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 We proposed two robust confidence interval estimators, namely, the median interquartile 
range confidence interval (MDIQR) and the trimean interquartile range confidence interval 
(TRIQR) for the population mean (µ) as an alternative to the classical confidence interval. 
The proposed methods are based on the asymptotic normal theorem (ANT) for the sample 
median (MD) and the sample trimean (TR). We compare the performance of the proposed 
interval estimators with the classical estimators by using a simulation study through the 
following criteria: (i) average width (AW) and (ii) empirical coverage probability (CP). It 
is evident from simulation study is that the proposed robust interval estimator performs well 
under both criterion and when the observations are sampled from contaminated normal 
distribution. However, when the observations are sampled from non-normal distributions, 
the classical confidence interval performs the best in the shorter width sense, but the 
coverage probability tends to be smaller than the two proposed robust confidence interval 
estimators for all sample sizes. For illustration purposes, two real life data sets are 
analyzed, which supported the findings of the simulation study to some extent. 
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1. Introduction  

The classical methods in statistical inference, such as 
confidence intervals estimation, are widely used by researchers in 
many disciplines. In the usage of the confidence intervals, the 
assumptions such as normality and no presence of outliers must be 
satisfied. Unfortunately, these assumptions are rarely met when 
analyzing real data in many fields of research such as engineering, 
data science, medical, public health, biological etc. The confidence 
intervals provide better information that of point estimator about 
the population characteristic of interest. The performance of 
confidence intervals for the appearance of outliers and under non-
normal assumption have drawn much attention among the 
researchers. A variety of procedures are exist in the literature to 
construct the confidence interval (CI) for the population mean (μ), 
though the classical normal confidence interval is widely used. 
Nevertheless, the classical normal confidence interval requires 
normality assumption which most of the data do not follow in 

reality, particularly in presence of outliers. Thus, the robust 
estimators, which are less affected from non-normality assumption 
or outliers, are introduced in this paper in order to overcome such 
situations. 

 Student’s-t confidence interval for the population mean (µ) 
has been used for a long period of time.  It has an approximate      
(1- α) coverage probability (CP) under the condition of positively 
skewed distribution or there are some outliers in the data. 
However, this coverage probability may be improved by 
developing different confidence interval methods. The bootstrap 
confidence interval [1] is another method to construct the 
confidence intervals for the population mean which many 
researchers are suggested. The construction of this confidence 
interval has concerned about resampling technique which is 
complicated procedures and it has a good performance in 
theoretical coverage probability, but it tend to be erratic in actual 
practice depend on the distribution of the bootstrap estimator. 
Further, this method hard to implement in practices because it is 
not easy to compute without the statistical programming [2], while 
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the two robust confidence intervals that are proposed in this paper 
are easy to implement in practices. The two robust confidence 
intervals for the population mean (μ) are proposed based on robust 
location and scale estimators in the case of non-normal 
distributions and contamination of outliers in the data set. We 
compare the performance of proposed robust methods with  that of 
the classical Student’s confidence interval using coverage 
probability and average width for non-normal distributions 
(symmetric and skewed ones) via a Monte-Carlo simulation study. 
For more on robust estimators, we refer  [3], Abu-Shawiesh [4, 5]  
among others. 

The organization for the remaining of this paper are the 
following: Section 2 is represented the proposed confidence 
intervals. A Monte-Carlo simulation study has been conducted in 
section 3.  Two real-life data are analyzed for the implementation 
of several methods in Section 4. Section 5 provides some 
concluding remarks. 

2. Proposed Interval Estimators 
2.1. The Classical Confidence Intervals for the Population Mean 

A random sample X1, X2, …, Xn  of size n is taken from the 
population that is normally distributed with mean (μ) and variance 
(σ2). Then, the (1 – α) 100% classical confidence interval (CI) for 
the population mean (μ), for known σ is defined by (1). 

                           𝐶𝐶. 𝐼𝐼.  =  𝑋𝑋�  ±   𝑍𝑍1−𝛼𝛼2
  𝜎𝜎
√𝑛𝑛

                              (1) 

where 𝑍𝑍1−(𝛼𝛼 2⁄ ) is the (1 − (𝛼𝛼 2⁄ ) )th percentile of the standard 
normal distribution. However, in real life, it is unlikely that the 
population standard deviation (σ) is known, and then an estimate 
of σ is needed. To do that, we can use the sample standard 
deviation (S) instead of the unknown population standard 
deviation (σ) and apply the normal distribution to construct the      
(1 – α) 100% classical confidence interval (CI) for the population 
mean (μ) which is given by (2). 

