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 Our research investigates the use of causal modeling and its application towards mapping 
out cybersecurity threat patterns. We test the strength of various methods of data breaches 
over its impact on the breach’s discovery time as well as the number of records lost. 
Utilizing a Causal Modeling framework, we simulate the isolation of confounding variables 
while testing the robustness of varying estimators. The motivation is to shed a unique insight 
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1. Introduction  
The purpose of this paper is to demonstrate the application of 

Causal Modeling in the domain of Cybersecurity. We engage in 
the scientific inquiry into the underlying causes of data breaches. 
Using methods of causal analysis that link concepts to 
observations, and a rationale connecting concepts to practice. The 
notion of causality, as used in Computer Science, provides 
principles that guide the problem specification, elaboration of the 
procedures, and interpretation of datasets. We employ causal 
modeling for the purpose of providing a computable measurement 
of a certain group of data breaches. 

We tackle a variety of data breach problems that affect our 
industries and have an impact on the overall economy.  In our 
work, we demonstrate how the usage of Causal Modeling can help 
us locate such data breach problems.  Statistical analysis is enough 
for identifying associative relationships. While this is useful for 
general analysis, Causal Modeling provides a different structure 
with interventions included in it.  Interventions tell us what would 
have happened if events other than the ones we are currently 
observing had happened.  Such interventions allow us to avoid 
unnecessary steps and come directly to the point. It can also 
provide justification as to why and how the desired step or 
conclusion is arrived and provide defense for potential future 
cases. In order to intervene, we needed to estimate the effect of 
changing an input from its current value, for which no data exists. 
Such questions, involving estimating a counterfactual, are 
common in decision-making scenarios. 

 Statistical Prediction is the estimation of an outcome based on 
the observed association between a set of independent variables 
and a set of dependent variables. Its main application is 
forecasting. 

Causality is the identification of the mechanisms and processes 
through which a certain outcome is produced. It can be used in 
predicting future events that are similarly connected via 
mechanisms and processes. Causal relations are not features that 
can be directly read off from the data, but have to be inferred. The 
field of causal discovery is concerned with this inference and the 
assumptions that support it.  

Our research focuses on two aspects of Causal Modeling: 
Causal Discovery and Causal Inference. Causal Discovery 
algorithms try to derive causal relations from observational data. 
Given a set of data, a causal discovery algorithm returns a set of 
statements regarding the causal interactions between the measured 
variables. 

Causal Inference is the process of drawing a conclusion about 
a causal connection based on the conditions of the occurrence of 
an effect. The main difference between causal inference and 
statistical inference of association is that the former analyzes the 
response of the effect variable when the cause is changed. The 
process shows causal direction, which is rarely found by statistical 
correlation alone. For example, a question that  causal reasoning 
can answer is: Is there a causal link between the distribution across 
values of a certain variable X and values of another variable Y? 

Causal inference process solves causal problems 
systematically, by methods such as counterfactual analysis, 
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graphical models, and the association between counterfactual and 
graphical methods. 

Causal modeling resolves questions about possible causes by 
providing explanation of phenomena as the result of previous 
events. One can generate a plausible explanation for gaps within 
cybersecurity infrastructure.  The usage of Causal Modeling can 
help us locate a set of data breach problems and help provide a 
solution for such problems. 

The objective of this research is to evaluate the risks of data 
breach  of cybersecurity incidents with the overall aim to identify 
patterns of importance amongst the dataset, accomplished by 
noting causes and effects in the modeling process. This is achieved 
by studying the characteristics of the VERIS Community Database 
(VCDB) of cybersecurity incidents. VCDB is a widely used open-
source dataset containing a breadth of information regarding data 
breaches. 

2. Background 

We offer a scientific method based on the notion of causation. 
Following are the motivations behind the use of Causal Modeling 
for Cybersecurity:  

One can draw from past experiences, and try to build a 
probability distribution [1]. Standard probability theory has been 
productive in these problems and similar ones, when the past 
experiences are readily available for analysis. But there are 
instances where it fails to provide adequate concepts and 
mathematical methods, particularly when the past experiences are 
either not available, or are not relevant.    

