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 This paper is an extension of work originally presented in 2019 Third World Conference 
on Smart Trends in Systems Security and Sustainability (WorldS4) [1]. Author describes 
two new methods:  reactive protection method (without delay after detecting an attack), 
which consists in virtualizing the execution environment of  supercomputers processes if 
the calculated state descriptor falls into the “risk” zone and based on monitoring requests 
for allocation of resources in accordance with the rules of the security policy in the form of 
temporal modal structures CTL logic and method for reconfiguring the runtime 
environment of the supercomputers taking into account the mobility requirements (built-in 
computations) based on the application of the trajectories of computing state security 
descriptors on Kripke structures. The methods develop a number of provisions of the theory 
of information security, based on the new concept of  Information Security of stationary and 
onboard supercomputer computing systems as a calculated convolution of the states of the 
execution environment (hardware or virtual) and system software. 
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1. Introduction 
Widely used computers of various classes are essentially systems 
with von Neumann architecture, and the program execution model 
is a universal Turing machine with a tape of calculations, left and 
right shifts. 

The performance criterion in the classical Popek - Goldberg   
theory for Turing machines is ambiguous. In the original work it 
was formulated twice [1]: 

a) “a statistically prevailing subset of virtual processor 
instructions must be executed directly by the physical 
processor, without the intervention of a virtual machine 
monitor”; 

b) “all harmless instructions are executed directly by the 
physical processor, without the intervention of a virtual 
machine monitor”. 

These conditions are not identical. They are identical only if most 
of the instructions executed by the virtual machine are harmless, 
which cannot be guaranteed in the general case. In proving 
sufficient conditions for constructing a virtual machine monitor, 
Popek and Goldberg use the second definition. 

Since the 70-80s, electronic technology has undergone significant 
changes. With the advent and development of hardware 
virtualization successfully implemented [2, 3]: 

• SMEP (Supervisor Mode Execution Prevention). Prevention 
of code execution in supervisor mode) is a technology developed 
by Intel to protect your computer from hacker attacks and other 
threats that use the so-called “supervisor mode”. 

• SMAP (Supervisor Mode Access Prevention). It prevents 
writing to memory and reading code from it that unauthorized uses 
supervisor mode, while SMEP only prevents the execution of this 
code. 

Supervisor mode is the preferred processor mode used by the 
kernel of the operating system. This mode is also called kernel 
mode. The opposite is the user mode in which user applications 
work [4, 5]. 

For SMEP to work, in addition to the corresponding processor, a 
suitable operating system is required. However, SMEP, although 
significantly complicating the task of hacking the system, still does 
not guarantee its complete protection. Therefore, later (in 
Broadwell architecture processors), in order to increase security 
and protect against vulnerabilities that were not resolved by 
SMEP, SMAP technology was additionally introduced [6, 7]. 

Direct execution of guest instructions whose encodings correspond 
to the privileged instructions of the physical processor on the host 
is impossible, since they certainly cause a trap to be thrown when 
executed in the user mode in which virtual machines are running. 
For example, the encodings of new secure instructions for Intel-64 
architecture usually correspond to invalid encodings on processors 
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of previous generations of this architecture. That is, new 
instructions are usually privileged on processors of previous 
generations, because they cause exceptions [8, 9]. 

Many hardware processors and various research groups are 
interested in supporting hardware transactional memory [10]. IBM 
was the first to develop a system with transactional memory 
hardware support in IBM Blue Gene [11] supercomputers and z-
Enterprise EC12 servers [12]. AMD announced the development 
of the Advanced Synchronization Facility (ASF) extension [13], 
which is a variant of the hardware transactional memory for the 
Intel 64 architecture. Sun Microsystems has developed a processor 
code-named ROCK [14], but this project was closed. The Intel® 
Transactional Synchronization Extensions (Intel® TSX) 
instruction set [15], consisting of Intel® Hardware Lock Elision 
(Intel® HLE) and Intel® Restricted Transactional Memory 
(Intel® RTM) extensions, has been added to the sixth generation 
Intel Core processors [16]. 

There are also many software implementations of transactional 
memory ideas that do not require special support from the 
hardware. However, the study of existing solutions shows their 
extremely low productivity [17]. 

