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 To reduce the risk of accidental system shutdowns, we propose to control system developers 
(supervisor, SCADA) a prediction tool to determine the occurrence date of an imminent 
failure event. The existing approaches report the rate of occurrence of a future failure event 
(stochastic method), but do not provide an estimation date of its occurrence. The date 
estimation allows to define the system repair date before a failure occurs. Thus, provide 
visibility into the future evolution of the system. The approach consists in modelling the 
operating modes of the system (nominal, degraded, failed); the goal is to follow the 
evolution of the system to detect its degradation (switching from nominal to degraded 
mode). When degradation is reported, a prognoser is generated to identify all possible 
sequences and more precisely those ending with a failure event. then it checks among the 
sequences (with failure event) which ones are prognosable. The last step of the approach 
is carried out in two parts: the first part consists in calculating the execution time of the so-
called prognosable sequences (by optimizing the number of possible states and resolving 
an inequalities system). The second part makes it possible to find the minimum execution 
(the earliest occurrence of a failure event).  
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1. Introduction  
The supervision applications provided to control system 

developers (in manufacturing production, robotics, logistics, 
vehicle traffic, communication networks or IT) make it possible to 
report the detection of a dysfunction or accidental shutdown of the 
system and locate its origin. The discrete event systems (DES) 
community has developed diagnostic methods that focus on the 
logical, dynamic or temporal sequence of failure events that cause 
this dysfunction. However, the criticality of some systems and 
their complexity require a method of the failure events prognosis, 
to report their occurrence in advance in order to avoid any damage 
caused by a failure.  

The challenge is therefore to prevent the future occurrence of a 
failure event. However, which suitable modeling tool is required 
for this system? And knowing that more the complexity of the 
system increases, more its state of space increase. So, how to 
overcome this problem of combinatorial explosion? And what are 
the prognosis limits? 

Several fault prognosis methods have been developed; some 
have adopted a stochastic approach [1] [2] [3] while others have 

chosen non-stochastic [4]-[6], one for state automaton or Petri Net. 
These approaches are interested in prediction of failure m-steps in 
advance, based on a stochastic process. However, their assessment 
is difficult and probabilistic information is not always realistic. 
Others propose a prognosis approach [7] that consists of giving 
occurrence rates of possible traces that end with a failure event. 
These approaches indicate the occurrence of a future failure event, 
but do not specify its occurrence date. The possible occurrence 
date of a failure event makes it possible to plan the intervention 
date to repair the system before a failure occurs and thus provides 
visibility into the future evolution status of the system.  

The challenge of each group working on this topic is to predict 
perfectly the future reality. [8] introduces the notion of signature 
of a trace, which consists to use several formal systems devoted to 
the description of event signature and the recognition of behaviors, 
called chronic. This concept has been used in diagnostic work [9], 
[10] and is based on error detection, localization, evaluation, 
recognition and response. [11] proposed a method for calculating 
the execution time of a trace, but it is still diagnosis-oriented. The 
development of a new approach of the temporal prognosis requires 
a modeling tool that allows the time constraints of the system 
(temporal prognosis) while using labels (it involves predicting an 
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event over time). An extension of the Petri nets offers this 
possibility. These Petri nets are called, the Temporal Labelled Petri 
net (TLPN for short).  

The aim is to propose a correct control of a system subject to 
unforeseen failures. The existing studies use the logical order of 
failure events occurrences to make the prognosis. In this paper, we 
are not only interested in the logical order of events, but also in the 
date of their occurrence. We assume that the system accepts three 
possible operating modes (nominal, degraded, and failed one). The 
events occurrence allows the system to switch between these 
modes. The event occurrence dates allow the synchronization of 
state switching in the model. A delay occurrence of an event, for 
example, can be explained by a degradation of the system. 
Approach’s based only of a logic events occurrence cannot detect 
this delay. Hence the interest of a time-based prognosis approach.  

Two contributions are proposed in this paper. The first one is 
concerned with the formal representation and the second one with 
the methodology of prognosis calculation. Indeed, the model is 
based on a TLPN. The association of events to temporal transitions 
will be presented. The evolution from one mode to another one will 
be represented by transitions firing. The firing of each transition 
depends on the occurrence of an event and corresponding 
occurrence date. The second contribution relates to 
the methodology of the prognosis. A prognoser is built from the 
TLPN model. It is an oriented state graph, which identifies all 
possible sequences namely those that end in a failure event. But 
before predicting a failure event, it is important to make sure that 
it is possible to do it. That's why we introduced the prognosability 
property whose objective is to determine the sequences ending 
with a failure event. Such event is called prognosable, the goal is 
to predict the earliest date of failure event occurrence. To calculate 
the execution time of these sequences and optimize the number of 
possible states, the resolution of an inequalities system based on 
works of [11]-[13] is used. The idea is to find the set of minimum 
values solution of the inequalities system. These values will 
constitute the minimum time after which the occurrence of the 
failure event is sure.  

The paper is organized as follows: the second section is 
devoted to the basic concepts of Petri Nets (PN). The third section 
introduces temporal PNs (according to Berthomieu [14]-[19] and 
Popova [11]-[13], [20]-[22]. The fourth section focuses on labelled 
PN. In the fifth section, we discuss time-labelled PN to verify the 
prognosis approach in the sixth section. Thus, in this last section, 
the formal approach of our proposal will be presented, with an 
algorithm for predicting a temporal failure event and a case study, 
with explanations. 

2. Preliminary 

2.1. Petri Nets (PN) 

A PN structure is a 4-uplet 𝑅𝑅 =< 𝑃𝑃,𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 > given 
by: 
• 𝑃𝑃 is a nonempty finite set of places {𝑝𝑝1, 𝑝𝑝2, …𝑝𝑝𝑛𝑛}. 
• 𝑇𝑇 is a nonempty finite set of transitions  {𝑃𝑃, 𝑃𝑃2, … 𝑃𝑃𝑚𝑚} with 

𝑃𝑃 ∩ 𝑇𝑇 = ∅. 
• 𝑃𝑃𝑃𝑃𝑃𝑃 is the backward incidence function that assigns to each 

couple (𝑝𝑝, 𝑃𝑃) of places and transitions a non-negative integer. 

𝑃𝑃𝑃𝑃𝑃𝑃:𝑃𝑃 × 𝑇𝑇 → ℕ, 𝑃𝑃𝑃𝑃𝑃𝑃 (𝑝𝑝, 𝑃𝑃) = ω is the value of the arc weight 
arc from the place 𝑝𝑝 to the transition 𝑃𝑃. 

• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the forward incidence function that assigns to each 
couple (𝑃𝑃, 𝑝𝑝) of transitions and places a non-negative integer. 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃:𝑇𝑇 × 𝑃𝑃 → ℕ, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  (𝑝𝑝, 𝑃𝑃) = ω is the value of the arc 
weight arc from the transition 𝑃𝑃 to place 𝑝𝑝. 

The initial marking 𝑚𝑚0 is an application: 
𝑚𝑚0 ∶  𝑃𝑃 →  ℕ, it is labeled as an initial global system state. A 
marked net system 𝑅𝑅𝑚𝑚 =< 𝑅𝑅,𝑚𝑚0 >  is a net 𝑅𝑅  with an initial 
marking 𝑚𝑚0. When the transition t is enabled, it then would be 
fired. From the marking m, the firing of the t leads to the new 
marking 𝑚𝑚′ denoted by 𝑚𝑚[𝑃𝑃 > 𝑚𝑚′. 
• The symbol •𝑃𝑃𝑗𝑗  denotes the set of all places 𝑝𝑝𝑖𝑖  such that 

Pre(𝑝𝑝𝑖𝑖 , 𝑃𝑃𝑗𝑗) ≠ 0 and 𝑃𝑃𝑗𝑗• the set of all places 𝑝𝑝𝑖𝑖  such that post(𝑝𝑝𝑖𝑖 , 
𝑃𝑃𝑗𝑗) ≠ 0. Analogously, •𝑝𝑝𝑖𝑖  denotes the set of all transitions 𝑃𝑃𝑗𝑗 
such that post(𝑝𝑝𝑖𝑖 , 𝑃𝑃𝑗𝑗) ≠0 and 𝑝𝑝𝑖𝑖•  the set of all transitions 𝑃𝑃𝑗𝑗 
such that Pre(𝑝𝑝𝑖𝑖 , 𝑃𝑃𝑗𝑗) ≠0. 