                           𝐶𝐶. 𝐼𝐼.  =  𝑋𝑋�  ±   𝑍𝑍1−𝛼𝛼2
  𝑆𝑆
√𝑛𝑛

                              (2) 

Since the classical confidence interval requires the normality 
assumption, it is unlikely that it will give good results when data 
are not normal. Therefore, we suggested two robust confidence 
interval estimators, namely, the median interquartile range 
confidence interval (MDIQR-CI) and the trimean interquartile 
range confidence interval (TRIQR-CI) and they are discussed as 
follows:  

2.2. The Robust Confidence Intervals  

We propose two robust modifications of the classical normal 
interval estimator for the population mean (μ) in the case of non-
normal distributions and presence of outliers. They are simple 
adjustments based on robust estimators for location and scale 
parameters. The proposed robust confidence intervals for the 
population mean (μ) are introduced in these subsections: 

2.2.1. The Median Interquartile Range Confidence Interval     

In this confidence interval (MDIQR-CI), we estimate the 
population mean (μ) by the sample median (MD) and the 
population standard deviation (σ) by   interquartile range (IQR). 
The standard error of the sample median (MD), that 

is𝑆𝑆.𝐸𝐸. (𝑀𝑀𝑀𝑀) =  𝜎𝜎𝑀𝑀𝑀𝑀 = 1.253𝜎𝜎 √𝑛𝑛⁄ , is used in the construction 
of this interval estimator. Thus, the (1 – α) 100% MDIQR-CI 
confidence interval for the population mean (μ) is given by (3). 

𝐶𝐶𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀 ± 𝑍𝑍1− 𝛼𝛼2
 𝑆𝑆.𝐸𝐸. (𝑀𝑀𝑀𝑀) 

                                = 𝑀𝑀𝑀𝑀 ±  𝑍𝑍1− 𝛼𝛼2
 1.253 𝜎𝜎

√𝑛𝑛
 

                                = 𝑀𝑀𝑀𝑀 ±  𝑍𝑍1− 𝛼𝛼2
 1.253 𝑀𝑀𝑀𝑀𝑀𝑀

√𝑛𝑛
                       (3) 

where, the sample median (MD), is defined by (4) as follow: 

                        𝑀𝑀𝑀𝑀 = �
𝑋𝑋(𝑛𝑛+12 )

𝑋𝑋
�𝑛𝑛2�

+𝑋𝑋(𝑛𝑛2+1)

2

𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜
  𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛                (4) 

2.2.2. The Trimean Interquartile Range Confidence Interval  

In this confidence interval (TRIQR-CI), we estimate the 
population mean (μ) by the sample trimean (TR) and the 
population standard deviation (σ) by   interquartile range (IQR). 
The standard error of the sample trimean (TR), that is 
𝑆𝑆.𝐸𝐸. (𝑇𝑇𝑇𝑇) =  𝜎𝜎𝑇𝑇𝑀𝑀 = 1.097 𝜎𝜎 √𝑛𝑛⁄  , is used in the construction of 
this confidence interval. Then, the (1 – α) 100% TRIQR-CI 
confidence interval for the population mean (μ) is given by (5). 

𝐶𝐶𝐼𝐼𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑇𝑇 ± 𝑍𝑍1− 𝛼𝛼2
 𝑆𝑆.𝐸𝐸. (𝑇𝑇𝑇𝑇) 

  = 𝑇𝑇𝑇𝑇 ±  𝑍𝑍1− 𝛼𝛼2
 1.097 𝜎𝜎

√𝑛𝑛
 

                                = 𝑇𝑇𝑇𝑇 ±  𝑍𝑍1− 𝛼𝛼2
 1.097 𝑀𝑀𝑀𝑀𝑀𝑀

√𝑛𝑛
                       (5) 

where,  

              𝑇𝑇𝑇𝑇 = 1
2
�𝑄𝑄2 +  𝑀𝑀1 +𝑀𝑀3

2
� = 1

2
�𝑀𝑀𝑀𝑀 +  𝑀𝑀1 +𝑀𝑀3

2
�              (6) 

is the sample trimean and Q1, Q2 and Q3 are the first, second 
(sample median) and third quartiles, respectively [6].  