Moreover, with the advent of hardware transactional memory, the 
Intel RTM extension allows you to perform nested transactions, 
but at the same time, all internal XBEGIN and  XEND pairs should 
not create new save points, that is, rollback of a nested transaction 
leads to a rollback of the entire transaction chain. The introduction 
of transactional memory extensions implies that the semantics of 
all instructions working with memory, as well as instructions 
affecting the state of the processor that are not stored in savepoints, 
must be changed in order to support the new execution mode. 

In order to avoid critical errors, it is necessary to implement a 
multi-level “sandbox” in which the agents of the hypervisor 
function and monitor the execution of processor processing 
instructions at all levels of the hierarchy. 

2. New actual requirements for information security 

The Based on the Theorem on a protected hypervisor OS, 
formulated and proved by Zegzhda, two requirements can be 
formulated [18]: 

a) Requirement  1 for virtualization of protected resources: 
in a supercomputer computing system, all operations of 
application OS applications on protected resources must 
be carried out by virtualizing the resource in a virtual 
application environment; 

b) Access control requirement 2: in a supercomputer 
computing system, all operations of application OS 
applications on protected resources must be controlled by 
hypervisor protection tools. 

Further developing the idea, one can formulate theoretical 
premises for the solvability of the supervenience problem: all 
possible operating modes of the processor should be considered - 
the real hardware mode, the protected hardware mode, the real 
virtual machine mode, the protected virtual machine mode. This 
means that the multi-domain protected hypervisor must ensure the 
correct execution (software using the interpreter or hardware) of 
all the instructions of the guest system, as well as guarantee 
isolation of virtual machines. At the same time, all safe instructions 

common to the guest and host systems are executed directly by the 
physical processor (privileged modes). 

The virtual machine monitor operates in mode 0 (in a separate 
domain), therefore, any interpretation errors, memory leaks, 
incorrect pointers, addressing errors of data code segments, 
program codes, and page addressing errors do not lead to an 
abnormal termination. 

The solution to the problem of providing a modified instruction 
mnemonics for processors of different generations in order to 
support hardware transactional memory is to prevent the direct 
execution of these instructions in a virtual environment - they must 
be simulated programmatically on virtual processors (unprivileged 
modes). 

Taking into account the development of the element design base 
and hardware technologies, we can formulate new requirements 
for information protection [18]: 

a) Protective equipment should control all informational 
interactions without exception; 

b) Security features should be developed independently of 
application programs and rely on an abstract 
representation of information interactions; 

c) Protective equipment should control information 
interactions based on clearly defined rules that make up 
the formal model; 

d) A mechanism should be provided to assess the safety of 
both the current state of the system and predict the safety 
of future states. 

The principle of homogeneity of memory is the main postulate of 
von Neumann architecture. This means that for supercomputer 
systems in which record high performance is important, a 
fundamentally new architecture is required. Sharing the bus for 
program memory and data memory leads to a bottleneck in von 
Neumann's architecture, namely limiting the bandwidth between 
the processor and memory compared to the amount of memory. 
Due to the fact that program memory and data memory cannot be 
accessed at the same time, the processor-memory channel 
bandwidth and memory speed significantly limit the processor 
speed. Storage of data and commands in different places solves the 
problem of the “memory wall” on highly loaded computational 
problems [1]. 

3. Fundamental scientific  problem 

Over the past 25 years, OS security tools (for example, SMEP, 
SMAP, PaX, ExecShield, ASLR, DEP, Flusk, Patchguard and etc.) 
have come a long way, but failed to provide protection against 
current threats. The fundamental problem for this field of 
knowledge (computer science and computer technology) is known 
as the problem of supervenience: taking into account the high 
asynchrony and multi-connectedness of processes performed with 
supercomputer systems, the huge amount of processed data 
(Petabytes of data) there is no logical correspondence between 
changes in the programs of the runtime environment of 
supercomputers and changes hardware components in terms of 
implementing an isolated environment and monitoring security 
policy rules. For the chosen class of speakers, the solution to the 
fundamental problem is the development of the theoretical, 
scientific, practical and organizational and technical foundations 
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of reactive protection of stationary and onboard supercomputers, 
which consists in virtualizing the execution environment of the 
processes of applied and system software, in the interest of 
increasing their security and reliability, as well as substantiation of 
the principles for constructing mechanisms for implementing such 
protection  for  next generation automated systems. 