2.2. Temporal Petri Nets (TPN) 
Temporal Petri Nets TPN are introduced in [5], then studied 

by [16], [20]-[26]. 
 
Definition 1: 
A Temporal Petri Net (TPN) is a net 𝑅𝑅_𝑇𝑇 = < 𝑃𝑃, 𝑇𝑇, 𝑃𝑃𝑃𝑃𝑃𝑃,

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,  𝑚𝑚0, 𝐼𝐼 >, in which < 𝑃𝑃,𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚0 > , is a marked 
Petri Net 𝑅𝑅𝑚𝑚, and I : T → ℚ+ × (ℚ+ ∪{∞}) is a static firing time 
interval function which assigns a firing static interval [𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚] 
to each transition t, with 𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  can be infinite) and 
ℚ+ is all positive or zero rational numbers. 

An enabled transition t can be fired at time τ if the time elapsed 
since the activation of t belongs to the interval I(t) [𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚].  

If 𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  = 0 (i.e., I(t) = [0, 0]) the transition t is called 
immediate otherwise it is called timed.  

Thus, we can divide the set T of transitions into two subsets 
𝑇𝑇𝑡𝑡 and 𝑇𝑇𝑖𝑖𝑚𝑚 [27] where 𝑇𝑇𝑡𝑡 is the set of timed transitions and 𝑇𝑇𝑖𝑖𝑚𝑚 
is the set of immediate transitions with: 𝑇𝑇𝑡𝑡 ∩ 𝑇𝑇𝑖𝑖𝑚𝑚 = ∅ and 𝑇𝑇𝑡𝑡 ∪
𝑇𝑇𝑖𝑖𝑚𝑚 = 𝑇𝑇 
The aim of this distinction is to determine the firing priorities of 
the transitions. Firing 𝑇𝑇𝑖𝑖𝑚𝑚  transitions has a higher priority than 
firing 𝑇𝑇𝑡𝑡 transitions. 

2.2.1. Behavior, states and reachability relation 
Definition 2: 
According to [1], a state of a temporal net is a pair E = (m, I) 

in which 𝑚𝑚 is a marking and the application I associates a firing 
temporal interval to each transition.   

The initial state consists of the initial marking 𝑚𝑚0  and the 
application 𝐼𝐼0 which associates to each enabled transition its static 
firing temporal interval, 𝐸𝐸0 = (𝑚𝑚0, 𝐼𝐼0), such that: 

if 𝑚𝑚0 ≥ 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) then 𝐼𝐼0(𝑃𝑃) = 𝐼𝐼(𝑃𝑃) otherwise 𝐼𝐼0(𝑃𝑃) = ∅.       (1) 

Transition t may fire iff it remains logically enabled for a time 
interval θ included in [Tmin; Tmax]. θ is the amount of time that has 
elapsed since the transition t is enabled. 
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A transition t is enabled in a state 
E = (m, I) iff: 𝑚𝑚0 ≥ 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) ∧ 𝜃𝜃 ∈ 𝐼𝐼(𝑃𝑃) ∧ ∀𝑃𝑃𝑘𝑘 ≠ 𝑃𝑃,𝑚𝑚 ≥

𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃𝑘𝑘) ⇒ 𝜃𝜃 ≤ max (𝐼𝐼(𝑃𝑃𝑘𝑘))          (2)                                                                          
From E, the result of the 𝑃𝑃 firing is as usual the new state E’ = (m’, 
I’) such that: 
1) 𝑚𝑚’ = 𝑚𝑚 + ∆t with ∆t = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) - 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃)                       
2) For each transition 𝑃𝑃𝑘𝑘: 
- If 𝑃𝑃𝑘𝑘 is not enabled by 𝑚𝑚’, then I’(𝑃𝑃𝑘𝑘) = ∅ ; 
- If 𝑃𝑃𝑘𝑘 is distinct from t, enabled by 𝑚𝑚, and not in conflict with 

t, then I’(𝑃𝑃𝑘𝑘) = [max (0, min(I(𝑃𝑃𝑘𝑘)) – θ), max( I(𝑃𝑃𝑘𝑘))- θ] 
- Otherwise I’(𝑃𝑃𝑘𝑘) = I(𝑃𝑃𝑘𝑘)  

According to [11], a state of an TPN is a pair E = (𝑚𝑚, h) in 
which 𝑚𝑚 is a place marking (noted p_marking) and h is a clock 
vector (of dimension equal to the number of network transitions) 
that corresponds to the transition markings (noted t_marking). 
Thus, the p_marking describes the situation of the places and 
t_marking that of the transitions. Such a pair (p_marking, 
t_marking) describes a TPN status.  

Definition 3: 
Let 𝑅𝑅_𝑇𝑇 be an TPN.  
- A p_marking in 𝑅𝑅_𝑇𝑇 is a function 𝑚𝑚: P → ℕ. A p_marking in 

TPN is also a marking in a untimed PN. 
- A t_marking in 𝑅𝑅_𝑇𝑇 is a function h: T  → ℝ ∪ {$} 

$ means that the transition is not enabled. 

Definition 4: 
Let 𝑅𝑅_𝑇𝑇  = < 𝑃𝑃, 𝑇𝑇, 𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,  𝑚𝑚0, 𝐼𝐼 >  a TPN, 𝑚𝑚  is a 
p_marking and h is a t_marking. The pair E = (m, h) is called a 
state in 𝑅𝑅_𝑇𝑇 if and only if: 
1- 𝑚𝑚 is a marking accessible in R. 
2- ∀𝑃𝑃 (𝑃𝑃 ∈ 𝑇𝑇 ∧ 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃)  ≰ 𝑚𝑚 ⟶ ℎ(𝑃𝑃) = $). 
3- ∀𝑃𝑃 (𝑃𝑃 ∈ 𝑇𝑇 ∧ 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃)  ≤ 𝑚𝑚 ⟶ ℎ(𝑃𝑃) ∈ ℝ0

+  ∧ ℎ(𝑃𝑃)  ≤
max(𝑃𝑃)) where max(𝑃𝑃) is the latest firing time of 𝑃𝑃.              

Definition 4 shows that each transition t has a clock. If t is not 
enabled by the marking 𝑚𝑚, the associated clock is not activated 
(sign $), If t is enabled by 𝑚𝑚, the clock of t indicates the time 
elapsed since the last activation of t. 

The initial state is given by 𝐸𝐸0 = (𝑚𝑚0, ℎ0) avec  

                           ℎ0(𝑃𝑃) =  �0 if 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) ≤ 𝑚𝑚0
$              otherwise 

                         (3) 

A transition t is firable from state E = (𝑚𝑚; h) (noted E[t> ) if and 
only  if 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) ≤ 𝑚𝑚 and h(t) ≥ min(t); (3) where min(𝑃𝑃) is the 
earliest firing time of 𝑃𝑃. The firing of t leads 𝑅𝑅_𝑇𝑇 to a new state E’ 
= (𝑚𝑚’, h’) (noted E[t>E’) 

In general, each TPN has an infinite number of states, depending 
formulation of time. 

The construction of the reachability graph of a such PN is then 
generally impossible. To reduce this state space and provide a 
finite representation of the reachability graph, two different 
methods are defined. [14] Introduces the notion of state classes and 
[11] provides a parametric description to reduce this state space 
without affecting network properties. This reduced report space is 
used to define the reachability graph of a TPN. Such a graph will 
provide a basis to predict failure events of the system. 

2.2.2. Parametric state and parametric sequence 

Let 𝑅𝑅_𝑇𝑇  be an arbitrary TPN. Either 𝜎𝜎 = 𝑃𝑃1 … 𝑃𝑃𝑛𝑛  a firing 
sequence in 𝑅𝑅_𝑇𝑇  and either 𝜏𝜏 = 𝜏𝜏0𝜏𝜏1 … 𝜏𝜏𝑛𝑛  a time sequence with 
𝜏𝜏𝑖𝑖 ∈ ℝ∗+ . Then there is at least one dated sequence 𝜎𝜎(𝜏𝜏) =
𝜏𝜏0𝑃𝑃1𝜏𝜏1𝑃𝑃2 … 𝜏𝜏𝑛𝑛−1𝑃𝑃𝑛𝑛𝜏𝜏𝑛𝑛 of σ in 𝑅𝑅_𝑇𝑇 called the timed sequence of σ 
which leads the net from the initial state 𝐸𝐸0 to a state E (noted 𝐸𝐸0 
[σ(τ)>E) with E = (𝑚𝑚, h).  