3. The Simulation Study 
A simulation study has been conducted to compare the 

performance of three interval estimators. The simulation method 
is one of techniques to implement for a theoretical performance 
comparison and the results of the study are usually very close to 
the ones of the exact case when using a large number of iterations. 
In order to make the comparisons among three confidence 
intervals, two performance criteria–the coverage probability (CP) 
and the average width (AW)–of the confidence intervals are 
considered. If the confidence interval that is compared among the 
three confidence intervals has a smaller width, it indicates this 
confidence interval is a better method for the same level of the 
coverage probability. For a higher coverage probability, the 
confidence interval indicates a better method when the widths are 
the same level.  We used SAS version 9.4 programming to 
conduct this simulation study. We consider the widely used 95% 
confidence intervals for this simulation.  We consider in equals to 
10, 20, 30, 40, 50 and 100 were generated 100,000 times for each 
situation. For each data set of the samples, the common 95% 
confidence intervals were constructed for the three methods. The 
coverage probability (CP) and the average width (AW) of the 
confidence intervals are found by using respectively: 

http://www.astesj.com/
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       𝐶𝐶𝐶𝐶 = #(𝐿𝐿 ≤ 𝜃𝜃 ≤ 𝑈𝑈)
100,000

    and      𝐴𝐴𝐴𝐴 = ∑  (𝑈𝑈𝑖𝑖 − 𝐿𝐿𝑖𝑖)
100,000
𝑖𝑖=1

100,000
                    (7) 

To compare the performance of the interval estimators, the 
same types of distributions are used as in [7–9]; symmetric, 
skewed and contaminated normal ones. So, there are three cases 
for the simulated observations as follows: 

Case (a): Skewed Distributions 
In the skewed distribution cases, we will simulate 

observations from the gamma distribution, given by (8): 

      𝑖𝑖(𝑥𝑥;  𝛼𝛼,𝛽𝛽) = �
𝛽𝛽𝛼𝛼

Г(𝛼𝛼)
 𝑥𝑥𝛼𝛼−1 𝑒𝑒−𝛽𝛽𝛽𝛽 , 𝑥𝑥 > 0  ;  𝛼𝛼,𝛽𝛽 > 0

0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒
           (8) 

where α and β are   the shape and scale parameters respectively. 
The mean of the distribution is given by 𝜇𝜇 = 𝛼𝛼 𝛽𝛽⁄  and the 
variance of the distribution is given by  𝜎𝜎2 = 𝛼𝛼 𝛽𝛽2⁄ . Without loss 
of generality, β is set to unity and if α increases then the gamma 
distribution will approach to the normal distribution. For this 
simulation study, we consider, α = 1, 2, 4, 8 and β =1. 

Case (b): Symmetric Distributions 
In the symmetric distribution cases, we will simulate 

observations from the student t-distribution, 𝑜𝑜(𝑘𝑘), where k is the 
numbers of degrees of freedom with probability density function 
(𝑝𝑝𝑜𝑜𝑖𝑖) given by (9): 

     𝑖𝑖(𝑥𝑥;  𝑘𝑘) = Г((𝑘𝑘+1) 2⁄ )
√𝑘𝑘𝑘𝑘 Г(𝑘𝑘 2⁄ )

 1

�(𝛽𝛽2 𝑘𝑘⁄ ) + 1�
(𝑘𝑘 + 1)  2⁄  , − ∞ < 𝑥𝑥 <  ∞      (9) 

where mean of the distribution is zero and the variance,   𝜎𝜎2 =
𝑘𝑘 (𝑘𝑘 − 1)⁄ . The t-distribution is one type of a symmetrical 
distribution and bell shaped around 0, but it has heavier tails than 
the normal distribution. Additionally, as the number of the 
degrees of freedom (k) increase, the t-distribution will approach 
to the normal distribution. For the simulation purposes, we will 
consider 𝑘𝑘 = 4, 10, 30, 50. 

Case (c): Contaminated Normal Distribution 
In this case, we will simulate observations from mixture 

distribution that is called the contaminated normal distribution 
(CND) where artificial outliers are introduced in the data to assess 
the sensitivity of the three different interval estimators to the 
presence of outliers. The contaminated normal probability density 
function is given by (10):  

𝑖𝑖(𝑥𝑥;  𝜇𝜇,𝜎𝜎) = (1 − 𝛿𝛿) 𝑁𝑁(𝜇𝜇,𝜎𝜎2) +  𝛿𝛿 𝑁𝑁(𝜇𝜇, λ𝜎𝜎2)                (10)  

where  𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2) denote the normal PDF, (1 - 𝛿𝛿) and 𝛿𝛿 be the 
mixing probabilities, and the standard deviation of the wider 
component is defined as λ > 1. The main distribution of a data set 
is generated from the normal distribution 𝑁𝑁(𝜇𝜇,𝜎𝜎2) and slightly 
contaminated by a wider distribution. This paper determines 𝛿𝛿 = 
0.1, 0.2 and 0.3 which represents 10%, 20% and 30% 
"contamination" respectively, and assigns λ = 52, 102  as the scale 
multipliers. In this section, we consider an uncontaminated 
standard normal distribution, 𝑁𝑁(0, 1). The following six cases 
are constructed the PDF of the contaminated normal distribution 
(CND) as the linear combination of 𝑁𝑁(0, 1)  and 𝑁𝑁(0, 52) 
densities as shown in (11) to (13), and the PDF of a contaminated 
normal distribution is the linear combination of  𝑁𝑁(0, 1)  and  
𝑁𝑁(0, 102) densities as shown in (14) to (16): 

Case 1: A situation that comprises of 90% of simulated 
observations are sampled from 𝑁𝑁(0, 1) distribution and 10% from 
a normal distribution with mean  𝜇𝜇 = 0 and variance  𝜎𝜎2 = 52 , 
𝑁𝑁(0, 52) , is generated. This will give approximately 10% 
artificial outliers.   