The main contradiction for this class of computing systems is 
the ratio of energy intensity, speed and security. With the 
introduction of additional functional elements using the example 
of a hypervisor and a transactional memory controller, the 
characteristics of performance and energy consumption change. 
Concurrently executed queries conflict when they read and modify 
a certain database element, and the resulting conflict can lead to an 
erroneous result that could not be obtained if these queries were 
executed sequentially. Transactional memory provides a 
lightweight transaction mechanism for control flows running in a 
shared address space. It guarantees atomicity and isolation of 
parallel tasks [10, 11]. 

Atomicity ensures that changes in the state of a program made 
by code that is executed in a transaction are invisible from the point 
of view of other transactions executed in parallel [12]. 

Isolation ensures that concurrent tasks do not affect the 
outcome of the transaction, so that the transaction produces the 
same result as if no other task was being performed. Transactions 
provide the basis for constructing parallel abstractions, which are 
building blocks that can be combined without knowing their 
internal details, much like procedures and objects provide suitable 
abstractions for composing sequential code [13]. 

Integration with hardware transactional memory requires 
solving 5 main problems of computer science: limited application, 
debugging complexity, process synchronization and exclusion of 
access, resource control in conditions of parallelism and high 
asynchronous processes, emulation of different types of processors 
[14]. For multi-domain protected systems, trust is ensured by the 
following factors: “Transparency” – invisibility for the 
application OS, working directly with equipment, the amount of 
hypervisor code is small compared to the OS and applications, 
therefore it is easier to ensure that there are no vulnerabilities, all 
actions and events inside the virtualized systems are reversible - 
attacks can be quickly neutralized by rollback or reset.  

Monitoring the exchange of a virtualized system with the 
external environment allows you to abandon a thorough study of 
the virtualized system itself. 

Limitations associated with loss of productivity are extremely 
low, due to the record high performance characteristics of 
supercomputers. 

4. Research methodology: new concepts and definitions 

Information security is based on access control to objects of 
managing and guest OS, these objects can be attributed to different 
levels of protection. Examples of objects are directories, files, 
network sockets, registers, and interrupt handlers and some 
special-use memory areas by operating systems. The traditional 
access control approach involves the use of access attributes 
(rights) in requests to these objects for performing certain 
operations on them. If the verification of such attributes is 
successful, then access to the object at its security level is allowed, 
then the requested operation is performed on it. With this approach, 

it is technically possible to intercept a request and use its access 
rights in a substitute request aimed at malicious impact. 

New concepts and definitions are introduced in the work: 
supersecurity, information security of stationary and onboard 
supercomputer computing systems, a descriptor for assessing the 
security of system states. 

Supersecurity is a property of a supercomputer system based 
on self-configuration and self-control. By using the high-
performance reserves of these supercomputers, you can create a 
hypervisor that provides reliable protection against attacks 
associated with high asynchronous processes of the 
supercomputers and the ability to perform false transactions as a 
result of destabilizing external influences and accidental hardware 
failures. 

The information security of stationary and onboard 
supercomputer computing systems is formalized as “a calculated 
convolution of the states of the execution environment (hardware 
or virtual) and system software”. 

The descriptor for assessing the security of system states is a 
convolution that is “calculated” based on the attributes of ongoing 
processes that are implemented at the level of microprocessor 
cores and the interworking environment. All processes have their 
own descriptors calculated and methods for their processing — 
get, set, delete and etc. are specified. 

5. New Safe Operations Model 

The safe operations model includes 3 components: commands, 
data and timestamps. The space of operations in calculating the 
descriptors is a variety of Kripke's “worlds”. Each world of 
Kripke is assigned its own digital double and form a knowledge 
base for machine learning. The class of operations that are 
characteristic of supercomputers is the operations of 
multiplication and division in the form of successive shifts in the 
tagged structures of packets of requests from clients, guest and 
control OSs. 