A context like breach of data can interact with the phenomena 
of interest in ways that standard probability theory does not 
productively capture; that is, in ways that standard probability 
theory does not provide insights and methods for useful modeling 
and fails to capture key concepts.  Some of these key concepts are 
the necessary and sufficient conditions that produce the essential 
model of the cause-effect relationships involved.   

A necessary condition is one that is required if a certain effect 
is to follow. A sufficient condition, on the other hand, is enough 
for certain effects to follow.  

Some of the usage of the necessary and sufficient conditions 
are as follows: we have to look for causes that are common in the 
cases where the effect also occurs. Thus, some event is not a 
necessary condition if it happens without the effect occurring [2,3]. 

We can explore causal modeling on observational data.  In 
general, to determine whether or not an uncertain variable xk (the 
supposed effect) is responsive or unresponsive to decision d we 
have to answer the query “Would the outcome of xk have been the 
same had we chosen a different alternative for d?" Questions of 
this form are counterfactual queries [4,5]. 

   We define the Counterfactual World as follows.  there are 
some uncertain variables, X (of which xk is an instance), such as 
data leakage (including some uncertainty as to why, and are we 
sure about the leakage?)  in the scenario; there is also the set of  
potential causes C [6].  Possible candidates for the causes in C are: 

• malware in the system  

• hacking  

• human error   

Let U be the total set of possible effects pertaining to some 
scenario S.  These are possibilities that should be determined 
correctly. There are variables  X ⊆ U, which are uncertain 
variables.  We also have a set of decisions D (for example, the 
decision that the data leakage  is, indeed, there, and that it is there 
because of the bugs). Given these notions, the concept of 
counterfactual world can be defined.  A counterfactual world of X 
and D is any instance of such world retained by X ∪ D, after the 
decision maker selects a particular instance of  D [7]. 

Definitions of unresponsiveness and responsiveness are to be 
understood next. Suppose that we have some uncertain variables, 
which form a set X. Also, suppose that we have a set of decisions 
D. There can be counterfactual worlds  D that can form union with 
the set X.  D is the set of scenarios where there is  a list of 
counterfactual decisions (and the outcomes associated with the 
decisions), which may never take place in the real world as we 
encounter it. X is unresponsive to D, denoted as X  ↚ D, if X 
assumes the same instance in all counterfactual worlds of X ∪ D 
[8]. That is, instances of  X do not affect  the status of X ∪ D. In 
the case of Cybersecurity, an example of a counterfactual world 
can be one in which no cybersecurity compromise is ever reported. 
These counterfactual variables are not observed, and, most 
probably, will never be observed. Examples of X can be concerns 
about Cybersecurity. These two can form a union,  but X is 
unresponsive to D,  since the instances of such concern do not 
affect the union. In contrast, one can think of a set X as being 
responsive to a set D. In this case, let the set X be the same as 
before, namely, the set of concerns about Cybersecurity, for 
example, concerns about data leakage as an element of X. The 
counterfactual world D can be one where Cybersecurity 
compromise is supposed to be reported to computer users, but 
ignored. 

If concerns about the data leakage problem is an example of X, 
then it can assume different instances in different counterfactual 
worlds of X U D.  

For example, “If one had this concern about data leakage, then 
one may or may not have ignored the Cybersecurity compromise 
report”.  

This shows that some instances of X can belong to some 
counterfactual world of X U D. Therefore, X is responsive to D.  

X refers to the collections of events (indicating, for example, 
different states of data leakage) some of which occur after 
decision(s) D have been made. Given decisions D, the variables in 
the set C are causes of x with respect to D if all the following three 
conditions are met: 

• Condition 1: x is not a member of C.  

• Condition 2: x is responsive to D.   