              𝐶𝐶𝑁𝑁(0, 52)_10 = 0.9 𝑁𝑁(0,1) + 0.1 𝑁𝑁(0, 52)               (11) 
Case 2: A situation that consists of 80% of simulated 

observations are sampled from the standard normal 
distribution, 𝑁𝑁(0, 1), and 20% from a normal distribution with 
mean 𝜇𝜇 = 0 and variance  𝜎𝜎2 = 52, 𝑁𝑁(0, 52), is generated. This 
will give approximately 20% artificial outliers.   

              𝐶𝐶𝑁𝑁(0, 52)_20 = 0.8 𝑁𝑁(0,1) + 0.2 𝑁𝑁(0, 52)              (12) 
Case 3: A situation that consists of 70% of simulated 

observations are sampled from the standard normal 
distribution, 𝑁𝑁(0, 1), and 30% from a normal distribution with 
mean 𝜇𝜇 = 0 and variance  𝜎𝜎2 = 52, 𝑁𝑁(0, 52), is generated. This 
will give approximately 30% artificial outliers.     

             𝐶𝐶𝑁𝑁(0, 52)_30 = 0.7 𝑁𝑁(0,1) + 0.3 𝑁𝑁(0, 52)               (13) 
Case 4: A situation that consists of 90% of simulated 

observations are sampled from the 𝑁𝑁(0, 1) distribution and 10% 
from a normal distribution with mean 𝜇𝜇 = 0 and variance  𝜎𝜎2 =
102, 𝑁𝑁(0, 102), is generated. This will give approximately 10% 
artificial outliers. 

              𝐶𝐶𝑁𝑁(0, 102)_10 = 0.9 𝑁𝑁(0,1) + 0.1 𝑁𝑁(0, 102)         (14) 
Case 5: A situation that consists of 80% of simulated 

observations are sampled from 𝑁𝑁(0, 1) distribution and 20% from 
a normal distribution with mean 𝜇𝜇 = 0 and variance  𝜎𝜎2 = 102, 
𝑁𝑁(0, 102) , is generated. This will give approximately 20% 
artificial outliers. 
             𝐶𝐶𝑁𝑁(0, 102)_20 = 0.8 𝑁𝑁(0,1) + 0.2 𝑁𝑁(0, 102)          (15) 

Case 6: A situation that consists of 70% of simulated 
observations are sampled from 𝑁𝑁(0, 1) distribution and 30% from 
a normal distribution with mean 𝜇𝜇 = 0 and variance  𝜎𝜎2 = 102, 
𝑁𝑁(0, 102) , is generated. This will give approximately 30% 
artificial outliers.     

               𝐶𝐶𝑁𝑁(0, 102)_30 = 0.7 𝑁𝑁(0,1) + 0.3 𝑁𝑁(0, 102)        (16) 
The simulation study results for all considered cases are 

presented in Table 1 to Table 4 and Figure 1 to Figure 4. The 
results in Table 1 and Figure 1 show the performances of skewed 
distribution cases that the observations are generated from gamma 
distribution with 𝛼𝛼 equals 1, 2, 4, 8 and 𝛽𝛽 equals 1. It is found that 
the coverage probabilities of the three confidence intervals tend to 
be lower than the nominal level (0.95) when the shape parameter 
equals 1, 2 and 4 for almost all sample sizes. When a shape 
parameter equals 8, the coverage probabilities of MDIQR and 
TRIQR confidence intervals are greater than the nominal level 
(0.95) for most of the sample sizes, whereas this of the classical 
confidence interval tends to be lower than the nominal level for 
all sample sizes. For all the shape and scale parameters of the 
gamma distribution, it is found that the classical interval estimator 
has the smallest average width of the confidence interval among 
the comparative confidence intervals for all sample sizes. 