From the point of view of category theory, we work with the 
Group object - the category group. Objects are a group in the form 
of a residue ring, morphisms are mappings preserving the group 
structure. Category theory studies concepts through how these 
concepts interact with each other. We forget how these concepts 
are implemented, and we only look at the properties of 
connections, abstracting from the type of processor architecture 
(scalar, vector, MIPS, classic x86_64, tile architecture like Tilera, 
mass-multithread, hybrid and etc.), processor capacity (32-bit, 64-
bit, 128-bit and etc.).  

A type refers to a class type when a type provides certain 
operations with a specific expected behavior. For example, the tau 
type may belong to the Functor class if it has a specific behavior 
similar to a collection: 

a) The type tau is parameterized over another type, which you 
should consider as the type of the collection element. The 
type of the complete collection is then similar to 
Scheme_type = {Int, String, Bool and etc.}; 

b) If you contain integers, strings, or Booleans, respectively. 
If the element type is unknown, it is written as a parameter 
of type a. Examples include lists (zero or more elements), 
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type “Unknown” (zero or one element of type a), sets of 
elements of type a, arrays of elements of type a, all kinds 
of search trees containing values of type a, etc. 

2. Another property that tau must satisfy is that if you have a 
function like a –> b (function on elements), then you should be 
able to use this function and product for a related function over 
collections. You do this with the fmap operator, which is shared 
by each type of Functor class. The operator is actually overloaded, 
so if you have an even function with type Int -> Bool, then 

Definition 1. A functor is a kind of collection (a set of 
configurations for recursively computing a hash), for which, if 
you are provided with a function on elements, fmap will return the 
function in the collections. 

Definition 2. The context of the operation is a set of tuples 
consisting of logical variables. A collection of collections is a 
conjunction of atomic predicates defined on many tuples. 

I appeal to the theory of functional programming, we will define 
a functor for comparing is_equal of two hash values with support 
for different class type templates : 

class is_equal  

{ private: scheme_type v; public:  

is_equal(scheme_type value) : v(value) {}  

bool operator () (scheme_type x) 

 { return x == this –>v; } };  

scheme_type count_zero(const std::vector< scheme_type>& data)  

{ return std::count_if(data.begin(), data.end(), is_equal(0)); },  

scheme_type – data type (int, uint, float, double and etc.). 

It is not possible to implement a complete hash function that is 
valid for all types. You cannot just convert an object to raw 
memory and hash bytes. 

In addition, this idea fails due to padding technology when 
creating an index for each record. Because of this, it is necessary 
to take into account the context of a particular operation. To 
implement a universal convolution calculation algorithm, it is 
necessary to take into account different processor operating 
modes and the principle of type conversion and alignment of 
orders. We need to normalize the presentation of metadata 
operations in terms of aligning the boundaries of digital structures.  

The basic principles of the algebraic structure on which the whole 
theory and methodology are based: The principle of Soft power, 
Self-organization, Supersecurity. The descriptors of the state 
safety assessment function are calculated on the set, which is a 
multiplicative group of the residue ring modulo 8. 

 Classical propositional logic is a “black and white” model; 
utterances are static, unchanged in time. In the ordinary 
propositional logic, sentences that do not explicitly or implicitly 
contain properties whose truth changes with time do not 

adequately formalize. We want to study and verify systems that 
evolve over time. 

 The proposed approach to the description of operations is based 
on the classification of risks of information security breaches and 
analysis of the context of the implementation of outgoing 
directives, through which data can be transmitted bypassing the 
requirements of the adopted security policy, which leads to a 
violation of the security of computing nodes resources. 

  The carriers of the analyzed operations are the sets of objects and 
access subjects to which various security levels (labels) are 
assigned. To control the security level of operations generating 
new entities, for example, operations, we will use the sign of 
immutability of the object generating the access entity.     

6. Theoretical calculations of the reactive protection 
method 

6.1.  Algebra of operations with objects processed on 
supercomputers 

For supercomputers the sign of immutability cannot be a constant 
indefinitely: simultaneously, a huge number of processes are 
launched. Temporal logic is needed to describe the states of 
subjects and access objects. We need a model of threats to the 
integrity of the execution environment of IC processes, in which 
instead of the classic link “subject, object, predicate” a new 
paradigm of writing security policy rules is implemented and new 
entities are defined - “subject”, “object” and “descriptor for 
assessing state security”: for each i-th threat, the value of the state 
security assessment function is calculated, the arguments of which 
are given in the form of a conjunction of predicates of eight logical 
variables, the subjects are the guest and control OS, and the 
objects are the components of the hype Sizer and transactional 
memory controller. 