• Condition 3: C’ is a minimal set of variables such that x is 
unresponsive to D in worlds limited by C’ (that is, x ← D, 
and C’ is a minimal set such that x ↚ c’ D).    
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The third condition is saying that C has a definite influence on 
x being responsive to D. The influence is that the relevant cause 
(or causes) must be included in whichever set of variables that also 
necessarily differ (being responsive) in accord with x being 
responsive to D.  So, the set C’ that limits the relation of x with D 
(regarding responsiveness) is a minimal set.   

The following are the brief explanations with regard to the 
system discussed here.  

• Condition 1 affirms that the effect (X) is not a member of 
the set of causes.  

• Condition 2 affirms that for x (data leakage) to be caused 
with respect to decision D (data leakage must have been 
caused by the bugs in the system), it must be responsive to 
that decision.  

• Condition 3 states the following: suppose  that one can find 
a set of variables Y such that X, data leakage, can be 
different in different counterfactual worlds only when Y is 
different.  In that case, Y must contain a set of  causes. 

Our approach in this paper is showing the effects of 
intervention. Causal modeling  helps us ask the right questions 
about causation and helps us devise a way to emulate it by means 
that are not intrusive. Our emulation of interventions  are based on 
observational studies and using data to find causal relation between 
them.  

Causal relations are not features that can be directly read off 
from the data, but have to be inferred. The field of causal discovery 
is concerned with the inference and the assumptions that support 
it. Instrumental variable method ensures that we obtain the close-
to-correct causal effect, even if there are unobserved conditions.  
Combining propensity-based and regression-based methods 
provides us with a causal estimate that is accurate whenever the 
model is correctly specified.  

The potential outcomes framework can be detailed as follows: 
counterfactual variables such as “knowledge and action of a person 
P had  he received the information that the cybersecurity of his 
computer system has been compromised ”and “knowledge and 
action of a person P had he not received the information that the 
cybersecurity of his computer system has been compromised” are 
as appropriate as traditional variables such as “knowledge and 
action of a person P” – though one of these counterfactual variables 
is not observed, and most probably, will never be observed, in the 
case of this person P . 

2.1.  Common Cause, Confounding, Control, and Instrumental 
Variables.  

Common causes explain the fact that there are concepts related 
to causation that are more important than correlation. 

Suppose that a person has received a “Compromised Host” 
notice from some authorities, and also his computer-savvy friend 
(who may or may not know about the notice) has checked this 
person’s computer and is confident that attackers have gained 
unauthorized access to this person’s computer. Therefore, this 
person is worried about cybersecurity, and would like to take steps. 

What are the causes of receiving such as notice? What are the 
causes of this computer-savvy friend being confident that attackers 
have gained unauthorized access to this person’s computer? If 
there is some disaster, it could cause the “Compromised Host” 
notice  to go out. It could also cause one’s computer-savvy friend 
being confident that attackers have gained unauthorized access to 
this person’s computer. 

If a disaster happens, both of these are likely. This means in a 
data set one can find a correlation between the two.  

We know there is no causal effect of receiving a 
“Compromised Host” notice  on one’s computer-savvy friend 
(who may or may not know about the notice) being confident that 
attackers have gained unauthorized access to this person’s 
computer, or vice versa. This is the essence of “correlation does 
not imply causation”.  

When there is a common cause between two variables, then the 
variables will be correlated. This is part of the reasoning behind 
the phrase, “There is no correlation without causation”. 

Suppose that we are dealing with two concepts, named A and 
B. If neither A nor B has been definitely known to cause the other, 
and the two are correlated, there must be some common cause of 
the two. It may not be a direct cause of each of them, but it is there 
somewhere. This implies that we need to control for common 
causes if we are trying to estimate a causal effect of A on B. 

Common cause variation is fluctuation caused by unknown 
factors resulting in a steady but random distribution of output 
around the average of the data. 

Suppose that we take the average of the data, and do a steady 
but random distribution of output around the average. There will 
be unknown factors that will result in that distribution. This will 
cause a source of variation called common cause variability. This 
is a measure of  the potential of the process – which includes how 
well the process can perform, if and when special cause variation 
is removed.  Common cause variation is also called random 
variation, or non-controllable variation. 

