange bars, and red line. The
black bars are representing an average of the attribute value for the
query type 1,5,7,8,11,16,22, while the orange bars are representing
an average of the attribute value for query type 6,10,15,19. The red
line is showing the variance between 2 categorys value.

4.3.1 number of groupby

Based on Figure 12, to get the optimal use of GPU processing speed
we need to pay attention of this attribute, this attribute represents the
number of group by used on the queries, the numbers on Figure 12

shown that GPU can help on speed up the query processing speed if
the query has a lesser amount of group by the operator used.

Figure 12: Average Attribute Value by Query Groups

4.3.2 number of column

The number of columns is related to the number of groupby
whereas if a query wants to generate an aggregated result within
some column information, then group by is mandatory. The differ-
ence of this attribute with number of groupby is this attribute also
calculate the aggregation used. Based on Figure 13, the numbers
proved that GPU co-process is not optimized to deal with a query
that has a tremendous amount of column selected.

On Figure 13, the system figured that the more column we try
to display on a query, the more ineffective GPU coprocessor works,
this confirm if there is a transfer overhead between main memory
into GPU memory, as the more columns are trying to be processed
the more data also need to be transferred into GPU memory.

www.astesj.com 221

http://www.astesj.com


D. Luqman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 214-225 (2020)

Figure 13: Query Processing Platform Decision Based on Column Count

4.3.3 number of orderby

This attribute is affecting the GPU device processing performance,
Figure 12 is showing that a higher amount of order by feature used
on the query the more ineffective the GPU becomes. However, these
numbers might be affected by the number of columns as in general,
order by usually applied to a column.

4.3.4 number of joins

This attribute indicates how many joins used on a query. On Fig-
ure 14 we can see, that GPU only optimized if the query join is not
more than three tables. The processing speed on GPU starting to
increase on five or more join are involved, which makes the system
labelled the query to run on CPU only execution.

Figure 14: Query Processing Decision Based on Number of Join Used

4.3.5 number of subquery

From the chart, we can see if the current GPU database still not
optimized for queries with subquery in it. The query type 1, 5, 7,
8, 11, 16, 22 have a higher amount of subqueries in it, and as the
results, the system is determining these types of this query to be run
on CPU only mode. Therefore, with this result, we can conclude

that if a query has no more than one subquery, it can be run on GPU
but, if it has more than 1, the GPU might be not a correct platform
to run those queries.

4.3.6 number of wildcard

From the chart, we can conclude that usage of wildcard operators on
a query is still not optimized to be run on GPU Co-process database.
This result also strengthens by Figure 15. In this figure, we can
see that there is the least decision made for a query to run on GPU
co-processor if there is a wildcard operator used on those queries.

Figure 15: Number of Decision Value Comparison for Query With Wildcard

4.3.7 number of having

The chart showed the query type 1, 5, 7, 8, 11, 16, 22 are having
a higher number of having attributes, this meaning there might be
not the right choice to run a query with having an operator in it.
However, this situation also can be changed if the query has another
component that strongly optimized on GPU such as a lower number
of columns, joins, or a higher number of aggregations.

4.3.8 number of avg, number of count and number of sum

On Figure 11, we can see that query type 1, 5, 7, 8, 11, 16, 22
have a lower number of sum, but higher number of avg and num-
ber of count. However, the number of avg and number of count
have a minimal number on it. Hence we reveal the whole number
of aggregation, and as we can see on Figure 16, almost all aggre-
gation type query is run faster on GPU, this result confirms the
previous research that says the GPU processing is very powerful on
an aggregation query type.