Let us consider for example the following sequence leading the 
network from the initial state 𝐸𝐸0 to a state 𝐸𝐸𝑛𝑛 :  
 𝐸𝐸0 [2.0>𝐸𝐸0′  [𝑃𝑃1>𝐸𝐸1 [2.3>𝐸𝐸1′[𝑃𝑃2> …𝑃𝑃𝑛𝑛>𝐸𝐸𝑛𝑛 [1,5>𝐸𝐸𝑛𝑛′  
The switch from 𝐸𝐸0 to 𝐸𝐸1 is made in 2 time units after the firing of 
𝑃𝑃1. 

In addition to this feasible sequence, it is obvious that there is 
an infinity of feasible sequences leading 𝑅𝑅_𝑇𝑇 from 𝐸𝐸0 to E, which 
makes the reachability graph infinite. Instead of considering fixed 
numbers 𝜏𝜏𝑖𝑖 , a variable 𝑥𝑥𝑖𝑖  is used to denote the time elapsed 
between firing the transition 𝑃𝑃𝑖𝑖 and the transition 𝑃𝑃𝑖𝑖+1 in σ. Thus 
instead of having an infinity of execution sequences between the 
states 𝐸𝐸0 and 𝐸𝐸𝑛𝑛, we will study a single sequence that we will call 
parametric sequence 𝜎𝜎(𝑥𝑥) = 𝑥𝑥0𝑃𝑃1 … 𝑥𝑥𝑛𝑛−1𝑃𝑃𝑛𝑛𝑥𝑥𝑛𝑛  leading the 
network from the state 𝐸𝐸0 to the state 𝐸𝐸𝑛𝑛  with 𝐸𝐸0 [𝑥𝑥0>𝐸𝐸0′  [𝑃𝑃1>𝐸𝐸1 
[𝑥𝑥1>𝐸𝐸1′[𝑃𝑃2> …𝑃𝑃𝑛𝑛>𝐸𝐸𝑛𝑛 [𝑥𝑥𝑛𝑛>𝐸𝐸𝑛𝑛′ . 

Definition 5: Parametric state and parametric sequence 
Let 𝑅𝑅_𝑇𝑇 = < 𝑃𝑃, 𝑇𝑇, 𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,  𝑚𝑚0, 𝐼𝐼 > an TPN, 𝜎𝜎 = 𝑃𝑃1 … 𝑃𝑃𝑛𝑛  a 
firing sequence in 𝑅𝑅_𝑇𝑇 , 𝜎𝜎(𝑥𝑥) = 𝑥𝑥0𝑃𝑃1 … 𝑥𝑥𝑛𝑛−1𝑃𝑃𝑛𝑛𝑥𝑥𝑛𝑛  its feasible 
sequence and  𝐵𝐵𝜎𝜎  the value of 𝑥𝑥 . The condition for the values 
𝐵𝐵(𝑥𝑥𝑖𝑖) results from the time intervals associated with transitions 
and are united into the set 𝐵𝐵𝜎𝜎  (5). Then, the parametric execution 
(𝜎𝜎(𝑥𝑥),𝐵𝐵𝜎𝜎)  of 𝜎𝜎  and the parametric state (𝐸𝐸𝜎𝜎 ,𝐵𝐵𝜎𝜎)  in 𝑅𝑅_𝑇𝑇  are 
determined by: 

* When 𝜎𝜎 = 𝜀𝜀, i.e., 𝜎𝜎(𝑥𝑥) = 𝑥𝑥0. 

Then 𝐸𝐸𝜎𝜎 = (𝑚𝑚𝜎𝜎 ,ℎ𝜎𝜎) and 𝐵𝐵𝜎𝜎 are given by:  

1- 𝑚𝑚𝜎𝜎 ≔ 𝑚𝑚0. 

2- ℎ0(𝑃𝑃) =  �𝑥𝑥0 if 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) ≤ 𝑚𝑚0
$              otherwise 

                                        (4) 

3- 𝐵𝐵𝜎𝜎 ≔ {0 ≤ ℎ𝜎𝜎(𝑃𝑃) ≤ max(t) | t ∈ T ∧ Pre(•, t)  ≤ 𝑚𝑚𝜎𝜎 }      (5) 

* Now, it is assumed that 𝐸𝐸𝜎𝜎  and 𝐵𝐵𝜎𝜎 are already defined for the 
sequence 𝜎𝜎 = 𝑃𝑃1 … 𝑃𝑃𝑛𝑛. 
for 𝜎𝜎 = 𝑃𝑃1 … 𝑃𝑃𝑛𝑛𝑃𝑃𝑛𝑛+1 = 𝛾𝛾𝑃𝑃𝑛𝑛+1, and 

 𝜎𝜎(𝑥𝑥) = 𝑥𝑥0 𝑃𝑃1 … 𝑥𝑥𝑛𝑛−1 𝑃𝑃𝑛𝑛 𝑥𝑥𝑛𝑛 𝑃𝑃𝑛𝑛+1 𝑥𝑥𝑛𝑛+1 we put 1. 𝑚𝑚𝜎𝜎 ≔ 𝑚𝑚𝛾𝛾 +
∆𝑃𝑃𝑛𝑛+1, 

2.  ℎ𝜎𝜎(𝑃𝑃) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

$  if 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) ≰ 𝑚𝑚𝜎𝜎   "so t is not enabled by  𝑚𝑚𝜎𝜎" 
ℎ𝛾𝛾(𝑃𝑃)  +  x𝑛𝑛+1  if                       𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃)  ≤  m𝜎𝜎 ∧
                                                      𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃)  ≤   𝑚𝑚𝛾𝛾 ∧
                                                       • 𝑃𝑃𝑛𝑛+1 ∩ • t =  ∅ ∧  

                                        𝒕𝒕 ≠   𝑃𝑃𝑛𝑛+1
                                        "𝑃𝑃 was enabled 𝑓𝑓or  𝑚𝑚𝛾𝛾  and 

                                       remains enabled for  𝑚𝑚𝜎𝜎"
𝑥𝑥𝑛𝑛+1 Otherwise        "because t is newly enabled "  

     

(6)    
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3. 𝐵𝐵𝜎𝜎 ≔ 𝐵𝐵𝛾𝛾 ∪ �min(𝑃𝑃𝑛𝑛+1) ≤ ℎ𝛾𝛾(𝑃𝑃𝑛𝑛+1)� ∪ {0 ≤ ℎ𝜎𝜎(𝑃𝑃) ≤
                max (𝑃𝑃)|𝑃𝑃 ∈ 𝑇𝑇 ∧ 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) ≤ 𝑚𝑚𝜎𝜎}.                   (7) 

ℎ𝜎𝜎(𝑃𝑃) is a sum of variables (6) (ℎ𝜎𝜎(𝑃𝑃) is a parametric t_marking), 
it is a vector of linear functions: ℎ𝜎𝜎(𝑃𝑃)= f(x) with x:= (𝑥𝑥0, … x|σ|) 
𝐵𝐵𝜎𝜎 is a set of conditions (7) (a system of inequalities) 

Example: 
Consider the temporal Petri Net 
 

 
 

Figure 1: Model 1. 

and the transition sequence 𝜎𝜎 = 𝑃𝑃1𝑃𝑃3𝑃𝑃4𝑃𝑃2𝑃𝑃3. 