Temporal logic of branching time consider possible calculations 
(paths on a tree) - trajectories on a scan of the Kripke structures. 

The Kripke structure is a transition system with labeled states and 
unlabeled transitions. Sweep defines infinite chains of states - 
possible calculations. Each state can have not one, but many 
chains - continuations, and is the root of its tree of stories 
(calculations).   

The structure of Kripke M is the five M = (S, S0, R, L, AF). 

 In our case [19, 20], AF = {context_id | Dom_id | S | Ord | 
Context_type | TCU | TR}. Let an arbitrary formula Fi of CTL 
logic and a Kripke structure M. be given. For each subformula ψi 
of formula Fi, the marking algorithm performs the following steps: 

a) We proceed to the construction of the numbering of the 
programs. Each operator is uniquely characterized by a 
pair - type (name) and a list of parameters, including 
operator labels, variables, functional and logical 
expressions. We only need to encode each of the possible 
values of the operator parameters. Labels of operators do 
not need special coding, since they are natural numbers; 

b) Since each program calculates a certain function, the 
introduced Gödel numbering generates some numbering 
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of the functions. On the one hand, this numbering is not 
one-to-one, since we code the program syntax, and any 
syntactically different programs have different codes. On 
the other hand, every computable function is computed by 
an infinite class of programs. 

However, such numbering has fundamental and practically useful 
properties. Let A be the countable class of functions for assessing 
the safety of supercomputers states: A = {f1, f2 ..., fn}. 

Even though each of the fi functions is computable by some 
algorithm, this does not guarantee the existence of a single 
algorithm for computing all functions. We call a class A 
uniformly enumerable if there exists a two-place computable 
function F such that the class A consists exactly of functions of 
the form F (n, x) for some n from the set N. 

We call the function a universal function of class A. nF (n, x) is 
the uniform numbering of class A. 

Our main goal is to show that the numbering of the computable 
functions that we have determined is uniform with respect to other 
numbers and that by the number of the computable function in the 
given uniform numbering we can effectively find its number. 
Using the function for assessing the safety of SC states, we can 
subsequently accurately calculate the numbering states on the 
whole variety of Kripke structures, and then identify the classes 
of safe and dangerous operations. 

Lemma  1. If A is an effective set, then for any effective set B: AB 
is effective, as well as any Cartesian product A1, A2 ... An of 
effective sets is effective, the set A *, A * = An, of all finite 
sequences of elements of A is effectively countable. 

The proof of the statement is trivial and follows from the main 
theorem of arithmetic. We formulate and prove a theorem on the 
enumerability of the class of operations. 

Theorem 1. Class A operations on the residue ring modulo m are 
uniformly enumerable, and the hash value calculation function F 
is a universal function of class A only if the number of hierarchy 
(nesting) levels is 8. 

       Evidence.  In fact, operations are performed on data tuples, 
which are a set of i-th elements of an allergic structure (bit, atomic 
predicate, predicate conjunction, any set of predicative and 
functional symbols, vector variable, scalar, real number) of any 
dimension m (regardless of encodings and positional number 
system). We work with matrices, where the number of rows is 
equal to the number of nesting (hierarchies) of the computation 
space N, and the i-th column is an element of a structure of 
dimension m in the residue ring Z (m), i = 1 ... n. Using the 
Kornfeld formula to assess the confidence probability of security, 
each factor PΛi is a geometric decreasing progression [21].The 
most suitable values are 0.1 and 0. (1). Criteria of temporal logic 
(lack of new patterns over time) satisfies only the solution N = 8. 

Moreover, nF (n, x) is an effective numbering of class A, since 
with a change in the dimension of the parameter n the regular 
relations between the elements of the set do not change, new 
properties of objects of our algebraic structure do not appear. 

