

www.astesj.com 291

Based on Reconfiguring the Supercomputers Runtime Environment New Security Methods

Andrey Molyakov*

Institute of information technologies and cybersecurity, Russian State University for the Humanities, Moscow, 117534, Russia

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 09 April, 2020
Accepted: 18 May, 2020
Online: 29 May, 2020

 This paper is an extension of work originally presented in 2019 Third World Conference
on Smart Trends in Systems Security and Sustainability (WorldS4) [1]. Author describes
two new methods: reactive protection method (without delay after detecting an attack),
which consists in virtualizing the execution environment of supercomputers processes if
the calculated state descriptor falls into the “risk” zone and based on monitoring requests
for allocation of resources in accordance with the rules of the security policy in the form of
temporal modal structures CTL logic and method for reconfiguring the runtime
environment of the supercomputers taking into account the mobility requirements (built-in
computations) based on the application of the trajectories of computing state security
descriptors on Kripke structures. The methods develop a number of provisions of the theory
of information security, based on the new concept of Information Security of stationary and
onboard supercomputer computing systems as a calculated convolution of the states of the
execution environment (hardware or virtual) and system software.

Keywords:
Kripke structures
Sandbox
Stationary and on-board
Supercomputer systems
CTL logic

1. Introduction
Widely used computers of various classes are essentially systems
with von Neumann architecture, and the program execution model
is a universal Turing machine with a tape of calculations, left and
right shifts.

The performance criterion in the classical Popek - Goldberg
theory for Turing machines is ambiguous. In the original work it
was formulated twice [1]:

a) “a statistically prevailing subset of virtual processor
instructions must be executed directly by the physical
processor, without the intervention of a virtual machine
monitor”;

b) “all harmless instructions are executed directly by the
physical processor, without the intervention of a virtual
machine monitor”.

These conditions are not identical. They are identical only if most
of the instructions executed by the virtual machine are harmless,
which cannot be guaranteed in the general case. In proving
sufficient conditions for constructing a virtual machine monitor,
Popek and Goldberg use the second definition.

Since the 70-80s, electronic technology has undergone significant
changes. With the advent and development of hardware
virtualization successfully implemented [2, 3]:

• SMEP (Supervisor Mode Execution Prevention). Prevention
of code execution in supervisor mode) is a technology developed
by Intel to protect your computer from hacker attacks and other
threats that use the so-called “supervisor mode”.

• SMAP (Supervisor Mode Access Prevention). It prevents
writing to memory and reading code from it that unauthorized uses
supervisor mode, while SMEP only prevents the execution of this
code.

Supervisor mode is the preferred processor mode used by the
kernel of the operating system. This mode is also called kernel
mode. The opposite is the user mode in which user applications
work [4, 5].

For SMEP to work, in addition to the corresponding processor, a
suitable operating system is required. However, SMEP, although
significantly complicating the task of hacking the system, still does
not guarantee its complete protection. Therefore, later (in
Broadwell architecture processors), in order to increase security
and protect against vulnerabilities that were not resolved by
SMEP, SMAP technology was additionally introduced [6, 7].

Direct execution of guest instructions whose encodings correspond
to the privileged instructions of the physical processor on the host
is impossible, since they certainly cause a trap to be thrown when
executed in the user mode in which virtual machines are running.
For example, the encodings of new secure instructions for Intel-64
architecture usually correspond to invalid encodings on processors

ASTESJ

ISSN: 2415-6698

*Andrey Molyakov, Moscow, 117534, Kirovogradskaya street, 25/2, Russia. Tel:
8-495-388-0888 & andreimolyakov@mail.ru

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 291-298 (2020)

www.astesj.com

Special Issue on Multidisciplinary Innovation in Engineering Science & Technology

https://dx.doi.org/10.25046/aj050338

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050338

A. Molyakov / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 291-298 (2020)

www.astesj.com 292

of previous generations of this architecture. That is, new
instructions are usually privileged on processors of previous
generations, because they cause exceptions [8, 9].

Many hardware processors and various research groups are
interested in supporting hardware transactional memory [10]. IBM
was the first to develop a system with transactional memory
hardware support in IBM Blue Gene [11] supercomputers and z-
Enterprise EC12 servers [12]. AMD announced the development
of the Advanced Synchronization Facility (ASF) extension [13],
which is a variant of the hardware transactional memory for the
Intel 64 architecture. Sun Microsystems has developed a processor
code-named ROCK [14], but this project was closed. The Intel®
Transactional Synchronization Extensions (Intel® TSX)
instruction set [15], consisting of Intel® Hardware Lock Elision
(Intel® HLE) and Intel® Restricted Transactional Memory
(Intel® RTM) extensions, has been added to the sixth generation
Intel Core processors [16].

There are also many software implementations of transactional
memory ideas that do not require special support from the
hardware. However, the study of existing solutions shows their
extremely low productivity [17].