𝜎𝜎(𝑥𝑥) = 𝑥𝑥0𝑃𝑃1𝑥𝑥1𝑃𝑃3𝑥𝑥2𝑃𝑃4𝑥𝑥3𝑃𝑃2𝑥𝑥4𝑃𝑃3𝑥𝑥5 

ℎ𝜎𝜎 =

⎝

⎜
⎛

𝑚𝑚4+𝑚𝑚5
𝑚𝑚5
𝑥𝑥5
𝑥𝑥5

𝑥𝑥0 + 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4+𝑥𝑥5
$ ⎠

⎟
⎞

 and 

𝐵𝐵𝜎𝜎 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

0 ≤ 𝑥𝑥0 ≤ 2
0 ≤ 𝑥𝑥1

0 ≤ 𝑥𝑥2 ≤ 2
0 ≤ 𝑥𝑥3 ≤ 2

0 ≤ 𝑥𝑥4
0 ≤ 𝑥𝑥5

𝑥𝑥4+𝑥𝑥5 ≤ 2
𝑥𝑥0 + 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4+𝑥𝑥5 ≤ 5⎭

⎪
⎪
⎬

⎪
⎪
⎫

 

 
The POPOVA approach not only reduces the system's state 

space (considering only the essential states) [12], but also 
determines the time required to reach each state. By using 
parametric states, it is not necessary to check all possible values of 
the clock, and the inequation system allows to determine the 
minimum values of their firing times. We will take advantage of 
this last remark to make the prognosis as soon as possible of a 
failure event.  

2.3. Labeled Petri net  

In discrete event systems, partial observation often results in 
the addition of events or labels as sensor responses of the system.  

Thus, a Labelled Petri Net (which we will note 𝑅𝑅_𝐿𝐿) is a 
classic Petri net in which labels are associated to transitions. 
Definition 6: 

A Labelled Petri Net (LPN) is a net 𝑅𝑅_𝐿𝐿 =<
𝑃𝑃,𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚0, Σ,ℒ >  in which =< 𝑃𝑃,𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚0 >, 
is a marked Petri net, ∑ is the set of labels associated with 
transitions, ℒ : T → ∑ ∪  {ε} is the transition labeling function 
associating a label (event) e  ∈ ∑ ∪ {ε} to each transition 𝑃𝑃 ∈ 𝑇𝑇, 
with ε the empty event (or silent). 
Thus: ℒ (t) = e means that the label of the transition 𝑃𝑃 is e. 

Remark: Σ can be partitioned to Σ𝑜𝑜  and Σ𝑢𝑢𝑜𝑜with Σ𝑜𝑜  is the set of 
observable events and Σ𝑢𝑢𝑜𝑜 is the set of unobservable events 

 In this paper we assume that the same label e ∈ ∑ can be 
associated with several transitions, i.e., two transitions 𝑃𝑃𝑖𝑖  and 
𝑃𝑃𝑗𝑗 with 𝑃𝑃𝑖𝑖 ≠ 𝑃𝑃𝑗𝑗 can be labelled with the same event e in a LPN. 

Let ∑* the set of all event trace ∑ containing the label ε, the 
function of labeling transitions ℒ  can be extended to sequences: 
ℒ : T* → ∑* such that: 

if 𝑃𝑃𝑗𝑗 ∈ T then ℒ (𝑃𝑃𝑗𝑗) = 𝑃𝑃𝑘𝑘 for 𝑃𝑃𝑘𝑘 ∈ ∑;                                        (8) 

if σ ∈ T∗ ∧ 𝑃𝑃𝑗𝑗 ∈ T then ℒ (𝜎𝜎𝑃𝑃𝑗𝑗) = ℒ (σ). ℒ (𝑃𝑃𝑗𝑗);                          (9) 

Moreover, if ℒ (λ) = ε then λ is the empty sequence. 

Let σ a transition sequence and 𝜔𝜔  = ℒ  (σ) ∈  Σ∗ . The labelled 
sequence lead to a language generated by the LPN 𝑅𝑅_𝐿𝐿 is ℒ( 𝑅𝑅_𝐿𝐿) 
= { 𝜔𝜔 ∈ Σ∗ | (∃σ, 𝑚𝑚0[σ>) ℒ (σ) = 𝜔𝜔}. Thus, 𝑚𝑚1  [𝜔𝜔 >𝑚𝑚2  means 
that ∃σ ∈ T∗, ℒ (σ) = 𝜔𝜔 where  𝜔𝜔 = 𝑃𝑃1𝑃𝑃2 … 𝑃𝑃𝑛𝑛 that is, from 𝑚𝑚1 and 
by firing σ, 𝑚𝑚2  will be reached. 𝑚𝑚2 can be noted 𝑚𝑚𝜎𝜎 . [27][28]. 
Note that the length of a sequence σ is greater than or equal to the 
corresponding word 𝜔𝜔 (i. e. |σ| ≥ | 𝜔𝜔  |). Indeed, if σ contains q 
transitions labeled by ε, then |σ|=q+| 𝜔𝜔| Given the events sequence 
𝜔𝜔, the reverse labeling function ℒ−1(𝜔𝜔) is the whole { σ ∈ T* | 
ℒ(σ) = 𝜔𝜔 }. 

Example [27]:  
Let the following alphabet Σ = {𝑃𝑃1,𝑃𝑃2, 𝑃𝑃3}, all transitions 𝑇𝑇 =
{𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3, 𝑃𝑃4} and the labelling function ℒ  such as  

ℒ(𝑃𝑃𝑗𝑗) = �
𝑃𝑃𝑗𝑗 𝑖𝑖𝑓𝑓 𝑗𝑗 = {1, 2}
𝑃𝑃3 𝑖𝑖𝑓𝑓 𝑗𝑗 = {3, 4}                                 (10) 

Let's consider the set ω = {𝑃𝑃1, 𝑃𝑃3}, then ℒ−1 (ω) = {{𝑃𝑃1, 𝑃𝑃3}, 
{𝑃𝑃1, 𝑃𝑃4}}. 

2.4. Temporal labelled Petri net 

In this paper, the aim is to provide a prognosis of the 
occurrence date a failed event based on discrete event systems. To 
represent the behavior of a such system, we adopt the temporal 
labelled Petri net as modeling tool that represents both the events 
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and their occurrence dates. Let's therefore provide for each event 
sequence on the network a temporal signature. 

The temporal labelled Petri net (TLPN) is an extension of the 
temporal PN [17][18] for which each transition is associated with 
an observable (or not) event [5] [26] [29]. 

Definition 7: 
A TLPN is a net 𝑅𝑅_𝑇𝑇𝐿𝐿 =< 𝑃𝑃,𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚0, Σ,ℒ, 𝐼𝐼 >  in 

which < 𝑃𝑃,𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚0 >is a Petri net, ∑ is the set of labels 
associated with transitions, ℒ  is the transition labelling function 
and I is the function associating a static time interval with each 
transition. A change in TLPN state can occur either on a transition 
firing or over an elapsed time period.  

Here, the definition of state and its transition function are the 
same as for a TPN according to the POPOVA approach presented 
in section 2.2 [11] [21]. 

2.5. Language generated by a TLPN 

Let 𝜎𝜎 = 𝑃𝑃1 … 𝑃𝑃𝑛𝑛, a firing transition sequence in the TLPN and 
let 𝜎𝜎(𝑥𝑥) = 𝑥𝑥0𝑃𝑃1 … 𝑥𝑥𝑛𝑛−1𝑃𝑃𝑛𝑛𝑥𝑥𝑛𝑛 its feasible dated sequence [13].  

We note by timed(σ) the achievable dated sequence σ(x): timed(σ) 
= σ(x). conversely, we note by Logic (σ(x)) the sequence of firing 
in the net: Logic(σ(x)) = σ ∈ T∗  

Furthermore, to avoid introducing too many different notations, 
the timed labelling function is introduced 

Definition 8: (Timed Event Sequence: T.E.S) 
Let 𝜎𝜎 = 𝑃𝑃1 … 𝑃𝑃𝑛𝑛, a firing transition sequence in the TLPN and let 
𝜎𝜎(𝑥𝑥) = 𝑥𝑥0𝑃𝑃1 … 𝑥𝑥𝑛𝑛−1𝑃𝑃𝑛𝑛𝑥𝑥𝑛𝑛 its feasible dated sequence 
The sequence 𝑃𝑃(𝜎𝜎) = 𝑃𝑃1𝑃𝑃2 … 𝑃𝑃𝑛𝑛−1𝑃𝑃𝑛𝑛  is the sequence of events 
associated with the transitions of the σ firing transition sequence 
σ.  
The labelling function is extended to timed firing sequences σ(x) 
as follows: 

ℒ((𝑃𝑃𝑞𝑞𝑥𝑥𝑞𝑞)) = (𝑃𝑃𝑞𝑞 𝑥𝑥𝑞𝑞) , where 𝑃𝑃𝑞𝑞 ∈ Σ , ℒ(𝑃𝑃𝑞𝑞) = 𝑃𝑃𝑞𝑞, 𝑃𝑃𝑞𝑞 ∈ T       (11) 

ℒ(σ(x)( 𝑃𝑃𝑞𝑞𝑥𝑥𝑞𝑞)) = ℒ(σ(𝑥𝑥)) ℒ((𝑃𝑃𝑞𝑞𝑥𝑥𝑞𝑞)) = s’(𝑥𝑥).                          (12)   

The sequence 𝑃𝑃(𝑥𝑥) = 𝑥𝑥0𝑃𝑃1 … 𝑥𝑥𝑛𝑛−1𝑃𝑃𝑛𝑛𝑥𝑥𝑛𝑛 is a timed event sequence 
(T.E.S). This is the dated sequence of events, associated with the 
feasible dated sequence 𝜎𝜎(𝑥𝑥). 𝑃𝑃(𝑥𝑥) = ℒ(σ(x)). 
 