If we do not include hidden common causes in our model, we 
will estimate causal effects incorrectly. This is similar to the notion 
of confounders (in this particular case, some cybersecurity disaster 
has happened). 

Confounding variables are to be understood in terms of data 
generating model. Pearl defines the concept of confounding as 
follows: Let X denote some independent variable (for example, the 
“Compromised system “notice), and Y some dependent variable 
(the person is worried and wants to take action). We might want to 
estimate what effect X has on Y, without regard to other potential 
factors; for example, if the person is, at the same time, not feeling 
well. We say that X and Y are confounded by some other variable 
Z whenever Z is a cause of both X and Y. In our case, Z is that 
some cybersecurity disaster has happened. 

One can state that X and Y are not confounded whenever the 
observationally witnessed association between them is the same as 
the association that would be measured in a controlled experiment, 
with x randomized. 

http://www.astesj.com/


S. Abel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 3, 380-387 (2020) 

www.astesj.com      383 

An equality here can be stated as P(y | do(x)) = P(y | x); this 
can be verified from the data generating model provided that we 
have all the equations and probabilities associated with the model. 
This is done by simulating an intervention do (X = x) and checking 
whether the resulting probability of Y equals the conditional 
probability P (y | x).  

Control is a concept related to confounders. Suppose that we 
are attempting to assess the effectiveness of the notice being given, 
from population data. The data shows that prior knowledge about 
such incidents (Z) influences the state of mind .e.g. worry and 
wanting to take action (Y). In this scenario, Z confounds the 
relation between X (his computer-savvy friend takes the action of  
telling him) and Y since Z is a cause of both X and Y.  

We hope to obtain an unbiased estimate P(y | do(x)) = P(y | x). 
In cases where only observational data are available, an unbiased 
estimate can only be obtained by "adjusting" for all confounding 
factors, which means conditioning on their various values and 
averaging the result.   

This gives an unbiased estimate for the causal effect of X on 
Y. The same adjustment formula works when there are multiple 
confounders except, in this case, the choice of a set Z of variables 
that would guarantee unbiased estimates must be done with care. 
One can view cause-effect relationships via directed acyclic 
graphs; one should also link causal parameters and observed data, 
such as information about the subjects studied, as well estimation 
of the resulting parameters. 

 
Figure 1. Example of a Causal Model 

3. Overview 

Since experimentation is not feasible for simulating real world 
data breaches, the analysis relies solely on observational data. In 
this regard, Judea Pearl’s theory of Counterfactual World theory is 
extended with the use of propensity scores to calculate causal 
inference. The main issue to tackle regarding the use of 
observational data is the bias within the data caused by 
confounding variables, both known and unfounded. These include 
the previously mentioned common causes, instrumental variable, 
and any other covariates. 

We thus present the use of causal modeling as a tool for gaining 
insight into how data breaches occur, and the degree to which 
certain associations behind these breaches can be seen as causal. 
We present a subset of open-sourced data offered by Verizon 
Communication. We then apply principles of Pearlian Causal 

inference through the software library DoWhy in order to 
understand the causal effects of our interventions. 

3.1. Methodology 

We concluded that DoWhy, a Microsoft open source Causal 
Modeling framework, was most appropriate for this current 
project, for its ease of use and abundant resources. It also provided 
an intuitive method to implement the Model -> Identify -> 
Estimate -> Refute structure of the analysis. All of these were 
readily provided by DoWhy and were thus implemented with 
DoWhy’s built-in functions. Due to the limitation on data 
availability regarding data breaches, we believe these provided 
enough for an exploratory analysis on the subject [9,10]. 

DoWhy also provides a principled way of modeling a given 
problem as a causal graph so that all assumptions are unequivocal 
and explicit. It provides an integrated interface for causal inference 
methods, combining the two major frameworks of graphical 
models and potential outcomes. It also automatically tests for the 
validity of assumptions if possible and assesses the robustness of 
the estimate to violations. 