Moreover, with the advent of hardware transactional memory, the
Intel RTM extension allows you to perform nested transactions,
but at the same time, all internal XBEGIN and XEND pairs should
not create new save points, that is, rollback of a nested transaction
leads to a rollback of the entire transaction chain. The introduction
of transactional memory extensions implies that the semantics of
all instructions working with memory, as well as instructions
affecting the state of the processor that are not stored in savepoints,
must be changed in order to support the new execution mode.

In order to avoid critical errors, it is necessary to implement a
multi-level “sandbox” in which the agents of the hypervisor
function and monitor the execution of processor processing
instructions at all levels of the hierarchy.

2. New actual requirements for information security

The Based on the Theorem on a protected hypervisor OS,
formulated and proved by Zegzhda, two requirements can be
formulated [18]:

a) Requirement 1 for virtualization of protected resources:
in a supercomputer computing system, all operations of
application OS applications on protected resources must
be carried out by virtualizing the resource in a virtual
application environment;

b) Access control requirement 2: in a supercomputer
computing system, all operations of application OS
applications on protected resources must be controlled by
hypervisor protection tools.

Further developing the idea, one can formulate theoretical
premises for the solvability of the supervenience problem: all
possible operating modes of the processor should be considered -
the real hardware mode, the protected hardware mode, the real
virtual machine mode, the protected virtual machine mode. This
means that the multi-domain protected hypervisor must ensure the
correct execution (software using the interpreter or hardware) of
all the instructions of the guest system, as well as guarantee
isolation of virtual machines. At the same time, all safe instructions

common to the guest and host systems are executed directly by the
physical processor (privileged modes).

The virtual machine monitor operates in mode 0 (in a separate
domain), therefore, any interpretation errors, memory leaks,
incorrect pointers, addressing errors of data code segments,
program codes, and page addressing errors do not lead to an
abnormal termination.

The solution to the problem of providing a modified instruction
mnemonics for processors of different generations in order to
support hardware transactional memory is to prevent the direct
execution of these instructions in a virtual environment - they must
be simulated programmatically on virtual processors (unprivileged
modes).

Taking into account the development of the element design base
and hardware technologies, we can formulate new requirements
for information protection [18]:

a) Protective equipment should control all informational
interactions without exception;

b) Security features should be developed independently of
application programs and rely on an abstract
representation of information interactions;

c) Protective equipment should control information
interactions based on clearly defined rules that make up
the formal model;

d) A mechanism should be provided to assess the safety of
both the current state of the system and predict the safety
of future states.

The principle of homogeneity of memory is the main postulate of
von Neumann architecture. This means that for supercomputer
systems in which record high performance is important, a
fundamentally new architecture is required. Sharing the bus for
program memory and data memory leads to a bottleneck in von
Neumann's architecture, namely limiting the bandwidth between
the processor and memory compared to the amount of memory.
Due to the fact that program memory and data memory cannot be
accessed at the same time, the processor-memory channel
bandwidth and memory speed significantly limit the processor
speed. Storage of data and commands in different places solves the
problem of the “memory wall” on highly loaded computational
problems [1].

3. Fundamental scientific problem

Over the past 25 years, OS security tools (for example, SMEP,
SMAP, PaX, ExecShield, ASLR, DEP, Flusk, Patchguard and etc.)
have come a long way, but failed to provide protection against
current threats. The fundamental problem for this field of
knowledge (computer science and computer technology) is known
as the problem of supervenience: taking into account the high
asynchrony and multi-connectedness of processes performed with
supercomputer systems, the huge amount of processed data
(Petabytes of data) there is no logical correspondence between
changes in the programs of the runtime environment of
supercomputers and changes hardware components in terms of
implementing an isolated environment and monitoring security
policy rules. For the chosen class of speakers, the solution to the
fundamental problem is the development of the theoretical,
scientific, practical and organizational and technical foundations

http://www.astesj.com/

A. Molyakov / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 291-298 (2020)

www.astesj.com 293

of reactive protection of stationary and onboard supercomputers,
which consists in virtualizing the execution environment of the
processes of applied and system software, in the interest of
increasing their security and reliability, as well as substantiation of
the principles for constructing mechanisms for implementing such
protection for next generation automated systems.

The main contradiction for this class of computing systems is
the ratio of energy intensity, speed and security. With the
introduction of additional functional elements using the example
of a hypervisor and a transactional memory controller, the
characteristics of performance and energy consumption change.
Concurrently executed queries conflict when they read and modify
a certain database element, and the resulting conflict can lead to an
erroneous result that could not be obtained if these queries were
executed sequentially. Transactional memory provides a
lightweight transaction mechanism for control flows running in a
shared address space. It guarantees atomicity and isolation of
parallel tasks [10, 11].