The simulated results in Table 2 and Figure 2 show the 
performances of symmetric distribution cases that the 
observations are generated from the Student’s t-distribution with 
DF   equals  4,  10,  30,  50.  It   is  observed   that  the   coverage  
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Table 1: Coverage probability (CP) and average width (AW) of the 95% CIs 
for gamma distributed data 

PDF n 

Confidence Interval Methods 

Classical CI MDIQR-CI TRIQR-CI 

CP AW CP AW CP AW 

𝐺𝐺(1, 1) 

10 0.8695 1.15 0.8485 1.70 0.8360 1.49 
20 0.9045 0.84 0.8251 1.21 0.8290 1.06 
30 0.9182 0.69 0.7697 0.98 0.7889 0.86 
40 0.9239 0.61 0.7162 0.85 0.7559 0.75 
50 0.9300 0.54 0.6558 0.76 0.7123 0.67 

100 0.9390 0.39 0.3796 0.54 0.5064 0.47 

𝐺𝐺(2, 1) 

10 0.8937 1.66 0.9125 2.64 0.8977 2.31 
20 0.9181 1.20 0.9143 1.89 0.9079 1.66 
30 0.9280 0.99 0.8943 1.54 0.8929 1.35 
40 0.9325 0.86 0.8752 1.34 0.8824 1.17 
50 0.9348 0.77 0.8521 1.20 0.8649 1.05 

100 0.9428 0.55 0.7152 0.85 0.7727 0.74 

𝐺𝐺(4, 1) 

10 0.9034 2.38 0.9409 3.91 0.9272 3.42 
20 0.9269 1.72 0.9520 2.80 0.9448 2.45 
30 0.9332 1.41 0.9453 2.29 0.9400 2.01 
40 0.9369 1.23 0.9394 1.99 0.9387 1.74 
50 0.9393 1.10 0.9306 1.78 0.9330 1.56 

100 0.9440 0.78 0.8789 1.26 0.8981 1.10 

𝐺𝐺(8, 1) 

10 0.9104 3.38 0.9526 5.65 0.9401 4.94 
20 0.9311 2.44 0.9685 4.06 0.9613 3.55 
30 0.9366 2.00 0.9671 3.32 0.9618 2.90 
40 0.9400 1.74 0.9659 2.88 0.9631 2.52 
50 0.9409 1.56 0.9624 2.58 0.9606 2.26 

100 0.9455 1.10 0.9453 1.83 0.9510 1.60 

Table 2: Coverage probability (CP) and average width (AW) of the 95% CIs for 
t-distributed data 

PDF n 

Confidence Interval Methods 

Classical CI MDIQR-CI TRIQR-CI 

CP AW CP AW CP AW 

𝑜𝑜(4) 

10 0.9259 1.63 0.9712 2.33 0.9602 2.04 
20 0.9399 1.18 0.9856 1.65 0.9792 1.44 
30 0.9433 0.98 0.9878 1.33 0.9815 1.17 
40 0.9453 0.85 0.9901 1.16 0.9856 1.01 
50 0.9474 0.77 0.9904 1.03 0.9862 0.90 

100 0.9474 0.55 0.9921 0.73 0.9886 0.64 

𝑜𝑜(10) 

10 0.9207 1.34 0.9676 2.15 0.9562 1.88 
20 0.9369 0.96 0.9835 1.53 0.9779 1.34 
30 0.9418 0.79 0.9859 1.25 0.9809 1.09 
40 0.9431 0.69 0.9885 1.08 0.9848 0.95 
50 0.9447 0.62 0.9892 0.97 0.9862 0.85 

100 0.9476 0.44 0.9912 0.69 0.9895 0.60 

𝑜𝑜(30) 

10 0.9182 1.25 0.9665 2.08 0.9555 1.82 
20 0.9372 0.89 0.9838 1.49 0.9786 1.30 
30 0.9413 0.73 0.9860 1.22 0.9820 1.06 
40 0.9436 0.64 0.9880 1.06 0.9855 0.92 
50 0.9452 0.57 0.9888 0.94 0.9861 0.83 

100 0.9469 0.40 0.9902 0.67 0.9888 0.59 
𝑜𝑜(50) 10 0.9176 1.23 0.9663 2.06 0.9547 1.80 

20 0.9362 0.88 0.9832 1.48 0.9778 1.30 
30 0.9404 0.72 0.9851 1.21 0.9809 1.06 
40 0.9432 0.63 0.9878 1.05 0.9850 0.92 
50 0.9442 0.56 0.9887 0.94 0.9861 0.82 

100 0.9476 0.40 0.9905 0.67 0.9893 0.58 
 

 

Figure 1: Coverage probabilities and average widths of the three confidence 
intervals for gamma distributed data 

probabilities of the MDIQR and TRIQR interval estimators tend 
to be greater than 0.95, whereas this of the classical confidence 
interval tends to be lower than 0.95 for all sample sizes and all the 
numbers of DFs for the t-distribution. When considering the 
average width of interval estimators, it is found that the classical 
confidence interval has the smallest value among the comparative   
interval estimators for all sample sizes and DFs. 