It is important to note that DoWhy builds on two of the most 
powerful frameworks for causal inference: graphical models and 
potential outcomes. It uses graph-based criteria and do-calculus for 
modeling assumptions and identifying a non-parametric causal 
effect. For estimation, it switches to methods based primarily on 
potential outcomes. 

In the following paragraphs we will describe the techniques to 
use for our analysis: Propensity Score Matching, Propensity Score 
Stratification, and Linear Regression Estimator. These techniques 
can all be founded within the DoWhy framework. 

Linear Regression Estimator provides a baseline analysis 
assuming an evenly distributed dataset. It provides a foundation to 
compare results with the other methods. As linear regression only 
describes a correlation between the treatment and outcome, 
Propensity Score Matching and Propensity Score Stratification 
both use linear regression while adding additional processes in 
order to account for confounding variables and properly 
compartmentalize each data entry to find a causal relationship 
between the treatment and outcome. 

Propensity Score Stratification takes the propensity scores of 
each entry and classifies them into equal sub-groups. These 
subgroups are classified by the similarity of the covariates. The 
aim is to have each sub-group represent a distribution that 
accurately represents a non-biased dataset to the best of its ability. 

Propensity Score Matching instead takes the propensity scores 
of each entry and finds the entries with the highest propensity 
scores within the treatment group and finds the entries within the 
control group with covariates that most closely match each 
treatment group entry. This attempts to establish parity between 
the covariates of the treatment group and the control group.  

Both Matching and Stratification work to remove bias from 
high-dimensional datasets. They do so by balancing out the treated 
and control groups with processes that emulate a random 
distribution in an experiment. This is done by evaluating the 
propensity score of each group. The propensity score represents 
the probability of the treatment on each sample in the treatment 
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group and is calculated by mapping the outcomes to a linear 
regression line. The difference in the methods in how they use the 
propensity score to balance out the treatment and control group. 

In addition, refuters are necessary in the causal analysis process 
in order to verify the robustness of the results. The following 
methods all check the effects of confounding variables and 
compare them with the treatment to concretely establish a causal 
relationship. Generally, the refuters all involve rerunning the same 
causal analysis methods with the following changes to the dataset: 

• Placebo Refuter: Replaces the treatment variable with a 
placebo variable with random values 

• Data Subset Refuter: Runs the program over a randomly 
chosen subset of the original data 

• Common Cause Refuter: Generates a random confounding 
variable  

 
Figure 2: Number of Data Breaches by Industry 

3.2.  Data Acquisition 

We note that high-quality information on real-world 
cybersecurity incidents through academic or otherwise publicly 
accessible channels is likely to be unrepresentative of the nature in 
which breaches occur on a broader scale. As a result, we focus on 
analyzing healthcare privacy breach data, which generally enjoys 
stringent reporting standards. Our reasoning is as follows.    

For the private sector, disclosure of breaches can negatively 
impact short term company value as well as consumer trust. A 
report by IBM’s Ponemon Institute in 2019 estimates the global 
average impact of having a data breach to an organization to be 3.9 
million US dollars, representing a rise of 12% over the course of 
five years. For organizations with fewer than 500 employees, this 
cost averages to 2.5 million dollars [11]. Voluntary disclosure of 
data breaches may be unpalatable in light of this [12]. 

In contrast, government and healthcare institutions are 
generally under greater legal pressure to disclose similar incidents. 
For instance, the Department of Human and Health Care Services 
(HHS) in the United States mandates that information regarding 
data breaches involving over 500 individuals be disclosed to the 
media within 60 days of discovery. Structured collection of such 
breaches is made publicly available through the HHS website [13].  

Initial exploration was performed on the VERIS Community 
Database (VCDB). The VCDB is an open dataset covering a broad 
spectrum of security incidents occurring throughout both public 

and private sectors. Data available through this channel represents 
a small portion of data contained in a more comprehensive report 
presented in Verizon's annual Data Breach Investigation Report. 
The VCDB is attractive as there are few publicly available 
repositories containing annotated security breach information [14]. 