Atomicity ensures that changes in the state of a program made
by code that is executed in a transaction are invisible from the point
of view of other transactions executed in parallel [12].

Isolation ensures that concurrent tasks do not affect the
outcome of the transaction, so that the transaction produces the
same result as if no other task was being performed. Transactions
provide the basis for constructing parallel abstractions, which are
building blocks that can be combined without knowing their
internal details, much like procedures and objects provide suitable
abstractions for composing sequential code [13].

Integration with hardware transactional memory requires
solving 5 main problems of computer science: limited application,
debugging complexity, process synchronization and exclusion of
access, resource control in conditions of parallelism and high
asynchronous processes, emulation of different types of processors
[14]. For multi-domain protected systems, trust is ensured by the
following factors: “Transparency” – invisibility for the
application OS, working directly with equipment, the amount of
hypervisor code is small compared to the OS and applications,
therefore it is easier to ensure that there are no vulnerabilities, all
actions and events inside the virtualized systems are reversible -
attacks can be quickly neutralized by rollback or reset.

Monitoring the exchange of a virtualized system with the
external environment allows you to abandon a thorough study of
the virtualized system itself.

Limitations associated with loss of productivity are extremely
low, due to the record high performance characteristics of
supercomputers.

4. Research methodology: new concepts and definitions

Information security is based on access control to objects of
managing and guest OS, these objects can be attributed to different
levels of protection. Examples of objects are directories, files,
network sockets, registers, and interrupt handlers and some
special-use memory areas by operating systems. The traditional
access control approach involves the use of access attributes
(rights) in requests to these objects for performing certain
operations on them. If the verification of such attributes is
successful, then access to the object at its security level is allowed,
then the requested operation is performed on it. With this approach,

it is technically possible to intercept a request and use its access
rights in a substitute request aimed at malicious impact.

New concepts and definitions are introduced in the work:
supersecurity, information security of stationary and onboard
supercomputer computing systems, a descriptor for assessing the
security of system states.

Supersecurity is a property of a supercomputer system based
on self-configuration and self-control. By using the high-
performance reserves of these supercomputers, you can create a
hypervisor that provides reliable protection against attacks
associated with high asynchronous processes of the
supercomputers and the ability to perform false transactions as a
result of destabilizing external influences and accidental hardware
failures.

The information security of stationary and onboard
supercomputer computing systems is formalized as “a calculated
convolution of the states of the execution environment (hardware
or virtual) and system software”.

The descriptor for assessing the security of system states is a
convolution that is “calculated” based on the attributes of ongoing
processes that are implemented at the level of microprocessor
cores and the interworking environment. All processes have their
own descriptors calculated and methods for their processing —
get, set, delete and etc. are specified.

5. New Safe Operations Model

The safe operations model includes 3 components: commands,
data and timestamps. The space of operations in calculating the
descriptors is a variety of Kripke's “worlds”. Each world of
Kripke is assigned its own digital double and form a knowledge
base for machine learning. The class of operations that are
characteristic of supercomputers is the operations of
multiplication and division in the form of successive shifts in the
tagged structures of packets of requests from clients, guest and
control OSs.

From the point of view of category theory, we work with the
Group object - the category group. Objects are a group in the form
of a residue ring, morphisms are mappings preserving the group
structure. Category theory studies concepts through how these
concepts interact with each other. We forget how these concepts
are implemented, and we only look at the properties of
connections, abstracting from the type of processor architecture
(scalar, vector, MIPS, classic x86_64, tile architecture like Tilera,
mass-multithread, hybrid and etc.), processor capacity (32-bit, 64-
bit, 128-bit and etc.).

A type refers to a class type when a type provides certain
operations with a specific expected behavior. For example, the tau
type may belong to the Functor class if it has a specific behavior
similar to a collection:

a) The type tau is parameterized over another type, which you
should consider as the type of the collection element. The
type of the complete collection is then similar to
Scheme_type = {Int, String, Bool and etc.};

b) If you contain integers, strings, or Booleans, respectively.
If the element type is unknown, it is written as a parameter
of type a. Examples include lists (zero or more elements),

http://www.astesj.com/

A. Molyakov / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 291-298 (2020)

www.astesj.com 294

type “Unknown” (zero or one element of type a), sets of
elements of type a, arrays of elements of type a, all kinds
of search trees containing values of type a, etc.

2. Another property that tau must satisfy is that if you have a
function like a –> b (function on elements), then you should be
able to use this function and product for a related function over
collections. You do this with the fmap operator, which is shared
by each type of Functor class. The operator is actually overloaded,
so if you have an even function with type Int -> Bool, then

Definition 1. A functor is a kind of collection (a set of
configurations for recursively computing a hash), for which, if
you are provided with a function on elements, fmap will return the
function in the collections.

Definition 2. The context of the operation is a set of tuples
consisting of logical variables. A collection of collections is a
conjunction of atomic predicates defined on many tuples.