www.astesj.com 222

http://www.astesj.com


D. Luqman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 214-225 (2020)

Figure 16: Average Attribute Value for Aggregation

Figure 17: Number of Left Join Value Comparison Between CPU and GPU Decision

4.3.9 number of filter

Based on Figure 11, we can see if the GPU can overrun the CPU pro-
cessor on query with a high amount of filter used on those queries,
this proves the GPU SIMD capabilities, as the filtering can be done
simultaneously in a parallel way on GPU devices. With this result,
we can conclude that if we wanted to run a query with filters on
it, GPU co-process could do faster than the CPU only processing.
There is a limitation of the above analysis, query Type 1, 5, 7, 8,
11, 16, 22 and query type 6, 10, 15, 19 are do not cover number
of left joins; therefore we will separate the analysis for left join.
As shown on Figure 17, there is no decision made on CPU when
there is left outer join operation query. However, the dataset we
use in this research still does not have many outer join operator,
which mean this result might be different on another environment
where the outer join operator is very commonly used on the real-life
ad-hoc queries.
With this result, an appearance of The GPU database is suitable for
a simple query with a fewer number of joins and columns selected.

However, the processing speed comparison is significantly higher
for query type, which has aggregation in it and a higher amount of
filters.

Table 6 is a summarized table for fundamental understanding
for an impact of the use of each query function. The Performance
impact have High and medium value; this value is determined by
comparing the amount of each feature on both GPU and CPU. If
the variance is greater than 50% then the value is high, and vice
versa, the value will be medium, and if the variance is lower than
20% then the impact grouped as low. As on this research, there is
no variance under 20% there is no Low impact grouped.

Table 6: Query Attribute Impact Summary

Feature Performance
Impact

Suitable
Platform*

Number Of Joins High GPU
Number Of Left Joins High CPU
Number Of Inner Joins High CPU
Number Of Filter Medium CPU
Number Of Count High GPU
Number Of Sum High GPU
Number Of Min High CPU
Number Of Avg High GPU
Number Of Column High CPU
Number Of Groupby High CPU
Number Of Orderby High CPU
Number Of Having High GPU
Number Of Wildchar High CPU
Number Of Squery Medium CPU

* The Suitable Platform is valid when feature value has high amount, when the value
is low, the suitable Platform result is the opposite.

5 Conclusions & Future Works
In this paper, we have explored the open issues on the GPU database
and introduce a machine learning model to enhance the GPU mem-
ory usage on the system by eliminating unnecessary data processing
on GPU. As on specific queries, CPU processing also still outper-
form the GPU processing speed, this model also can prevent the
system from choosing the processing platform based on the query
type wrongly. On the real-world, this approach can be implemented
by embed the proposed framework into the upper system. As the
OmniSci is a database component which has data related task such
as store the data and process the query then pass the processed data
into the upper layer, hence to use this database, the upper layer also
needed where all the codes and logic happen. In this interface, we
can embed the framework and helps the system to choose the right
execution platform.
The proposed approach works by automatically parses the input
queries, the parsed query then identified by the system to find the
parameters that might affect the GPU processing speed, the system
then put the query information into the machine learning, and as a
result, the system will determine if those input query will be exe-
cuted on GPU or CPU. To test both CPU and GPU performance on
the same system, we use docker as a CPU processing platform, al-