The main result of theoretical calculations is that we have proved 
universality and uniformity for given classes of operations of 
functional transformations. Regardless of the dimension of the 
input parameters, the nature of the relationships between the types, 
the type of operands, the type of processor architecture, the 
operation scheme and implementation of the algorithms, we have 
found such a number of hierarchy levels (N = 8) that there is an 
invariant in the algebraic system. If we evaluate the time 
parameters, this regularity property is preserved indefinitely 
(from 0 to + ∞). 

6.2. Integration of the algebraic structure with architectural 
modifications of supercomputers 

  We proceed directly to the construction of a weighted 
multigraph-model for performing operations of supercomputers, 
which is a tree. The starting point is the top of the tree structure, 
describes a transactional memory controller that interacts directly 
with the hypervisor verifier module. The controller in conjunction 
with the verifier implements security mechanisms: an isolated 
multi-domain address space is represented as non-overlapping 
memory areas, each of which corresponds to a vertex of the graph 
lying in the second level of the root structure. The vertices of the 
third level correspond to the subsets of the components that make 
up the hypervisor. Since we have 8 levels of the request 
processing hierarchy, the block is divided into eight subsets of 
level details of possible states indicated by S8, ... , S1. 

 The last level of the root structure of a multigraph is represented 
by agents of the hypervisor (graph leaves) through which 
communication with the external environment and all possible 
attacks on the supercomputers occur. Advances to each next level 
are a higher level of abstraction of the description of request 
processing, a transition from the lower level of the specification 
to the upper. Each state can have not one, but many chains - 
continuations, and is the root of its tree of stories (calculations). 

  The reactive protection method should include not only 
deductive algorithms for calculating descriptors for assessing the 
security of states and identifying threats based on marking the 
states of fulfillment of supercomputers requests, but also 
implementing inductive learning based on self-diagnostics and 
explanatory decision-making mechanisms based on the concept 
of machine learning. We calculate such impacts that ensure the 
safe functioning of supercomputers, and block dangerous and 
suspicious ones. 

7. Method for reconfiguring the runtime environment of 
the supercomputers 

The hash is calculated recursively for all processes (subprocesses) 
and an effective value is obtained for the regular measurement of 
the query path (based on past experience, pre-training). In the 
process, the system is being trained. Each new configuration is 
classified and recognized in the future based on the characteristic 
set of markers. Coding of identification features - a set or 
conjunction of simple predicates on which the formula Fi is given 
[20]. The subformula ψ is a recursive call of the same algorithmic 
procedure, only with a different set of characteristic features and 
properties. 
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6 configurations of “colors” of the tree of computation histories. 
We select two colors: Blue - the predicate of the presence of the 
transient process, Red - the predicate of changing the type of the 
context of the operations performed. 

a) configuration allows you to track changes in local states 
at the same hierarchy level and identify the launch of 
child processes as part of the base process with the 
markers of interest to us; 

b) configuration analyzes the entire state tree based on the 
selected marker (the mode of a full run of calculations in 
case of restarting the task). The story tree is being rebuilt; 

c) analyzes the change in two parameters in the near 
branches of the tree (local scale, in one domain); 

d) configuration to track a single (irregular) parameter 
change in the far branches of the computation tree; 

e) configuration regularly repeated changes of the selected 
identification parameter along the entire trajectory of 
movement; 

f)  configuration studies the branches of the tree; over time, 
in the future, changes in two parameters may appear on 
different trajectories. At the same time, processes can be 
started in different domains.        

Sets of configurations adapted to different contexts of operations 
execution, in the form of matrices of access rules, are stored by 
agents of the hypervisor monitoring information security events 
in the memory of the transactional memory controller. In the 
process of training, the rules of safety rules are updated and 
adjusted. The system dynamically evolves and modifies sets of 
modal rules based on CTL temporal logic grammars for 
responding to signaling events. Identification criteria for threats 
in the semantic interpretation of a set of atomic predicates. 

Thus, the hypervisor in conjunction with the transactional 
memory controller is a multi-agent system with machine learning. 

There are deductive checks that correspond to the principles of 
classical logic, but we are using inductive algorithms with 
metadata about the operation of system components at different 
levels of the hierarchy, where, along with checking the integrity 
in the form of changing the values of the calculated hash functions 
for each process, access control is implemented in the form 
Labeling allowed transients when switching between security 
domains and thread migrations.  The history of various system 
configurations is kept, new events are recognized due to a variant 
new set of predicates and the values of their trajectories on Kripke 
structures. 