I appeal to the theory of functional programming, we will define
a functor for comparing is_equal of two hash values with support
for different class type templates :

class is_equal

{ private: scheme_type v; public:

is_equal(scheme_type value) : v(value) {}

bool operator () (scheme_type x)

 { return x == this –>v; } };

scheme_type count_zero(const std::vector< scheme_type>& data)

{ return std::count_if(data.begin(), data.end(), is_equal(0)); },

scheme_type – data type (int, uint, float, double and etc.).

It is not possible to implement a complete hash function that is
valid for all types. You cannot just convert an object to raw
memory and hash bytes.

In addition, this idea fails due to padding technology when
creating an index for each record. Because of this, it is necessary
to take into account the context of a particular operation. To
implement a universal convolution calculation algorithm, it is
necessary to take into account different processor operating
modes and the principle of type conversion and alignment of
orders. We need to normalize the presentation of metadata
operations in terms of aligning the boundaries of digital structures.

The basic principles of the algebraic structure on which the whole
theory and methodology are based: The principle of Soft power,
Self-organization, Supersecurity. The descriptors of the state
safety assessment function are calculated on the set, which is a
multiplicative group of the residue ring modulo 8.

 Classical propositional logic is a “black and white” model;
utterances are static, unchanged in time. In the ordinary
propositional logic, sentences that do not explicitly or implicitly
contain properties whose truth changes with time do not

adequately formalize. We want to study and verify systems that
evolve over time.

 The proposed approach to the description of operations is based
on the classification of risks of information security breaches and
analysis of the context of the implementation of outgoing
directives, through which data can be transmitted bypassing the
requirements of the adopted security policy, which leads to a
violation of the security of computing nodes resources.

 The carriers of the analyzed operations are the sets of objects and
access subjects to which various security levels (labels) are
assigned. To control the security level of operations generating
new entities, for example, operations, we will use the sign of
immutability of the object generating the access entity.

6. Theoretical calculations of the reactive protection
method

6.1. Algebra of operations with objects processed on
supercomputers

For supercomputers the sign of immutability cannot be a constant
indefinitely: simultaneously, a huge number of processes are
launched. Temporal logic is needed to describe the states of
subjects and access objects. We need a model of threats to the
integrity of the execution environment of IC processes, in which
instead of the classic link “subject, object, predicate” a new
paradigm of writing security policy rules is implemented and new
entities are defined - “subject”, “object” and “descriptor for
assessing state security”: for each i-th threat, the value of the state
security assessment function is calculated, the arguments of which
are given in the form of a conjunction of predicates of eight logical
variables, the subjects are the guest and control OS, and the
objects are the components of the hype Sizer and transactional
memory controller.

Temporal logic of branching time consider possible calculations
(paths on a tree) - trajectories on a scan of the Kripke structures.

The Kripke structure is a transition system with labeled states and
unlabeled transitions. Sweep defines infinite chains of states -
possible calculations. Each state can have not one, but many
chains - continuations, and is the root of its tree of stories
(calculations).

The structure of Kripke M is the five M = (S, S0, R, L, AF).

 In our case [19, 20], AF = {context_id | Dom_id | S | Ord |
Context_type | TCU | TR}. Let an arbitrary formula Fi of CTL
logic and a Kripke structure M. be given. For each subformula ψi
of formula Fi, the marking algorithm performs the following steps:

a) We proceed to the construction of the numbering of the
programs. Each operator is uniquely characterized by a
pair - type (name) and a list of parameters, including
operator labels, variables, functional and logical
expressions. We only need to encode each of the possible
values of the operator parameters. Labels of operators do
not need special coding, since they are natural numbers;

b) Since each program calculates a certain function, the
introduced Gödel numbering generates some numbering

http://www.astesj.com/

A. Molyakov / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 291-298 (2020)

www.astesj.com 295

of the functions. On the one hand, this numbering is not
one-to-one, since we code the program syntax, and any
syntactically different programs have different codes. On
the other hand, every computable function is computed by
an infinite class of programs.

However, such numbering has fundamental and practically useful
properties. Let A be the countable class of functions for assessing
the safety of supercomputers states: A = {f1, f2 ..., fn}.

Even though each of the fi functions is computable by some
algorithm, this does not guarantee the existence of a single
algorithm for computing all functions. We call a class A
uniformly enumerable if there exists a two-place computable
function F such that the class A consists exactly of functions of
the form F (n, x) for some n from the set N.

We call the function a universal function of class A. nF (n, x) is
the uniform numbering of class A.

Our main goal is to show that the numbering of the computable
functions that we have determined is uniform with respect to other
numbers and that by the number of the computable function in the
given uniform numbering we can effectively find its number.
Using the function for assessing the safety of SC states, we can
subsequently accurately calculate the numbering states on the
whole variety of Kripke structures, and then identify the classes
of safe and dangerous operations.