The VCDB follows the Vocabulary for Event Recording and 
Incident Sharing (VERIS) framework. Generally, information 
surrounding security incidents is divided into four categories: 
Actor, Attribute, Asset, and Action. Actor pertains to the entity or 
entities responsible for the data breach. Asset characterizes the 
type of information lost, as well as how accessible said information 
was. Attribute refers to the degree which the asset in question was 
affected, as well as the severity of the incident, the medium of 
transmission, and if said data was exposed to the public. Finally, 
Action describes how the security breach was carried out; such as 
if the breach was a result of malware, or simply negligence. 
Additional data on affected industry and incident timeline are 
included as well.  

To accommodate the wide variety in reporting standards, 
VERIS uses a fine-grained approach for characterizing security 
incidents, using a nested key-value store to accommodate some 
173 attributes. 

We will take the “actor” category as an example. For any given 
incident, the individual or individuals responsible could be 
categorized as either external, internal (affiliated with the 
organization), a partner (associate, but not directly affiliated), or 
simply unknown or not available. Within each type of actor lies a 
different subcategory. For instance, the “external actor” label can 
represent a criminal organization, foreign government, former 
employee, or a combination thereof. As a result, many of the keys 
contain lists as values, as represented in (1). 

 
“actor”: { 

[“external”: { 

“variety”: [“Mother Nature”, 
“Criminal Organization”],  

“motive”: [“NA”,  
“Espionage”,   

“Ideology”] 

} … 

              

 

 

(1)                         

 

3.3. Why Healthcare? 

While the VCDB contains many features describing the 
companies that were victims of data breach, little information 
seems to be provided regarding the situation preceding and during 
the data breach. Therefore, to maintain a degree of uniformity of 
each company, narrowing down to one industry like healthcare 
would mitigate discrepancies within the dataset. 

Furthermore, the VCDB utilizes a JSON-formatted, 
hierarchical data structure presented as a list of key-value pairs.  
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While each record adheres to the same general schema, sparsity 
arises as a result of how much data is disclosed by each entity, or 
simply what information is relevant to which sector. Referring 
back to US Healthcare data breach disclosure law, we can expect 
a baseline of data to be provided, such as the number of individuals 
affected, the type of breach, and the vector of attack.  

The next logical step was to transform the data from a 
hierarchical format into a two-dimensional, tabular structure. A 
strong motivation for this was to make the data both more 
comprehensible and consistent.  

Transforming the database for VCDB was straightforward 
thanks to the open-source library Verispy. Verispy converts the 
deeply nested structure of the original VCDB dataset into a two-
dimensional grid-like format. by performing “one-hot encoding” 
on each of the categorical variables. 

This leads to a relatively consistent dataset with the caveat of 
vastly increasing the (perceived) dimensionality. The final table 
consists of 2,347 columns, containing 2108 (89%) Boolean entries, 
147 (6%) string or string-like entries, and the remaining 92 (5%) 
numerical entries. 

 1839 entries within VCDB are related to healthcare out of 8363 
data breach entries. In order to further narrow down VCDB into 
healthcare, we further take out all irrelevant variables to our causal 
model (described in the next section) as well as drop all entries that 
have empty values in any of those variables. This drops the final 
dataset entry count to 106 entries, a mere 1.3% of the original 
VCDB size. This demonstrates sparseness of the VCDB dataset, 
despite the breadth of information available within. 

 

Figure 3. Causal Model for Cybersecurity (on VCDB) 

3.4. Data Breach Model 

 Figure 3 represents the causal graph used as the basis for our 
causal analysis. The variables are all taken from VCDB and were 
decided on how accurately they could be mapped to a timeline of 
the data breach. Since all observational data given to us are all post-
data breach, the way to approximate a causal effect for this analysis 
is to generate a model that shows a progression of events. Many of 
these variables and their sequencing were derived from personal 
interpretation than any logical standpoint. We will take a look at 
each variable type with their justifications. 