Definition 9: (temporal language) 
 Let be TLPN noted 𝑅𝑅_𝑇𝑇𝐿𝐿. The temporal language generated by 
𝑅𝑅_𝑇𝑇𝐿𝐿, noted £(𝑅𝑅_𝑇𝑇𝐿𝐿) is defined as all the T.E.S s(𝑥𝑥) generated by 
𝑅𝑅_𝑇𝑇𝐿𝐿 since the initial marking 𝑚𝑚0. £(𝑅𝑅_𝑇𝑇𝐿𝐿) = {s(𝑥𝑥) | 𝑚𝑚0[σ(𝑥𝑥)〉, 
ℒ(σ(𝑥𝑥)) = s(𝑥𝑥)} where σ(𝑥𝑥) is a dated sequence available in 𝑅𝑅_𝑇𝑇𝐿𝐿.  

3. Failure prognosis based on TLPN 

The failure prognosis is intended to predict the properties of a 
system that are not in compliance with the specifications. The 
aim is to predict the occurrence of failure events in the system 
before their future occurrence. 

The prognosis in discrete event systems has been discussed in 
various research papers. Most of them have developed a prognosis 

approach predicting a failure event m-steps in advance, based on 
finite state automata [3][4][6] or Petri nets [1]-[2],[30]-[34], using 
stochastic and or non-stochastic ways [6][35]. 

Our proposed approach consists to predict a failure event n-
units time in advance. The first contribution relates to a formal 
representation framework. The adopted modelling considers the 
three possible operating modes of the system, as shown in the 
figure 2. 

• The nominal mode that contains only the set of states 
that represent a nominal execution of the system.  

• The degraded mode groups all states in which 
the system operates with a tolerable degradation without 
influencing the behavior of the system.  

• The failed mode that contains all states that represent the 
failed behavior of the system. 

 

 

Figure 2 also shows the interest of the prognosis because it 
aims to explain the causality. Indeed, the diagnosis cannot prevent 
a failure situation, whereas the prognosis offers more visibility on 
the future evolution of the system and makes it possible to act 
before a fault occurs. Our purpose consists to determine a 
prognosis within an operating mode managing context. 

To model such behavior, we propose an extension of the 
Temporal Labelled Petri nets within a context of operating modes. 
This extension provides an ability to represent temporal constraints 
and labels in the modeling process. Figure 3 shows an example of 
operating modes of a system based on a TLPN model. Switching 
state is conditioned by the firing of transitions. A transition is fired 
if it is enabled.  

The prognosis will need an observer module constrained by a 
place (𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜) and transition (𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜). This module has no influence on 
the behavior of the system, it only observes the occurrence time of 
a failure event (figure 3). 

To do this, we suppose that: 

• Only one transition is fired at the same time; 
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• Only one mode is active at the same time; 
• The PN is safe; 
• we assume that the firing of transitions is immediate and there 

is no firing delay; 
• All TLPN events are observable. 

 After firing the transition, the TLPN changes from E=(𝑚𝑚,h) to 
the state E' = (𝑚𝑚', h') (see definition 4). 

  

Definition 10: 
The extended TLPN (ETLPN) is 𝑅𝑅_𝑇𝑇𝐿𝐿 =<

𝑃𝑃,𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚0, Σ,ℒ, 𝐼𝐼 > where: 
 𝑃𝑃 =  𝑃𝑃𝑛𝑛  ∪  𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 ∪  𝑃𝑃𝑓𝑓𝑚𝑚𝑖𝑖𝑓𝑓 ∪  𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜   with 𝑃𝑃𝑛𝑛  is the set of nominal 
places, 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑  is the set of degraded places, 𝑃𝑃𝑓𝑓𝑚𝑚𝑖𝑖𝑓𝑓  is the set of failed 
places and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 is the observer place. 
𝑇𝑇 =  𝑇𝑇𝑛𝑛  ∪  𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 ∪   𝑇𝑇𝑓𝑓𝑚𝑚𝑖𝑖𝑓𝑓  ∪  𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜  ∪  𝑇𝑇𝑟𝑟𝑑𝑑𝑟𝑟 , the set of transitions. 
If ∃𝑝𝑝𝑖𝑖 ∈ �𝑃𝑃𝑛𝑛 ∪ 𝑃𝑃𝑓𝑓𝑚𝑚𝑖𝑖𝑓𝑓� and 𝑃𝑃𝑗𝑗 ∈ �𝑇𝑇𝑛𝑛 ∪ 𝑇𝑇𝑓𝑓𝑚𝑚𝑖𝑖𝑓𝑓�, such that:  
𝑚𝑚(𝑝𝑝𝑖𝑖) ≥ 𝑝𝑝𝑃𝑃𝑃𝑃(𝑝𝑝𝑖𝑖 , 𝑃𝑃𝑗𝑗), then 𝑚𝑚(𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜) = 0 and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜  is not enabled, 
otherwise,  𝑚𝑚(𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜) = 1 and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 is  enabled. 
The model of Figure 3 is an ETLPN with Σ = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑓𝑓, 𝑃𝑃}, with: 
𝑓𝑓 is a failure event and 𝑃𝑃 is a repair event.  
• The transition 𝑃𝑃6 is a failed transition such as: 𝑃𝑃6 ∈ 𝑇𝑇𝑓𝑓𝑎𝑎𝑖𝑖𝑓𝑓 then,

ℒ (𝑃𝑃6) =  𝑓𝑓.  
• The transition 𝑃𝑃7 is a repair transition such as: 𝑃𝑃7 ∈ 𝑇𝑇𝑃𝑃𝑃𝑃𝑝𝑝 then,

ℒ (𝑃𝑃7) = 𝑃𝑃. 

By firing the 𝑃𝑃1′  transition the system switches to a degraded mode 
marking thus 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜 , that is 𝑚𝑚(𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜) = 1. The 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜  place remains 
marked until the system switch to a failed mode.  

The introduction of 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜  doesn't influence the 
behavior of the system. Their interest will be explained in the 
following section. 

To represent sequences ending with a failure event, we use the 
both notions of parametric state and sequences allow to construct 
the reachability graph which contains only the essential states, i.e. 

the time associated with each timed transition enabled of a state      
E = (m, h) is a natural integer. However, knowing the behavior of 
the network in the "essential" states is sufficient to determine at 
any time the overall behavior of the network. (cf. [12] [22]). 

The advantage of this approach is the application of linear 
optimization (generated by the system of inequalities in each state), 
which makes it possible to calculate the execution time of a 
sequence at the earliest and at the latest. 

Clock times must be accumulated to progress from a state E of 
the net to a failed state E'. To do this, an observer model is 
introduced to the model in order to record the cumulative time 
between E and E'. This observer model has no impact on the 
behavior of the system, it just makes it possible to record the time 
required to progress from a non-defaulting, but not necessarily 
normal, to a state E' that is considered failed. 

To calculate this execution time, we propose an extension 
(definition 11) of definition 5. But before discussing the proposed 
approach, we formulate the following assumptions: 

1- The system model is known  
2- all events are observable. The case of prognosis under partial 

observation is not considered here. 
3- The prognosis begins when the model switches from nominal 

mode to degraded one. 

Remark: the remains the same, if the prognosis is started from 
any nominal state of the system. 