www.astesj.com 223

http://www.astesj.com


D. Luqman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 214-225 (2020)

though, to validate the performance result, we conduct a preliminary
study to check if there is any speed difference between docker Om-
niSci vs Linux OmniSci, and as a result, there is no speed difference
between them. The machine learning model was validated using
cross-validation function within five-folds, and the best result is the
Random Forest algorithm with 95% F1-Score value following by
AdaBoost on 94% and KNN with 93%. However, from the Random
Forest, KNN, and AdaBoost, KNN has the fastest training time,
8.25 times faster than the Random Forest, and 180.5 times faster
than Adaboost. Hence with this result, we are choosing KNN as
the best algorithm for this framework. From the query side, we also
found that usage of filter and subqueries is not affecting the perfor-
mance difference between CPU only processing vs GPU co-process
setup. However, the number of columns on a query is a crucial
performance for optimal processing time on a GPU co-processor
setup. The more column needs to be shown on a query result, the
more challenging for a GPU device to process it.
There are some limitations to this research. First, we are using a
middle tier of a graphics card to test the model. Hence if the same
method tested on a higher-end tier of graphics cards such as tesla
cards, the result might differ. Second, due to OmniSci feature limi-
tation, the GPU data transfer time is not measured on this research.
This leads to limited analysis results as we can only see the total
query processing time of GPU. Third, due to OmniSci limitations,
we unable to identify the data type of each selected column on a
query. This may lead to reduced model accuracy as processing
time required to process textual data, and numerical data may differ.
Forth, the data used for this research is not a real user ad-hoc queries,
which mean the query used in this research may not cover all the
query scenario used by real users.s
As for the future works, this method needs to be tested on a higher-
end tier of graphics cards to see if there are still limitations that
happened on higher-end tier graphics cards. Second, to get a better
insight to do a more detailed analysis, the GPU data transfer time
needs to be measured, by measuring the transfer time we can see
if the I/O bottleneck happens or not. Third, the query parser may
need to be adjusted to calculate the number of numerical columns
and non-numerical column selected. This may increase the accu-
racy of the model. Moreover, this algorithm should be applied to
the real-world data and ad-hoc user query where all query types,
functions all used on it. The researcher is also planning to extend
the work by enhancing the current machine learning model into an
unsupervised learning method, where the system will have an ability
to learn by itself based on inputted user’s query, hence the longer
the system work, the smarter it becomes. Unsupervised learning
also can reduce the time for initial training in the model.

Conflict of Interest The authors declare no conflict of interest.

Acknowledgment We thank Tjeng Wawan Cenggoro from
NVIDIA AI R&D Center Bina Nusantara University for helpful
feedback and discussions.

References
[1] KK Yong, Hong Ong, and Vooi Yap. Gpu sql query accelerator. International

Journal of Information Technology, 22:22, 12 2016.

[2] Sebastian Bre, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and Gunter
Saake. GPU-Accelerated Database Systems: Survey and Open Challenges. In
Abdelkader Hameurlain, Josef Kng, Roland Wagner, Barbara Catania, Gio-
vanna Guerrini, Themis Palpanas, Jaroslav Pokorn, and Athena Vakali, editors,
Transactions on Large-Scale Data- and Knowledge-Centered Systems XV, vol-
ume 8920, pages 1–35. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.
ISBN 978-3-662-45760-3 978-3-662-45761-0.

[3] Andreas Meister, Sebastian Breß, and Gunter Saake. Toward gpu-accelerated
database optimization. Datenbank-Spektrum, 15(2):131–140, Jul 2015.

[4] Peter Bakkum and Kevin Skadron. Accelerating SQL Database Operations on
a GPU with CUDA: Extended Results. page 21.

[5] Iya Arefyeva, David Broneske, Gabriel Campero, Marcus Pinnecke, and Gunter
Saake. Memory management strategies in cpu/gpu database systems: A survey.
In Stanisław Kozielski, Dariusz Mrozek, Paweł Kasprowski, Bożena Małysiak-
Mrozek, and Daniel Kostrzewa, editors, Beyond Databases, Architectures and
Structures. Facing the Challenges of Data Proliferation and Growing Vari-
ety, pages 128–142, Cham, 2018. Springer International Publishing. ISBN
978-3-319-99987-6.

[6] Esraa Shehab, Alsayed Algergawy, and Amany Sarhan. Accelerating relational
database operations using both CPU and GPU co-processor. Computers &

Electrical Engineering, 57:69–80, January 2017.

[7] Jayshree Ghorpade. Gpgpu processing in cuda architecture. Advanced Com-
puting: An International Journal, 3:105–120, 01 2012.

[8] Jun Sui, Chang Xu, S.C. Cheung, Wang Xi, Yanyan Jiang, Chun Cao, Xiaoxing
Ma, and Jian Lu. Hybrid CPUGPU constraint checking: Towards efficient
context consistency. Information and Software Technology, 74:230–242, June
2016.