8. Discussion 

8.1. Optimization, normalization of descriptor calculation 

 For optimization and normalization, it is necessary to specify an 
exactly safe data volume. The axiomatic of our algebraic 
structure are as  follows: 

a) Multiplication and division operations are specified (cyclic 
shifts to the right or left); 

b) A lot of descriptor calculations is a residue ring modulo m 
= 8; 

c) The ring must be symmetrical with respect to the 
performance of the operations of multiplication and 
division; 

d) A request for any tap of a processor with a classic von 
Neumann architecture is a combined tagged structure in 
which a data segment and a program code segment are 
stored in the same RAM sections. In this case, the L-
operand for the recursive calculation of ψi is stored in the 
data section, the R-operand for the recursive calculation of 
ψi is stored in the code section. 

The principle of supervenience is the absence of differences of 
one kind in the absence of differences of another type: the absence 
of differences in the set of process descriptors in the absence of 
changes in the configuration of software and hardware agents. 
There is a one-to-one logical correspondence between a change in 
the set of a vector variable stored in the hypervisor generative 
tables, a map of transactional memory states (hardware level), and 
a hash function value (software level). In the process of passing 
the request, the key line does not change normally. If it changes, 
then it means that the route for passing the request by a third-party 
agent is being modified. 

 A-property – the identity of the values of the security assessment 
descriptors for the i-th process at the n-level of the hierarchy 
(running programs at the OS level, each process is identified by a 
hash value, formalized as a hash function value). 

 B-property – configuration of software and hardware 
components (formalized as a set of matrices in the form of 8 16-
bit key lines, based on which the value of the function is 
calculated). 

8.2. The solvability condition for the supervenience problem for 
supercomputer systems 

In this case, one must take into account the upper or lower case of 
addresses (a segment of a data code or a command code, a 
combined format for representing the structure in RAM). Then the 
amount of precisely safe calculations doubles and you need to 
introduce an additional 2 * 4 = 8 register fields in the form of 
significant bits of the n-dimensional vector Ψ (n) = 8 to control 
the addressing and offset boundaries in the pipeline of processed 
requests and prevent the execution of “false transactions” ". Thus, 
the dimension of the control parameter k is 8. In this case, the bits 
(upper and lower registers) of the pointer to the RAM memory 
cells are not mixed. 

If this condition is not fulfilled for the comparison functor, then 
the boundaries of the data segment and code are violated, the 
descriptor is recursively calculated: for N < 8, empty bits remain 
(you can write zeros or junk data in them), and normalize the 
processed data for N > 8 (BDC - format and type conversion of 
operands) is not possible. 

To get this type of representation of a data set in the form of tuples 
of n-logical variables, the minimum set (basis) is 8. When the 
number of iterations is a multiple of 8, we increase the amount of 
data of recursive calculations, but the effects and patterns do not 
change. With a decrease in the number of iterations (less than 8 
levels of the query processing hierarchy), automatic alignment of 
the processed data in the BDC format leads to the fact that 
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individual bits or groups of bits remain uninitialized, which 
allows dangerous shifts in the supercomputers. 

The optimization of descriptor calculations is due to eight interval 
constraints in the processing cycle to obtain a productive sample, 
using only eight significant bits (rather than infinitely large 
numbers) for storing and processing the results. Based on the 
foregoing, we formulated the solvability condition for the 
fundamental problem of establishing logical correspondence 
(supervenience) of the program execution process on the 
supercomputer, by changing the state of the hypervisor 
components and supercomputers hardware: the number of levels 
of the request processing hierarchy by the hypervisor N in 
interaction with the transactional memory controller should be 
eight. 

Solvability condition. The number of levels of the request 
processing hierarchy by the hypervisor N in interaction with the 
transactional memory controller should be eight. 

A change in the states of processes at the upper level leads to a 
coordinated change in states at the lower level; there is a similarity 
relation. When using two rings of protection (N = 2) and in the 
absence of physically separated storage of programs and data, the 
process can gain access to the “alien” segment and increase 
privilege levels. 