The simulated results in Table 3 and Figure 3 demonstrate the 
performances of contaminated normal distribution cases that the 
observations are generated from the linear combination of  
𝑁𝑁(0, 1)  and  𝑁𝑁(0, 52)  densities with 90%, 80% and 70% of 
observations are sampled from the N(0, 1) distribution and 
respectively of 10%, 20% and 30% are sampled from a N(0, 25) 
distribution. The simulation study shown that the coverage 
probabilities of the MDIQR and TRIQR interval estimators tend 
to be greater than 0.95, whereas this of the interval estimators is 
about 0.95 for all sample sizes and all percentages of the artificial 
outliers. For the case of linear combination of  𝑁𝑁(0, 1)  and  
𝑁𝑁(0, 52)  densities, the TRIQR confidence interval has the 
smallest average width among the comparative interval estimators 
for all sample sizes and all percentages of the artificial outliers. 
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That is, the 95% TRIQR interval estimator tends to have the best 
performance for both criteria–coverage probability and average 
width of the confidence interval–in this case. 

 
Figure 2: Coverage probabilities and average widths of the three confidence 

intervals for t-distributed data 
Table 3: Coverage probability (CP) and average width (AW) of the 95% CIs for 
contaminated normal distributed data as the linear combination of N(0, 1) and N(0, 
52) densities 

CND N 

Confidence Interval Methods 

Classical CI MDIQR-CI TRIQR-CI 

CP AW CP AW CP AW 

𝐶𝐶𝑁𝑁(0, 52) 
_10 

10 0.9443 2.06 0.9682 2.27 0.9566 1.98 
20 0.9547 1.52 0.9845 1.62 0.9784 1.42 
30 0.9523 1.27 0.9859 1.33 0.9812 1.16 
40 0.9528 1.11 0.9888 1.15 0.9854 1.01 
50 0.9512 1.00 0.9891 1.03 0.9855 0.90 

100 0.9494 0.71 0.9912 0.73 0.9894 0.64 

𝐶𝐶𝑁𝑁(0, 52) 
_20 

10 0.9509 2.75 0.9725 2.57 0.9610 2.25 
20 0.9495 2.02 0.9869 1.83 0.9806 1.60 
30 0.9484 1.67 0.9880 1.49 0.9821 1.30 
40 0.9478 1.46 0.9903 1.29 0.9856 1.13 
50 0.9483 1.31 0.9905 1.15 0.9857 1.01 

100 0.9479 0.93 0.9925 0.81 0.9892 0.71 

𝐶𝐶𝑁𝑁(0, 52) 
_30 

10 0.9435 3.32 0.9780 3.11 0.9685 2.73 
20 0.9433 2.42 0.9896 2.12 0.9833 1.86 
30 0.9436 2.00 0.9907 1.70 0.9840 1.49 
40 0.9443 1.74 0.9920 1.47 0.9861 1.29 
50 0.9464 1.57 0.9927 1.31 0.9865 1.15 

100 0.9482 1.11 0.9938 0.92 0.9886 0 
81 

 

 
Figure 3: Coverage probabilities and average widths of the three confidence 
intervals for contaminated normal distributed data as the linear combination      

of N(0, 1) and N(0, 52) densities 

The simulated results in Table 4 and Figure 4 show the 
performances of contaminated normal distribution cases that the 
observations are generated from the linear combination of  
𝑁𝑁(0, 1)  and  𝑁𝑁(0, 102)  densities with 90%, 80% and 70% of 
observations are sampled from the N(0,1) distribution and 
respectively of 10%, 20% and 30% are sampled from a N(0, 100) 
distribution. In this case, the TRIQR confidence interval performs 
the best efficiency among the three interval estimators for all 
sample sizes and all percentages of the artificial outliers because 
the coverage probability of this interval estimator is greater than 
0.95 and it has the smallest average width of interval estimator. In 
addition, the efficiency of MDIQR confidence interval is similar 
to this of TRIQR interval estimator. In this case, it is found that 
the classical interval estimators is not robust to outliers–that is, it 
has the highest average width of interval estimator and the 
coverage probability of it is smaller than the two proposed robust 
methods for almost all sample size, especially for a large 
percentage of outliers. 