Lemma 1. If A is an effective set, then for any effective set B: AB
is effective, as well as any Cartesian product A1, A2 ... An of
effective sets is effective, the set A *, A * = An, of all finite
sequences of elements of A is effectively countable.

The proof of the statement is trivial and follows from the main
theorem of arithmetic. We formulate and prove a theorem on the
enumerability of the class of operations.

Theorem 1. Class A operations on the residue ring modulo m are
uniformly enumerable, and the hash value calculation function F
is a universal function of class A only if the number of hierarchy
(nesting) levels is 8.

 Evidence. In fact, operations are performed on data tuples,
which are a set of i-th elements of an allergic structure (bit, atomic
predicate, predicate conjunction, any set of predicative and
functional symbols, vector variable, scalar, real number) of any
dimension m (regardless of encodings and positional number
system). We work with matrices, where the number of rows is
equal to the number of nesting (hierarchies) of the computation
space N, and the i-th column is an element of a structure of
dimension m in the residue ring Z (m), i = 1 ... n. Using the
Kornfeld formula to assess the confidence probability of security,
each factor PΛi is a geometric decreasing progression [21].The
most suitable values are 0.1 and 0. (1). Criteria of temporal logic
(lack of new patterns over time) satisfies only the solution N = 8.

Moreover, nF (n, x) is an effective numbering of class A, since
with a change in the dimension of the parameter n the regular
relations between the elements of the set do not change, new
properties of objects of our algebraic structure do not appear.

The main result of theoretical calculations is that we have proved
universality and uniformity for given classes of operations of
functional transformations. Regardless of the dimension of the
input parameters, the nature of the relationships between the types,
the type of operands, the type of processor architecture, the
operation scheme and implementation of the algorithms, we have
found such a number of hierarchy levels (N = 8) that there is an
invariant in the algebraic system. If we evaluate the time
parameters, this regularity property is preserved indefinitely
(from 0 to + ∞).

6.2. Integration of the algebraic structure with architectural
modifications of supercomputers

 We proceed directly to the construction of a weighted
multigraph-model for performing operations of supercomputers,
which is a tree. The starting point is the top of the tree structure,
describes a transactional memory controller that interacts directly
with the hypervisor verifier module. The controller in conjunction
with the verifier implements security mechanisms: an isolated
multi-domain address space is represented as non-overlapping
memory areas, each of which corresponds to a vertex of the graph
lying in the second level of the root structure. The vertices of the
third level correspond to the subsets of the components that make
up the hypervisor. Since we have 8 levels of the request
processing hierarchy, the block is divided into eight subsets of
level details of possible states indicated by S8, ... , S1.

 The last level of the root structure of a multigraph is represented
by agents of the hypervisor (graph leaves) through which
communication with the external environment and all possible
attacks on the supercomputers occur. Advances to each next level
are a higher level of abstraction of the description of request
processing, a transition from the lower level of the specification
to the upper. Each state can have not one, but many chains -
continuations, and is the root of its tree of stories (calculations).

 The reactive protection method should include not only
deductive algorithms for calculating descriptors for assessing the
security of states and identifying threats based on marking the
states of fulfillment of supercomputers requests, but also
implementing inductive learning based on self-diagnostics and
explanatory decision-making mechanisms based on the concept
of machine learning. We calculate such impacts that ensure the
safe functioning of supercomputers, and block dangerous and
suspicious ones.

7. Method for reconfiguring the runtime environment of
the supercomputers

The hash is calculated recursively for all processes (subprocesses)
and an effective value is obtained for the regular measurement of
the query path (based on past experience, pre-training). In the
process, the system is being trained. Each new configuration is
classified and recognized in the future based on the characteristic
set of markers. Coding of identification features - a set or
conjunction of simple predicates on which the formula Fi is given
[20]. The subformula ψ is a recursive call of the same algorithmic
procedure, only with a different set of characteristic features and
properties.

http://www.astesj.com/

A. Molyakov / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 291-298 (2020)

www.astesj.com 296

6 configurations of “colors” of the tree of computation histories.
We select two colors: Blue - the predicate of the presence of the
transient process, Red - the predicate of changing the type of the
context of the operations performed.

a) configuration allows you to track changes in local states
at the same hierarchy level and identify the launch of
child processes as part of the base process with the
markers of interest to us;

b) configuration analyzes the entire state tree based on the
selected marker (the mode of a full run of calculations in
case of restarting the task). The story tree is being rebuilt;

c) analyzes the change in two parameters in the near
branches of the tree (local scale, in one domain);

d) configuration to track a single (irregular) parameter
change in the far branches of the computation tree;

e) configuration regularly repeated changes of the selected
identification parameter along the entire trajectory of
movement;

f) configuration studies the branches of the tree; over time,
in the future, changes in two parameters may appear on
different trajectories. At the same time, processes can be
started in different domains.