The following framework (figure 4) describes the steps of the 
proposed prognosis approach. The first step, called the behavioral 
model, is required to describe the possible operating modes of the 
system (figure 3). The prognoser is an oriented state graph (figure 
8), built from the system model, its role is to detect all possible 
traces ending with a failure event; Once the system switches from 
nominal to degraded mode, the prognoser must identify all the 
sequences of the model namely those that lead to a failure event. 
Such an event cannot be predicted overall in the sequences. The 
prognosability property is introduced to determine the sequences 
of failure event that can be predicted. From an inequality system, 
the execution time of each sequence is calculated; It called “Time 
signatures of execution traces”. The minimal time signature will 
then represent the earliest date before a failure event occurs.  
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In fact, the prognosis is not possible, when two traces 𝜎𝜎1 and 𝜎𝜎2 
have the same time constraints and the same sequencing of events. 
For example, in figure 6, 𝜎𝜎1 =  𝑃𝑃1.1 … 𝑃𝑃𝑛𝑛, 𝜎𝜎2 =  𝑃𝑃2.1 … 𝑃𝑃𝑚𝑚 and   
𝑃𝑃1(𝑥𝑥) = 𝑥𝑥1.0𝑃𝑃𝑖𝑖𝑥𝑥1.1 … 𝑥𝑥1.𝑛𝑛−1𝑃𝑃𝑛𝑛𝑥𝑥1.𝑛𝑛, 
𝑃𝑃2(𝑥𝑥) = 𝑥𝑥2.0𝑃𝑃𝑗𝑗𝑥𝑥2.1 … 𝑥𝑥2.𝑚𝑚−1𝑓𝑓𝑥𝑥2.𝑚𝑚(with 𝑓𝑓 a failure event) are their 
respective parametric event sequences.  
 

 

 

Deciding on the future execution of 𝜎𝜎1  or 𝜎𝜎2  from a state 𝐸𝐸 is 
conditioned by: 
𝑃𝑃𝑃𝑃𝑃𝑃(•,  𝑃𝑃𝑖𝑖) ≤ 𝑚𝑚0 ∨ 𝑃𝑃𝑃𝑃𝑃𝑃�•,  𝑃𝑃𝑗𝑗� ≤ 𝑚𝑚0 ∧ 𝑃𝑃𝑖𝑖 ≠ 𝑃𝑃𝑗𝑗  i.e. 𝑃𝑃𝑖𝑖  and 𝑃𝑃𝑗𝑗  are 
enabled from 𝐸𝐸. 
𝑃𝑃𝑖𝑖 ∈ ∑𝑜𝑜 ∨ 𝑃𝑃𝑗𝑗 ∈ ∑𝑜𝑜 ∧ 𝑃𝑃𝑖𝑖 ≠ 𝑃𝑃𝑗𝑗 , otherwise if 𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑗𝑗  it is required 
that 𝐼𝐼𝑚𝑚1.0 ∩ 𝐼𝐼𝑚𝑚2.0 = 0 (𝐼𝐼𝑚𝑚1.0 execution interval of 𝑥𝑥1.0) 
In other case, we cannot prognosticate the failure event f. 
 
If we consider in figure 5 that 𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑗𝑗, the failure event f cannot by 
prognosable. But if  𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑗𝑗  and the intervals of the dated 
sequences are different then the failure event f is prognosable 
(figure 6). 

 

The resolution of the inequation system will be the last step, 
which calculates the time signature of execution for all the 
prognosable sequences. The minimum execution generated from 
this step represents the earliest occurrence time of a failure event. 

In the example shown in figure 7, the prognosis starts from the 
firing transition 𝑃𝑃6 because degraded mode will start at this place. 

Indeed, if the event g occurs at earliest after 3 units time, the 
model switch to the degraded mode. From this state the observer 
place (𝑝𝑝𝑃𝑃𝑏𝑏𝑃𝑃) will be activated, and its corresponding transition 𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃 
becomes enabled until the event f (failure event) will occurred. 
Thus, the interval times associated with the transitions enabled 
from place 𝑝𝑝6, will be combined in the form of associated system 
of inequalities to 𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃 while the occurrence of the failure event 𝑓𝑓 of 
the transition 𝑃𝑃13 does not occur. When the event r is generated 
(meaning that the system is repaired), the observer place will be 
initialized to allow a next operating cycle. 

The 𝑝𝑝6 place is called the candidate place for the prognosis. 
Once this place is marked, the occurrence of the failure event can 
be predicted.  

 

Figure 8 link to model 2 presents the prognoser model where 
a state is composed by the marked states of the model and their 
corresponding mode the nominal states are represented by N, 
degraded by D and failed states by F, except for Pobs place that 
will be associated to Observer module noted O. The prognosis of 
the event occurrence date is possible from any state of the 
prognoser. {N 𝑝𝑝5} for example, represent a marking of the system 
and its corresponding operating mode, i.e. 𝑝𝑝5  indicates that the 
place 𝑝𝑝5 is marked and N indicates that the system is in nominal 
mode. The occurrence of event g in interval ]3,4] leads the 
prognoser model to {D𝑝𝑝6 ,O𝑝𝑝𝑃𝑃𝑏𝑏𝑃𝑃 } where 𝑝𝑝6  and 𝑝𝑝𝑃𝑃𝑏𝑏𝑃𝑃  are the 
marked places and D means that the system is in degraded mode 
and 𝑝𝑝𝑃𝑃𝑏𝑏𝑃𝑃 is marked. When the prognoser switches to a state with 
𝑝𝑝𝑃𝑃𝑏𝑏𝑃𝑃  place marked, the prognosis process is then activated. The 
prognosis process is achieved by the identification of all sequences 
ending with an F state. According to the prognoser's model and 
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from {D𝑝𝑝6,O𝑝𝑝𝑃𝑃𝑏𝑏𝑃𝑃} the event sequences ending in a failure event 
are: 𝑃𝑃(𝜎𝜎1) = ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓  and 𝑃𝑃(𝜎𝜎2) = ℎ𝑗𝑗𝑖𝑖𝑖𝑖𝑓𝑓 .To simplify, we don't 
take into consideration ℎ𝑖𝑖𝑖𝑖𝑖𝑖 and ℎ𝑗𝑗𝑖𝑖𝑖𝑖 cycles. 

Then, the execution time of each sequence is calculated (time 
signature) by applying algorithm 2. The aim is to find all the 
minimum solution values of the system of inequalities. These 
values will constitute the minimum time after which the 
occurrence of the failure event is certain. 

Definition 11, which is an extension of definition 5, allows, 
from a TLPN, to recursively determine the parametric state and 
parametric sequence leading to a failure state, and thus generating 
the system of inequalities composed of the constraints obtained 
from the intervals associated with each enabled transition from a 
candidate place. But before presenting definition 11, let's first 
reconsider a set of enabled transitions from a 𝑚𝑚 marking. 

Let 𝑚𝑚 be a marking of a PN. We define 𝑉𝑉𝑚𝑚  the set of enabled 
transition from 𝑚𝑚 as follows: 𝑉𝑉𝑚𝑚 = {𝑃𝑃𝑖𝑖 ∈ T| 𝑚𝑚 ≥ Pre( • , 𝑃𝑃𝑖𝑖)},  

Definition 11: (parametric state and sequence of an TLPN) 
Let 𝑅𝑅_𝑇𝑇𝐿𝐿 =< 𝑃𝑃,𝑇𝑇,𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑚𝑚0, Σ,ℒ, 𝐼𝐼 >  a TLPN, 𝑚𝑚  a 
p_marking and h a t_marking containing the time associated with 
each transition enabled from 𝑚𝑚. 𝜎𝜎: = 𝑃𝑃1 … 𝑃𝑃𝑛𝑛 is a firing transition 
sequence in R_TL and 𝜎𝜎(𝑥𝑥): = 𝑥𝑥0𝑃𝑃1 … 𝑥𝑥𝑛𝑛−1𝑃𝑃𝑛𝑛𝑥𝑥𝑛𝑛  its feasible 
dated sequence. 𝑉𝑉𝑚𝑚𝜎𝜎  is the set of transitions enabled from the 𝑚𝑚𝜎𝜎 
marking (final marking) obtained by the firing of the transition 
sequence 𝜎𝜎.  
Then, the parametric sequence (𝜎𝜎(𝑥𝑥),𝐵𝐵𝜎𝜎) of σ and the parametric 
state (𝐸𝐸𝜎𝜎 ,𝐵𝐵𝜎𝜎) in R_TL are determined by the algorithm 1. 
 