Table 4: Coverage probability (CP) and average width (AW) of the 95% CIs for 
contaminated normal distributed data as the linear combination of N(0, 1) and N(0, 
102) densities 

CND n 

Confidence Interval Methods 

Classical CI MDIQR-CI TMIQR-CI 

CP AW CP AW CP AW 

𝐶𝐶𝑁𝑁(0, 102) 
_10 

10 0.9665 3.46 0.9693 2.30 0.9576 2.02 
20 0.9766 2.63 0.9850 1.65 0.9786 1.44 
30 0.9704 2.21 0.9865 1.35 0.9814 1.18 
40 0.9650 1.95 0.9891 1.17 0.9854 1.02 
50 0.9604 1.76 0.9894 1.04 0.9856 0.91 

100 0.9520 1.27 0.9915 0.74 0.9894 0.65 

𝐶𝐶𝑁𝑁(0, 102) 
_20 

10 0.9775 5.08 0.9746 2.68 0.9629 2.34 
20 0.9609 3.78 0.9885 1.90 0.9818 1.67 
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30 0.9524 3.14 0.9890 1.54 0.9828 1.35 
40 0.9497 2.75 0.9913 1.33 0.9858 1.17 
50 0.9498 2.47 0.9911 1.19 0.9859 1.04 

100 0.9493 1.77 0.9931 0.84 0.9891 0.74 

𝐶𝐶𝑁𝑁(0, 102) 
_30 

10 0.9633 6.36 0.9832 3.85 0.9752 3.37 
20 0.9457 4.66 0.9930 2.39 0.9876 2.09 
30 0.9452 3.86 0.9927 1.84 0.9860 1.61 
40 0.9454 3.36 0.9942 1.58 0.9876 1.39 
50 0.9471 3.02 0.9941 1.40 0.9873 1.23 

100 0.9486 2.15 0.9951 0.98 0.9886 0.86 
 

 
Figure 4: Coverage probabilities and average widths of the three confidence 
intervals for contaminated normal distributed data as the linear combination      of 
N(0, 1) and N(0, 102) densities 

Table 5: Melting points of beeswax data 

No. X No. X No. X No. X 
1 63.78 16 63.92 31 64.42 46 64.12 
2 63.83 17 63.86 32 63.50 47 63.03 
3 63.88 18 63.13 33 63.84 48 63.66 
4 63.78 19 63.08 34 64.21 49 63.34 
5 63.50 20 63.30 35 64.40 50 63.34 
6 63.41 21 63.51 36 62.85 51 63.56 
7 63.45 22 63.56 37 63.27 52 63.92 
8 63.63 23 63.93 38 63.36 53 63.68 
9 63.36 24 63.69 39 64.27 54 63.60 

10 63.92 25 63.40 40 64.24 55 63.50 
11 63.30 26 63.83 41 63.61 56 63.92 
12 63.60 27 63.51 42 63.31 57 63.39 
13 63.58 28 63.43 43 63.10 58 63.53 
14 63.27 29 63.43 44 63.86 59 63.13 
15 63.36 30 63.05 45 63.50   

4. Application with Real Data 

 We consider two real-life examples from normal and non-
normal distributions to illustrate the findings of the paper in this 
section. 

4.1. Example 1: Melting Points of Beeswax Data 

The data of this example is considered from [10] (cited in [11]), 
p.378) and introduced by [12].   Table 5 provides data representing 
the melting points (oC) of beeswax obtained from 59 sources.   

The statistical summary of the melting points (oC) of beeswax 
data was calculated and given below in Table 6. 

Table 6: Statistical summary for the melting points (oC) of beeswax data 

Statistics Abbreviations Values 

Sample Mean X  63.589 

Sample Median MD 63.530 

Sample Trimean TR 63.564 

Sample Standard Deviation S 0.347 

Inter-Quartile Range IQR 0.475 

 
According to [12], it is known that the population mean of the 

melting point of beeswax (𝜇𝜇) is about 63.580 oC. The histogram, 
density plot, Boxplot and normal Q-Q plot are displayed in Figure 
5. As can be observed, a goodness-of-fit test for normality 
assumption by using the Kolmogorov-Smirnov (K-S) statistical 
test provides a p-value is greater than α = 0.05 (KS = 0.086, p-
value > 0.150), we conclude that the data are met a normal 
distribution assumption. The plots in Figure 5 are consistent with 
the above conclusion. 

 
Figure 5: Plots for the melting points (oC) of beeswax data 

The 95% interval estimator of µ and the corresponding widths 
for the proposed intervals are given below in Table 7. 

Table 7: The 95% CIs for the population mean (𝜇𝜇) of the melting points (oC) of 
beeswax data 

Methods Confidence Interval Limits  Widths 
Lower Limit Upper Limit 

Classical 63.500 63.678 0.178 
MDIQR 63.378 63.682 0.304 
TRIQR 63.431 63.697 0.266 
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It is observed from Table 7 that all the interval estimators 
include the true population mean (𝜇𝜇 = 63.580). The classical 
interval estimator has the shortest interval width followed by 
CITRIQR and CIMDIQR, so both the classical and proposed interval 
estimators did well. Hence, these results are consistent with the 
simulation study. 