• Actor 

• Employee Count 

• Action  

• Discovery Time 

• Discovery Method 

• Records Lost 

‘Actor’ is referring to the one who instigates the action against 
the victim. This could be a single person, a group of people, or 
even a natural disaster. In the causal model, the actor is spread 
amongst three categories: Internal, External, Partner. Internal 
actors are those who work within the company that is affected by 
the breach. External actors are those with no affiliation whatsoever 
with the company. Finally, partners do have or are part of an 
organization that has an affiliation with the company but are not 
from the company themselves. This variable represents a general 
categorizable description regarding the perpetrator of the data 
breach and is put near the top of the causal graph because the 
‘actor’ is the one that will begin this data breach event. 

‘Employee Count’ represents the general size of the victim 
company, which is represented by an integer value. Employee 
count was chosen as it is a variable that conveys a simple, but 
ordinal description of healthcare organizations. 

Each of the types of data breaches (‘Malware’, ‘Hacking’, 
‘Physical’, ‘Misuse’, ‘Error’, ‘Social’) are labeled as ‘Actions’ 
within VCDB. These are the treatment variables in which the 
analysis will be performed on. Each action is a binary state, and 
while there are a few rare cases that have multiple ‘Actions’ at 
once, these are still considered one data breach. 

 
Figure 4. Distribution of ‘Discovery Time’ 

‘Discovery Time’ is the unit of time it took for the data breach 
to be discovered. VCDB does not have discovery time as an integer 
number. Instead, the variable is categorized as six different ranges 
of numbers, getting subsequently larger. Going under the 
assumption that the larger unit means that the actual discovery time 
was longer, the units were combined into one variable from 1-6, 
each representing a greater scale of time. The unit of time 
represents the general time frame of the data breach being 
discovered. Discovery time is one of the outcomes that is used to 
measure causality of data breaches. ‘Containment Time’ and 
‘Exfiltration Time’ were considered as well. However, a high 
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proportion of these entries remain unfilled in the VCDB dataset 
and are therefore not of much use. 

 

Figure 5. Distribution of Records Lost (log-scaled) 

‘Discovery Method’ is the method by which the victim was 
first able to discover the data breach. Like ‘Actor’, this is also split 
into External, Internal, and Partner, which represents the 
relationship of the individual or group that discovered the breach 
to the victim company. External meant those unrelated to the 
company, Internal part of the company, and Partner are those 
affiliated with but not directly part of the company. 

‘Records Lost’ is the second outcome we will be using as an 
outcome to test the causality of the causal model. Similar to 
Discovery Time, Records Lost is not an integer value, but ranges 
of values of subsequently greater number. This variable is also 
similarly combined into one variable ranging from 0-6. One major 
caveat is that this variable doesn’t have a defined unit and thus the 
scale of a unit of record is determined by each individual company. 
Part of the decision to focus on healthcare companies only was to 
mitigate this ambiguity. 

4. Results and Analysis 

Causal estimate calculations were run across all six ‘Actions’ 
(Social, Physical, Misuse, Malware, Hacking, and Error) and two 
outcomes (Discovery Time, Records Lost). This means multiple 
runs using the same causal model and dataset but changing the 
‘Action’ and ‘Outcome’ input for each run until all permutations 
of each variable was covered. This was then repeated across all 
refutations. The causal estimate results for Propensity Score 
Matching on Discovery Time and Records Lost are shown in 
Figure 6 and 7, respectively. 

 
Figure 6. Causal Estimates for Discovery Time 

 
Figure 7. Causal Estimates of Records Lost 

As seen in Figure 6 shows, the causal estimate of each action 
on Discovery Time shows quite a range of values and distributions 
across all actions. 3 actions (Physical, Misuse, Hacking) have 
positive causal estimates. indicating a potential strong causal 
relationship between the actions and lengthy discovery times. On 
the other hand, Social and Error turn out negative causal estimates, 
meaning that the impact of those two variables on discovery time 
is minimal. Lastly, Malware has a unique scenario where there is 
a split between the Propensity Score and its refuters.  