Algorithm 1 Prognosis algorithm 
Begin 
* if σ = ε, i.e. 𝜎𝜎(𝑥𝑥) = 𝑥𝑥0 and s(𝑥𝑥) = 𝑥𝑥0 
Then 𝐸𝐸𝜎𝜎 = (𝑚𝑚𝜎𝜎 , ℎ𝜎𝜎) and 𝐵𝐵𝜎𝜎  are given by:  
1- 𝑚𝑚𝜎𝜎 ≔ 𝑚𝑚0,    
2- 𝑉𝑉𝑚𝑚𝜎𝜎 = 𝑉𝑉𝑚𝑚0 = {𝑃𝑃𝑖𝑖|𝑚𝑚0 ≥ Pre( • , 𝑃𝑃𝑖𝑖)} 

3- ℎ𝜎𝜎(𝑃𝑃) = ℎ0(𝑃𝑃) = �𝑥𝑥0  𝑖𝑖𝑓𝑓 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) ≤ 𝑚𝑚0
$  𝑂𝑂𝑃𝑃ℎ𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖𝑃𝑃𝑃𝑃

 

4- 𝐵𝐵𝜎𝜎 ≔ {0 ≤ ℎ𝜎𝜎(𝑃𝑃) ≤ max(t) | t ∈ T ∧ Pre(•, t)  ≤ 𝑚𝑚𝜎𝜎}  
Else 
repeat  
We assume that 𝐸𝐸𝜎𝜎  and 𝐵𝐵𝜎𝜎  are already defined for the transition 
sequence 𝜎𝜎: = 𝑃𝑃1 … 𝑃𝑃𝑛𝑛.  
then 𝜎𝜎(𝑥𝑥): = 𝑥𝑥0𝑃𝑃1 … 𝑥𝑥𝑛𝑛−1𝑃𝑃𝑛𝑛𝑥𝑥𝑛𝑛. its corresponding T.E.S is 
𝑃𝑃(𝑥𝑥) = 𝑥𝑥0𝑃𝑃1 … 𝑥𝑥𝑛𝑛−1𝑃𝑃𝑛𝑛𝑥𝑥𝑛𝑛 for 𝜎𝜎: = 𝑃𝑃1 … 𝑃𝑃𝑛𝑛𝑃𝑃𝑛𝑛+1 = γ𝑃𝑃𝑛𝑛+1, and   
ℒ(σ) = ℒ(γ).ℒ(𝑃𝑃𝑛𝑛+1) = s(γ). ℒ(𝑃𝑃𝑛𝑛+1)  
1. 𝑚𝑚𝜎𝜎 ≔ 𝑚𝑚𝛾𝛾 + Δ𝑃𝑃𝑛𝑛+1, with Δ𝑃𝑃𝑛𝑛+1 := Post(•,𝑃𝑃𝑛𝑛+1 ) - Pre(•, 𝑃𝑃𝑛𝑛+1 ) 
2. 𝑉𝑉𝑚𝑚𝜎𝜎 =  {𝑃𝑃| 𝑚𝑚𝜎𝜎 ≥ Pre( • , 𝑃𝑃)}                                    

3. ℎ𝜎𝜎(𝑃𝑃) =

⎩
⎨

⎧
$                                  if  𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) ≰ 𝑚𝑚σ 

ℎ𝛾𝛾(𝑃𝑃) + 𝑥𝑥𝑛𝑛+1    if 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) ≤ 𝑚𝑚σ ∧ 𝑃𝑃𝑃𝑃𝑃𝑃(•, 𝑃𝑃) ≤ 𝑚𝑚γ

                     ∧ 𝑃𝑃𝑃𝑃𝑃𝑃(tn+1)∩Pre(t) = ∅ ∧ t ≠ tn+1
𝑥𝑥𝑛𝑛+1                                                 Otherwise

               

4. 𝐵𝐵σ := 𝐵𝐵𝛾𝛾 ∪ {min(𝑃𝑃𝑛𝑛+1) ≤ ℎ𝛾𝛾(𝑃𝑃𝑛𝑛+1)} ∪ { 0 ≤ ℎ𝜎𝜎(t) ≤ max(t) | t ∈ 
T ∧ Pre(•, t) ≤ 𝑚𝑚σ } 
until (ℒ(𝑃𝑃𝑛𝑛+1) = ef) 
End 

Let the TLPN of Figure 7 and apply definition 11 

At the start σ : = ε ,  𝜎𝜎(𝑥𝑥) =  𝑥𝑥0; 
𝐸𝐸𝜎𝜎 = (𝑚𝑚𝜎𝜎 , ℎ𝜎𝜎) = (𝑚𝑚0, ℎ0) ;  
𝑚𝑚0 = (𝑝𝑝1)𝑇𝑇 ,  means that only 𝑝𝑝1 is marked with 1 token and 0 
token in the rest of the other places; 
𝑉𝑉𝑚𝑚0 = {𝑃𝑃1};   
ℒ(𝑃𝑃1) = a; 
ℎ0(𝑃𝑃) = (𝑥𝑥0, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $, $)𝑇𝑇; 
𝐵𝐵0 = {0 ≤ 𝑥𝑥0 ≤ 2}. 

𝜎𝜎 =  𝑃𝑃1 ; 
𝑚𝑚1 = (𝑝𝑝2),   
𝑉𝑉𝑚𝑚1 = {𝑃𝑃2, 𝑃𝑃3}, means that only 𝑃𝑃2 and 𝑃𝑃3 are enabled from the 
marking 𝑚𝑚1;  
ℒ(𝑃𝑃2) = b,  ℒ(𝑃𝑃3) = c; 
ℎ1(𝑃𝑃) = ($, 𝑥𝑥1, 𝑥𝑥1, $, $, $, $, $, $, $, $, $, $, $, $, $, $)𝑇𝑇; 

𝐵𝐵1       = �0 ≤ 𝑥𝑥0 ≤ 2
0 ≤ 𝑥𝑥1 ≤ 3� 

 𝜎𝜎 =  𝑃𝑃1 𝑃𝑃3 ; 
𝑚𝑚2 = (𝑝𝑝3)𝑇𝑇;   𝑉𝑉𝑚𝑚2 = {𝑃𝑃4} ;  
ℒ(𝑃𝑃4) = d; 
ℎ2(𝑃𝑃) = ($, $, $, 𝑥𝑥2, $, $, $, $, $, $, $, $, $, $, $, $, $)𝑇𝑇; 

𝐵𝐵2 = �
0 ≤ 𝑥𝑥0 ≤ 2
0 ≤ 𝑥𝑥1 ≤ 3
0 ≤ 𝑥𝑥2 ≤ 6

� 

𝜎𝜎 =  𝑃𝑃1 𝑃𝑃3 𝑃𝑃4 ; 
 
𝑚𝑚3 = (𝑝𝑝5)𝑇𝑇;  𝑉𝑉𝑚𝑚3 = {𝑃𝑃5, 𝑃𝑃6} ;  
 
ℒ(𝑃𝑃5)  = ℒ(𝑃𝑃6) = g; 
ℎ3(𝑃𝑃) = ($, $, $, $, 𝑥𝑥3, 𝑥𝑥3, $, $, $, $, $, $, $, $)𝑇𝑇; 

𝐵𝐵3 = �

0 ≤ 𝑥𝑥0 ≤ 2
0 ≤ 𝑥𝑥1 ≤ 3
4 ≤ 𝑥𝑥2 ≤ 6
0 ≤ 𝑥𝑥3 ≤ 3

� 

𝜎𝜎 =  𝑃𝑃1 𝑃𝑃3 𝑃𝑃4  𝑃𝑃6; 
𝑚𝑚4 = (𝑝𝑝6𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜)𝑇𝑇 , 𝑉𝑉𝑚𝑚4 = {𝑃𝑃7, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜} ;  
ℒ(𝑃𝑃7) = h; 
ℎ4(𝑃𝑃) = ($, $, $, $, $, $, 𝑥𝑥4, $, $, $, $, $, $, $, $, $, 𝑥𝑥4)𝑇𝑇; 