4.2. Example 2: Urinary Tract Infections (𝑈𝑈𝑇𝑇𝐼𝐼) Data  

The data of this example represent the duration of male patient 
urinary tract infections (𝑈𝑈𝑇𝑇𝐼𝐼𝑖𝑖) in days and presented in Table 8. 
It was considered by various researchers, among them, [13–15] 
are notable. The summary statistics of the urinary tract infections 
(𝑈𝑈𝑇𝑇𝐼𝐼𝑖𝑖) data are displayed in Table 9. The histogram, density plot, 
Box-plot and normal Q-Q plot are given in Figure 6. As it can be 
observed, the Kolmogorov-Smirnov (K-S) statistical test provides 
a p-value less than α = 0.01 (KS = 0.212, p-value < 0.010), which 
indicates that the data do not follow normal distribution. The plots 
in Figure 6 supported the above conclusion. It is noted from   
Santiago and Smith (2013) that the data are well fitted to an 
exponential distribution with a mean time of µ = 0.2100 days. 

Table 8: Urinary tract infection (UTI) data 

No. X No. X No. X 

1 0.57014 19 0.12014 37 0.27083 

2 0.07431 20 0.11458 38 0.04514 

3 0.15278 21 0.00347 39 0.13542 

4 0.14583 22 0.12014 40 0.08681 

5 0.13889 23 0.04861 41 0.40347 

6 0.14931 24 0.02778 42 0.12639 

7 0.03333 25 0.32639 43 0.18403 

8 0.08681 26 0.64931 44 0.70833 

9 0.33681 27 0.14931 45 0.15625 

10 0.03819 28 0.01389 46 0.24653 

11 0.24653 29 0.03819 47 0.04514 

12 0.29514 30 0.46806 48 0.01736 

13 0.11944 31 0.22222 49 1.08889 

14 0.05208 32 0.29514 50 0.05208 

15 0.12500 33 0.53472 51 0.02778 

16 0.25000 34 0.15139 52 0.03472 

17 0.40069 35 0.52569 53 0.23611 

18 0.02500 36 0.07986 54 0.35972 

 
Table 9: Statistical summary for the urinary tract infections (𝑈𝑈𝑇𝑇𝐼𝐼𝑖𝑖) data 

Statistics Abbreviations Values 

Sample Mean X  0.2103 

Sample Median MD 0.1424 

Sample Trimean TR 0.1580 

Sample Standard Deviation S 0.2119 

Inter-Quartile Range IQR 0.2431 

 
Figure 6: Plots for the urinary tract infections (𝑈𝑈𝑇𝑇𝐼𝐼𝑖𝑖) data  

The 95% interval estimator of µ and the corresponding widths 
for all proposed interval estimators are given below in Table 10. 

Table 10: The 95% CIs for the population mean (𝜇𝜇) of the urinary tract infections 
(𝑈𝑈𝑇𝑇𝐼𝐼𝑖𝑖) data 

 
Methods 

Confidence Interval Limits  
Widths 

Lower Limit Upper Limit 
Classical 0.1538 0.2668 0.1130 
MDIQR 0.0612 0.2236 0.1624 
TRIQR 0.0869 0.2291 0.1422 

 

 
It is observed from Table 10 that all interval estimator capture 

the true population mean (𝜇𝜇 = 0.2100). The classical interval 
estimator has the shortest width followed by CITRIQR and CIMDIQR, 
so both the classical and proposed interval estimators performed 
well. These results are consistent with the simulation study. 

5. Some Concluding Remarks 

For estimation of the population mean (μ), two robust interval 
estimators, namely, the median interquartile range (MDIQR-CI) 
and the trimean interquartile range (TRIQR-CI) are proposed in 
this paper. The simulation study evident that both criteria–
coverage probability (CP) and average width (AW)–of the 
proposed robust interval estimators tend to have a good 
performance when observations are sampled from the 
contaminated normal distribution, especially for the high 
percentage of outliers and the main distribution is contaminated 
with the wider distribution. However, when observations are 
sampled from non-normal distributions, gamma and t-
distributions, the classical confidence interval tends to have the 
best performance for the average width criterion, whereas the 
coverage probability of this tends to be smaller than those of the 
proposed robust interval estimators. Two data sets are analyzed to 
illustrate the performance of the interval estimators, which 
supported the simulation study. Finally, the proposed robust 
interval estimators are easy to compute, not computer intensive 
and promising, so that they can be recommended for the 
practitioners when these compare with the bootstrap confidence 
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interval that suggested by [1]. As mention in the introduction 
section that bootstrap confidence interval complicates to 
implement in practices because it is not easy to compute without 
the statistical programming [2]. 
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