Sets of configurations adapted to different contexts of operations
execution, in the form of matrices of access rules, are stored by
agents of the hypervisor monitoring information security events
in the memory of the transactional memory controller. In the
process of training, the rules of safety rules are updated and
adjusted. The system dynamically evolves and modifies sets of
modal rules based on CTL temporal logic grammars for
responding to signaling events. Identification criteria for threats
in the semantic interpretation of a set of atomic predicates.

Thus, the hypervisor in conjunction with the transactional
memory controller is a multi-agent system with machine learning.

There are deductive checks that correspond to the principles of
classical logic, but we are using inductive algorithms with
metadata about the operation of system components at different
levels of the hierarchy, where, along with checking the integrity
in the form of changing the values of the calculated hash functions
for each process, access control is implemented in the form
Labeling allowed transients when switching between security
domains and thread migrations. The history of various system
configurations is kept, new events are recognized due to a variant
new set of predicates and the values of their trajectories on Kripke
structures.

8. Discussion

8.1. Optimization, normalization of descriptor calculation

 For optimization and normalization, it is necessary to specify an
exactly safe data volume. The axiomatic of our algebraic
structure are as follows:

a) Multiplication and division operations are specified (cyclic
shifts to the right or left);

b) A lot of descriptor calculations is a residue ring modulo m
= 8;

c) The ring must be symmetrical with respect to the
performance of the operations of multiplication and
division;

d) A request for any tap of a processor with a classic von
Neumann architecture is a combined tagged structure in
which a data segment and a program code segment are
stored in the same RAM sections. In this case, the L-
operand for the recursive calculation of ψi is stored in the
data section, the R-operand for the recursive calculation of
ψi is stored in the code section.

The principle of supervenience is the absence of differences of
one kind in the absence of differences of another type: the absence
of differences in the set of process descriptors in the absence of
changes in the configuration of software and hardware agents.
There is a one-to-one logical correspondence between a change in
the set of a vector variable stored in the hypervisor generative
tables, a map of transactional memory states (hardware level), and
a hash function value (software level). In the process of passing
the request, the key line does not change normally. If it changes,
then it means that the route for passing the request by a third-party
agent is being modified.

 A-property – the identity of the values of the security assessment
descriptors for the i-th process at the n-level of the hierarchy
(running programs at the OS level, each process is identified by a
hash value, formalized as a hash function value).

 B-property – configuration of software and hardware
components (formalized as a set of matrices in the form of 8 16-
bit key lines, based on which the value of the function is
calculated).

8.2. The solvability condition for the supervenience problem for
supercomputer systems

In this case, one must take into account the upper or lower case of
addresses (a segment of a data code or a command code, a
combined format for representing the structure in RAM). Then the
amount of precisely safe calculations doubles and you need to
introduce an additional 2 * 4 = 8 register fields in the form of
significant bits of the n-dimensional vector Ψ (n) = 8 to control
the addressing and offset boundaries in the pipeline of processed
requests and prevent the execution of “false transactions” ". Thus,
the dimension of the control parameter k is 8. In this case, the bits
(upper and lower registers) of the pointer to the RAM memory
cells are not mixed.

If this condition is not fulfilled for the comparison functor, then
the boundaries of the data segment and code are violated, the
descriptor is recursively calculated: for N < 8, empty bits remain
(you can write zeros or junk data in them), and normalize the
processed data for N > 8 (BDC - format and type conversion of
operands) is not possible.

To get this type of representation of a data set in the form of tuples
of n-logical variables, the minimum set (basis) is 8. When the
number of iterations is a multiple of 8, we increase the amount of
data of recursive calculations, but the effects and patterns do not
change. With a decrease in the number of iterations (less than 8
levels of the query processing hierarchy), automatic alignment of
the processed data in the BDC format leads to the fact that

http://www.astesj.com/

A. Molyakov / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 291-298 (2020)

www.astesj.com 297

individual bits or groups of bits remain uninitialized, which
allows dangerous shifts in the supercomputers.

The optimization of descriptor calculations is due to eight interval
constraints in the processing cycle to obtain a productive sample,
using only eight significant bits (rather than infinitely large
numbers) for storing and processing the results. Based on the
foregoing, we formulated the solvability condition for the
fundamental problem of establishing logical correspondence
(supervenience) of the program execution process on the
supercomputer, by changing the state of the hypervisor
components and supercomputers hardware: the number of levels
of the request processing hierarchy by the hypervisor N in
interaction with the transactional memory controller should be
eight.

Solvability condition. The number of levels of the request
processing hierarchy by the hypervisor N in interaction with the
transactional memory controller should be eight.