𝐵𝐵4 =

⎩
⎪
⎨

⎪
⎧

0 ≤ 𝑥𝑥0 ≤ 2
0 ≤ 𝑥𝑥1 ≤ 3
4 ≤ 𝑥𝑥2 ≤ 6
3 ≤ 𝑥𝑥3 ≤ 3
0 ≤ 𝑥𝑥4 ≤ 4⎭

⎪
⎬

⎪
⎫

 

 
𝜎𝜎 =  𝑃𝑃1 𝑃𝑃3 𝑃𝑃4 𝑃𝑃6 𝑃𝑃7; 
 
𝑚𝑚5 = (𝑝𝑝7𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜)𝑇𝑇 , 𝑉𝑉𝑚𝑚5 = {𝑃𝑃8, 𝑃𝑃9, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜} ;  
 
ℒ(𝑃𝑃8) = i, ℒ(𝑃𝑃9) = j; 
 
ℎ5(𝑃𝑃) = ($, $, $, $, $, $, $, 𝑥𝑥5, 𝑥𝑥5, $, $, $, $, $, $, $, 𝑥𝑥4 + 𝑥𝑥5)𝑇𝑇; 
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𝐵𝐵5 =

⎩
⎪⎪
⎨

⎪⎪
⎧

0 ≤ 𝑥𝑥0 ≤ 2
0 ≤ 𝑥𝑥1 ≤ 3
4 ≤ 𝑥𝑥2 ≤ 6
3 ≤ 𝑥𝑥3 ≤ 3
3 ≤ 𝑥𝑥4 ≤ 4
0 ≤ 𝑥𝑥5 ≤ 3
𝑥𝑥4 + 𝑥𝑥5 ≤ 7⎭

⎪⎪
⎬

⎪⎪
⎫

 

𝜎𝜎 =  𝑃𝑃1 𝑃𝑃3 𝑃𝑃4 𝑃𝑃6 𝑃𝑃7 𝑃𝑃8; 
𝑚𝑚6 = (𝑝𝑝8 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜)𝑇𝑇 , 𝑉𝑉𝑚𝑚6 = {𝑃𝑃10, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜} ;  
ℒ(𝑃𝑃10) = d; 
ℎ6(𝑃𝑃) = ($, $, $, $, $, $, $, $, $, 𝑥𝑥6, $, $, $, $, $, $, 𝑥𝑥4 + 𝑥𝑥5 + 𝑥𝑥6)𝑇𝑇; 

𝐵𝐵6 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0 ≤ 𝑥𝑥0 ≤ 2
0 ≤ 𝑥𝑥1 ≤ 3
4 ≤ 𝑥𝑥2 ≤ 6
3 ≤ 𝑥𝑥3 ≤ 3
3 ≤ 𝑥𝑥4 ≤ 4
2 ≤ 𝑥𝑥5 ≤ 3
0 ≤ 𝑥𝑥6 ≤ 0
𝑥𝑥4 + 𝑥𝑥5 ≤ 7

𝑥𝑥4 + 𝑥𝑥5 + 𝑥𝑥6 ≤ 7⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

𝜎𝜎 =  𝑃𝑃1 𝑃𝑃3 𝑃𝑃4 𝑃𝑃6 𝑃𝑃7 𝑃𝑃8 𝑃𝑃10; 
𝑚𝑚7 = (𝑝𝑝8 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜)𝑇𝑇 , 𝑉𝑉𝑚𝑚7 = {𝑃𝑃11, 𝑃𝑃12, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜} ;  
ℒ(𝑃𝑃11) = ℒ(𝑃𝑃12) =  k; 
ℎ7(𝑃𝑃) = ($, $, $, $, $, $, $, $, $, $, 𝑥𝑥7, 𝑥𝑥7, $, $, $, $, 𝑥𝑥4 + 𝑥𝑥5 + 𝑥𝑥6 +
                   𝑥𝑥7)𝑇𝑇; 

𝐵𝐵7 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

0 ≤ 𝑥𝑥0 ≤ 2
0 ≤ 𝑥𝑥1 ≤ 3
4 ≤ 𝑥𝑥2 ≤ 6
3 ≤ 𝑥𝑥3 ≤ 3
3 ≤ 𝑥𝑥4 ≤ 4
2 ≤ 𝑥𝑥5 ≤ 3
0 ≤ 𝑥𝑥6 ≤ 0
0 ≤ 𝑥𝑥7 ≤ 4 
𝑥𝑥4 + 𝑥𝑥5 ≤ 7

𝑥𝑥4 + 𝑥𝑥5 + 𝑥𝑥6 ≤ 7
𝑥𝑥4 + 𝑥𝑥5 + 𝑥𝑥6 + 𝑥𝑥7 ≤ 7⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

𝜎𝜎 =  𝑃𝑃1 𝑃𝑃3 𝑃𝑃4 𝑃𝑃6 𝑃𝑃7 𝑃𝑃8 𝑃𝑃10𝑃𝑃12 ; 
𝑚𝑚8 = (𝑝𝑝11𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜)𝑇𝑇 , 𝑉𝑉𝑚𝑚8 = {𝑃𝑃13, 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜} ;  
ℒ(𝑃𝑃13) = 𝑓𝑓; 
ℎ8(𝑃𝑃) = ($, $, $, $, $, $, $, $, $, $, $, $, 𝑥𝑥8, $, $, $, 𝑥𝑥4 + 𝑥𝑥5 + 𝑥𝑥6 +
                   𝑥𝑥7 + 𝑥𝑥8)𝑇𝑇; 

𝐵𝐵8 =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

0 ≤ 𝑥𝑥0 ≤ 2
0 ≤ 𝑥𝑥1 ≤ 3
4 ≤ 𝑥𝑥2 ≤ 6
3 ≤ 𝑥𝑥3 ≤ 3
3 ≤ 𝑥𝑥4 ≤ 4
2 ≤ 𝑥𝑥5 ≤ 3
0 ≤ 𝑥𝑥6 ≤ 0
4 ≤ 𝑥𝑥7 ≤ 4
0 ≤ 𝑥𝑥8 ≤ 0
𝑥𝑥4 + 𝑥𝑥5 ≤ 7

𝑥𝑥4 + 𝑥𝑥5 + 𝑥𝑥6 ≤ 7
𝑥𝑥4 + 𝑥𝑥5 + 𝑥𝑥6 + 𝑥𝑥7 ≤ 7

𝑥𝑥4 + 𝑥𝑥5 + 𝑥𝑥6 + 𝑥𝑥7 + 𝑥𝑥8 ≤ 7⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

 

We obtain the system of inequalities 𝐵𝐵8. It is necessary to find all 
the minimum solution values of this system of inequalities. See 
the solution in table 1:  
 

Table 1:The Inequation System Solution. 

To do this, we follow the next steps:  
1- Give real values that are solutions of the system of 

inequalities 𝐵𝐵8.  
2- Calculate the minimum integer values that always check the 

system of inequalities without changing the behavior of the 
system.  

We considered the smallest possible values for each 𝑥𝑥𝑖𝑖 .   

Thus, from the candidate place P6, we will reach the failure 
state (place P12) after at least 12-time units. We assume that only 
one cycle is executed in degraded mode. We can, of course predict 
the failure state from any nominal or degraded state. 

4. Conclusion 

In this paper, we have presented two contributions to 
determine the prognosis of a failure event in discrete event 
systems. The first one is about the exploitation of the technique of 
state and events sequence parametrization on a model of temporal 
labelled Petri nets. The interest is to reduce the state space of the 
model for an analysis of both the order and the date of occurrence 
of events. The second contribution is the proposal of an algorithm 
based on a system of inequations, to determine the occurrence date 
of a future failure event. The proposed algorithm makes it possible 
to determine, from a place belonging to all the candidate places, 
the minimum date necessary to reach a critical place from which 
the occurrence of the failure event is certain.  

Work in progress considers the system under partial observation, 
which makes it possible to address the problem of the system's 
prognosability.  

Works presented in this paper supposed that the used PN is 
safe, but in practice, the system is composed of several 
components, it would then be more interesting to consider a multi-
token model and assign a type of clock according to the nature of 
the token and then to predict the failure status for each component 
in the same model.  

It would also be very important to predict the failure event of 
a system while considering the aging state of the system. 
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