9. Results  

Development, taking into accounts the specifics of 
supercomputers, of a fundamentally new technological solution 
creating an isolated program execution environment in the form 
of an 8-level sandbox with the implementation of control 
mechanisms both at the level of hypervisors and at the level of 
transactional memory controllers. Thus, an important scientific 
and technical problem has been solved in the field of creating 
information security tools for a new class of systems - stationary 
and on-board supercomputers. All the means of protecting 
information that existed today were the hardware and software 
components of the protected system itself, without integration 
with hardware transactional memory and the introduction of 
multi-level control, it was impossible to solve the problem of 
detecting and identifying various types of threats at all levels of 
the hierarchy of query execution. In the course of experimental 
studies, new scientific results were obtained that confirm the 
efficiency and minimal performance loss of applying hardware 
virtualization technology in the form of a multi-level “sandbox” 
for promising supercomputers compared to using traditional 
clusters.  

Since it is impossible to control the operation of all equipment, 
but only to monitor the execution of requests at the level of the 
components of the hypervisor and the controller of transactional 
memory, during the research, the maximum level of functioning 
of information protection agents was found - S8. With this 
configuration, when the number of hierarchy levels is N = 8, the 
execution of context-sensitive operations becomes quasi-
determined with a confidence probability of approximately 0.9. 

The threshold for performance loss when using the verification 
complex is less than 6-7%. The effectiveness of the developed 
security system was assessed based on the use of various security 

tools (used to protect clusters and mainframes) and analysis of the 
number of successful recognitions and errors. 

 The following results of experimental studies are obtained: 

a) with the number of training samples n > = 86, stable 
detection with critically minimal errors of the 1st and 
2nd kind is ensured; 

b) only 8 clusters are enough for effective detection of 
malicious code, which significantly reduces the cost of 
implementing a software and hardware solution. Each 
cluster is bound to a security domain. Their number is 
also 8. 

Thus, an unambiguous correspondence has been achieved 
between the number of hierarchy levels and the number of 
protection domains and the number of countable clusters tied to a 
certain “sandbox” level. To ensure the requirements of the 
international standard ISO 5725 for the convergence and 
reproducibility of measurement data, the experiments were 
performed in a series of 5 repeated experiments for 14 days until 
the observed data were stabilized. 

10. Conclusion 

a) The theorem on the uniform enumerability of functions for 
assessing the safety of states is proved. In this case, the 
means of protection of stationary and onboard 
supercomputers are considered as an object of research for 
the first time; 

b) The solvability condition is formulated, as a consequence 
of the theorem on the uniform enumerability of functions, 
the problems of establishing the logical correspondence 
(supervenience) of the program execution process on a 
supercomputer, by changing the states of the components 
of the hypervisor and equipment; 

c) A reactive protection method has been developed (without 
delay after detecting an attack), which consists in 
virtualizing the execution environment of supercomputers  
processes if the calculated state descriptor falls into the 
“risk” zone and based on monitoring requests for allocation 
of resources in accordance with the rules of the security 
policy in the form of temporal modal structures CTL logic; 

d) A method has been developed for reconfiguring the 
runtime environment of supercomputers taking into 
account the mobility requirements (built-in computations) 
based on the application of the trajectories of computing 
state security descriptors on Kripke structures; 

e) It is proposed to use a model of threats to the integrity of 
the execution environment of supercomputers processes, in 
which instead of the classic link “subject, object, predicate” 
a new paradigm of writing security policy rules is 
implemented and new entities are defined - “subject”, 
“object” and “descriptor for assessing state security” : for 
each i-th threat the value of the state security assessment 
function is calculated, the arguments of which are given in 
the form of a conjunction of predicates of eight logical 
variables, the subjects are the guest and operating systems, 
the objects are components of the hypervisor and 
transactional memory controller; 
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f) A safe operation model has been developed that considers, 
from the standpoint of “integrity” of the runtime 
environment, both supercomputers hardware at the 
microprocessor level and system software, describing its 
processes in the form of decomposition into an 8-level 
hierarchical structure: each process privilege level 
uniquely corresponds to a domain number protection and 
operation mode of the microprocessor.  
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