A change in the states of processes at the upper level leads to a
coordinated change in states at the lower level; there is a similarity
relation. When using two rings of protection (N = 2) and in the
absence of physically separated storage of programs and data, the
process can gain access to the “alien” segment and increase
privilege levels.

9. Results

Development, taking into accounts the specifics of
supercomputers, of a fundamentally new technological solution
creating an isolated program execution environment in the form
of an 8-level sandbox with the implementation of control
mechanisms both at the level of hypervisors and at the level of
transactional memory controllers. Thus, an important scientific
and technical problem has been solved in the field of creating
information security tools for a new class of systems - stationary
and on-board supercomputers. All the means of protecting
information that existed today were the hardware and software
components of the protected system itself, without integration
with hardware transactional memory and the introduction of
multi-level control, it was impossible to solve the problem of
detecting and identifying various types of threats at all levels of
the hierarchy of query execution. In the course of experimental
studies, new scientific results were obtained that confirm the
efficiency and minimal performance loss of applying hardware
virtualization technology in the form of a multi-level “sandbox”
for promising supercomputers compared to using traditional
clusters.

Since it is impossible to control the operation of all equipment,
but only to monitor the execution of requests at the level of the
components of the hypervisor and the controller of transactional
memory, during the research, the maximum level of functioning
of information protection agents was found - S8. With this
configuration, when the number of hierarchy levels is N = 8, the
execution of context-sensitive operations becomes quasi-
determined with a confidence probability of approximately 0.9.

The threshold for performance loss when using the verification
complex is less than 6-7%. The effectiveness of the developed
security system was assessed based on the use of various security

tools (used to protect clusters and mainframes) and analysis of the
number of successful recognitions and errors.

 The following results of experimental studies are obtained:

a) with the number of training samples n > = 86, stable
detection with critically minimal errors of the 1st and
2nd kind is ensured;

b) only 8 clusters are enough for effective detection of
malicious code, which significantly reduces the cost of
implementing a software and hardware solution. Each
cluster is bound to a security domain. Their number is
also 8.

Thus, an unambiguous correspondence has been achieved
between the number of hierarchy levels and the number of
protection domains and the number of countable clusters tied to a
certain “sandbox” level. To ensure the requirements of the
international standard ISO 5725 for the convergence and
reproducibility of measurement data, the experiments were
performed in a series of 5 repeated experiments for 14 days until
the observed data were stabilized.

10. Conclusion

a) The theorem on the uniform enumerability of functions for
assessing the safety of states is proved. In this case, the
means of protection of stationary and onboard
supercomputers are considered as an object of research for
the first time;

b) The solvability condition is formulated, as a consequence
of the theorem on the uniform enumerability of functions,
the problems of establishing the logical correspondence
(supervenience) of the program execution process on a
supercomputer, by changing the states of the components
of the hypervisor and equipment;

c) A reactive protection method has been developed (without
delay after detecting an attack), which consists in
virtualizing the execution environment of supercomputers
processes if the calculated state descriptor falls into the
“risk” zone and based on monitoring requests for allocation
of resources in accordance with the rules of the security
policy in the form of temporal modal structures CTL logic;

d) A method has been developed for reconfiguring the
runtime environment of supercomputers taking into
account the mobility requirements (built-in computations)
based on the application of the trajectories of computing
state security descriptors on Kripke structures;

e) It is proposed to use a model of threats to the integrity of
the execution environment of supercomputers processes, in
which instead of the classic link “subject, object, predicate”
a new paradigm of writing security policy rules is
implemented and new entities are defined - “subject”,
“object” and “descriptor for assessing state security” : for
each i-th threat the value of the state security assessment
function is calculated, the arguments of which are given in
the form of a conjunction of predicates of eight logical
variables, the subjects are the guest and operating systems,
the objects are components of the hypervisor and
transactional memory controller;

http://www.astesj.com/

A. Molyakov / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 291-298 (2020)

www.astesj.com 298

f) A safe operation model has been developed that considers,
from the standpoint of “integrity” of the runtime
environment, both supercomputers hardware at the
microprocessor level and system software, describing its
processes in the form of decomposition into an 8-level
hierarchical structure: each process privilege level
uniquely corresponds to a domain number protection and
operation mode of the microprocessor.

References

[1] Molyakov A. S., “New security descriptor computing algorithm of
Supercomputers” / 2019 Third World Conference on Smart Trends in Systems
Security and Sustainablity (WorldS4), IEEE Xplorer Digital Library.
https://doi.org/10.1109/WorldS4.2019.8903965

[2] Popek G. J., Goldberg R. P., “Formal Requirements for Virtualizable Third
Generation Architectures” / Communications of the ACM, 1974.

[3] F. Leung, G. Neiger, D. Rodgers et al, “Intel® Virtualization Technology” :
Intel Technology Journal., 2006, 10.