For records lost (Figure 7), Hacking returns an overwhelming 
higher causal estimate compared to all other actions. In fact, all the 
other actions return a negative causal estimate. This does not 
necessarily mean the lack of causal effect of the other actions on 
records lost. However, it does provide strong indication that the 
greatest impact when it comes to records lost during a data breach 
is most likely the result of hacking as opposed to all other methods. 
Interestingly, this is backed up by both the Random Common 
Cause and Data Subset, but not the Placebo Refuter. In the Placebo 
case, the causal estimate returns a comparable negative value to 
the other actions. A possible explanation can be traced back to the 
nature of the dataset. While our causal model brings into 
consideration other causes of data breach, the distribution of the 
effect of each cause can be hard to separate. This is exacerbated 
when the Placebo Refuter randomizes the treatment variable, 
setting it so that every single entry in the dataset can also be 
considered part of the method of hacking.  

This Placebo Refuter discrepancy is reflected across all the 
actions, which each return strongly diminished causal estimates. 
However, Hacking remains the only variable where the causal 
estimate goes from a positive to a negative value. 

Another quirk to note is the large value of the causal estimate 
of Hacking on Records Lost. The reason for this exaggerated value 
is likely due to a lack of a solid control group within our data. The 
dataset provides us with a large selection of data breaches in a wide 
variety of companies. What the dataset lacks are scenarios where 
no data breach has occurred, generating an inherent bias within the 
dataset. This bias makes it so that the data do not fit well into linear 
regression, hence providing an overly large value as the result. 

The most unexpected outcome was that propensity score 
stratification gave inconclusive results when ran on DoWhy, hence 
the lack of data on this portion of the analysis. After some analysis, 
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we come to the conclusion that, due to the binary nature of each 
action, the distribution of the linear regression is not clear enough 
for stratification to be able to quantify and compartmentalize the 
dataset into groups. Hence, the resulting value outputs an 
inconclusive value due to a lack of substantial strata. This applies 
to stratification and not matching because matching disregards 
parts of the dataset with low propensity score; in stratification they 
still have an impact due to those data entries being assigned into 
strata. 

Overall, in this specific scenario and dataset, Hacking would 
prove to be the most impactful amongst all methods of data breach.  
However, the refuters give strong indication on where this impact 
is limited regarding not only the action itself but the dataset as a 
whole.  

5. Conclusion and Future Work 

The principal findings of this paper demonstrate the unique 
perspective of the causal modeling approach. Because we cannot 
realistically set up an experiment on data breach incidents, 
particularly in which all factors are readily provided, DoWhy and 
Causal Modeling allow us to simulate such experiments and make 
inferences with a degree of  robustness based on events that would 
otherwise be difficult to duplicate. 

We identify a subset of factors in the Verizon Community 
Database and create a hypothesis based on the theory that malware 
and hacking are the most prominent causes of data breaches. 
Through propensity score matching and stratification, we measure 
the strength of the action behind data breaches. By running 
refutation tests, we are able to verify how well these metrics hold 
up, similar to how traditional experiments employ control groups 
or utilize a placebo treatment.  

Ample room remains for the use of causal modeling in 
cybersecurity. We limit the scope of the factors considered in the 
Verizon Dataset to Actions in order to emphasize the results of the 
exploratory approach. A larger and denser dataset could utilize the 
causal model better. 

Other fields of cybersecurity lend themselves well to causal 
modeling. In particular, the use of Directed Acyclic Graphs to 
model vectors of attack in a network intrusion scenario could lead 
to different approaches into how such cases are handled.  

The study is important to the readers in the scientific 
community since it is relevant to formulating policies in industry 
and government, in order to avoid such problems in the near future. 
Given the context of the work, exhibited in the paper, our findings 
are worthy of note. 
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