[9] David B. Kirk and Wen mei W. Hwu. Programming Massively Parallel Pro-
cessors: A Hands-on Approach. Morgan Kaufmann, 2012. ISBN 0124159923.

[10] Chris Gregg and Kim Hazelwood. Where is the data? Why you cannot debate
CPU vs. GPU performance without the answer. In (IEEE ISPASS) IEEE IN-
TERNATIONAL SYMPOSIUM ON PERFORMANCE ANALYSIS OF SYSTEMS
AND SOFTWARE, pages 134–144, Austin, TX, USA, April 2011. IEEE. ISBN
978-1-61284-367-4.

[11] OmniSci Technical White Paper.

[12] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of machine learning research, 12(Oct):2825–2830, 2011.

[13] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[14] Abraham J Wyner, Matthew Olson, Justin Bleich, and David Mease. Explain-
ing the success of adaboost and random forests as interpolating classifiers. The
Journal of Machine Learning Research, 18(1):1558–1590, 2017.

[15] Vivek Narayanan, Ishan Arora, and Arjun Bhatia. Fast and Accurate Sentiment
Classification Using an Enhanced Naive Bayes Model. In Hujun Yin, Ke Tang,
Yang Gao, Frank Klawonn, Minho Lee, Thomas Weise, Bin Li, and Xin Yao,
editors, Intelligent Data Engineering and Automated Learning IDEAL 2013,
pages 194–201. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-41278-3.

[16] Paraskevas Tsangaratos and Ioanna Ilia. Comparison of a logistic regression
and naı̈ve bayes classifier in landslide susceptibility assessments: The influence
of models complexity and training dataset size. Catena, 145:164–179, 2016.

[17] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied
logistic regression, volume 398. John Wiley & Sons, 2013.

[18] Jesus Maillo, Sergio Ramı́rez, Isaac Triguero, and Francisco Herrera. knn-is:
An iterative spark-based design of the k-nearest neighbors classifier for big
data. Knowledge-Based Systems, 117:3–15, 2017.

[19] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boost-
ing. Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612,
1999.

[20] TPC BenchmarkTM H Standard Specification Revision 2.18.0.

[21] Naga K. Govindaraju and Dinesh Manocha. Efficient relational database man-
agement using graphics processors. In Proceedings of the 1st international
workshop on Data management on new hardware - DAMON ’05, page 1,
Baltimore, Maryland, 2005. ACM Press.

www.astesj.com 224

http://www.astesj.com


D. Luqman et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 214-225 (2020)

[22] Kevin Angstadt and Ed Harcourt. A virtual machine model for accelerating
relational database joins using a general purpose gpu. In Proceedings of the
Symposium on High Performance Computing, HPC ’15, pages 127–134, San
Diego, CA, USA, 2015. Society for Computer Simulation International. ISBN

978-1-5108-0101-1.

[23] Yue-Shan Chang, Ruey-Kai Sheu, Shyan-Ming Yuan, and Jyn-Jie Hsu. Scaling
database performance on GPUs. Information Systems Frontiers, 14(4):909–924,
September 2012.

www.astesj.com 225

http://www.astesj.com

	 Introduction
	 Background & Related Works
	GPU Architecture
	OmniSci
	Scikit-learn
	Random Forest
	NaÃ¯ve Bayes
	Logistic Regression
	K-Nearest Neighbor
	Adaptive Boosting

	TPC-H Dataset & Query set
	Related Works

	Proposed framework
	Query parser
	Machine Learning Model Methodology
	Generate Training Data
	Machine learning model Training

	Experimental Evaluation
	Experimental Setup
	Experimental Results
	Experimental Analysis
	number_of_groupby
	number_of_column
	number_of_orderby
	number_of_joins
	number_of_subquery
	number_of_wildcard
	number_of_having
	number_of_avg, number_of_count and number_of_sum
	number_of_filter


	Conclusions & Future Works