[4] AMD Corporation. — AMD64 Architecture Programmer’s Manual Volume
2: System Programming, 2013.

[5] Stephan Diestelhorst, Martin Pohlack, Michael Hohmuth et al.,
“Implementing AMD’s Advanced Synchronization Facility in an out-of-order
x86 core” / 5th ACMSIGPLAN Workshop on Transactional Computing,
2010.

[6] Intel® Software Development Emulator, 2012.
https://software.intel.com/en-us/articles/intel-software-development-
emulator .

[7] Rechistov Grigory, Plotkin Arnold, “Implementation of Intel Restricted
Transactional Memory ISA Extension in Simics” / Procedia Computer
Science, 2013, 18 , 1804 – 1813.

[8] Herlihy Maurice, Moss J. Eliot B., “Transactional memory: architectural
support for lock-free data structures” / Proceedings of the 20th annual
international symposium on computer architecture, ISCA ’93,New York,,
USA : ACM, 1993, 289–300.

[9] Amy Wang, Matthew Gaudet, Peng Wu et al., “Evaluation of Blue Gene/Q
Hardware Support for Transactional Memories” / Proceedings of the 21st
International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, 2012, 127–136.

[10] Jacobi Christian, Slegel Timothy, Greiner Dan, “Transactional Memory
Architecture and Implementation for IBM System Z” / Proceedings of the
2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, 2012., 12, 25–36.

[11] Jaewoong Chung, Stephan Diestelhorst, Martin Pohlack et al., “ASF: AMD64
Extension for Lock-free Data Structures and Transactional Memory” /
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture, 2010.

[12] Moir Mark, Moore Kevin, Nussbaum Dan, “The adaptive transactional
memory test platform: a tool for experimenting with transactional code for
ROCK” / Proceedings of the twentieth annual symposium on Parallelism in
algoithms and architectures, SPAA ’08, New York, USA : ACM, 2008, 362–
362.

[13] Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer ,
“Software Transactional Memory for Dynamic-sized Data Structures” /
Proceedings of the Twenty-second Annual Symposium on Principles of
Distributed Computing, PODC ’03, New York, USA : ACM, 2003, 92–101.

[14] Dice Dave, Shalev Ori, Shavit Nir, “Transactional Locking II” / Proceedings
of the 20th International Conference on Distributed Computing, DISC’06,
Berlin, Heidelberg : Springer-Verlag, 2006, 194–208.

[15] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann et al.,
“Multifacet’s general execution-driven multiprocessor simulator (GEMS)
toolset” / SIGARCH Comput. Archit. News, 2005, Vol. 33, no. 4, 92–99.

[16] Yi Liu, Yangming Su, Cui Zhang et al..,Efficient Transaction Nesting in
Hardware Transactional Memory / Architecture of Computing Systems -
ARCS 2010, Berlin, Heidelberg : Springer Berlin Heidelberg, 2010, 138–149.

[17] Moore Kevin E, “LogTM: Log-Based Transactional Memory” / In Pro-
ceedings of the Twelfth IEEE Symposium on High-Performance Computer
Architecture, 2006, 258–269.

[18] .Zegzhda D..P., “Building secure operating systems based on virtualization
technology” [presentation], St. Petersburg, 2018, 33 p.
https://docplayer.ru/storage/77/76383820/1589898846/qi9gw3tca9toeeJG7V
gqWQ/76383820.pdf

[19] Molyakov A. S., “A Prototype Computer with Non-von Neumann
Architecture Based on Strategic Domestic J7 Microprocessor” / Automatic
Control and Computer Sciences., 2016, 50(8), 682 -686.

[20] Molyakov A. S., “Token Scanning as a New Scientific Approach in the
Creation of Protected Systems: A New Generation OS MICROTEK” /
Automatic Control and Computer Sciences, 2016, 50(8), 687-692.

[21] Molyakov A. S., “Threat model and theoretical foundations of the reactive
protection method of supercomputers” / Natural and technical sciences,
Company Sputnik +, 2019, 7, 197–201.

http://www.astesj.com/
https://docplayer.ru/storage/77/76383820/1589898846/qi9gw3tca9toeeJG7VgqWQ/76383820.pdf
https://docplayer.ru/storage/77/76383820/1589898846/qi9gw3tca9toeeJG7VgqWQ/76383820.pdf

	2. New actual requirements for information security
	3. Fundamental scientific problem
	4. Research methodology: new concepts and definitions
	5. New Safe Operations Model
	6. Theoretical calculations of the reactive protection method
	6.1. Algebra of operations with objects processed on supercomputers
	6.2. Integration of the algebraic structure with architectural modifications of supercomputers

	7. Method for reconfiguring the runtime environment of the supercomputers
	8. Discussion
	8.1. Optimization, normalization of descriptor calculation
	8.2. The solvability condition for the supervenience problem for supercomputer systems

	9. Results
	References

