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Visualization plays a crucial role in the exploratory analysis of Big Data. The direct visual-
ization of Big Data is a challenging task and difficult to analyze. Dimensionality Reduction
techniques extract the features in the context of visualization. Due to the unsupervised and
non-parametric nature, most of the dimensionality reduction techniques are not evaluated
quantitatively and not allowed to extend for dynamic data. The proposed representative
k-NN sampling-based clustering, determines the underlying structure of the data by using
well-known clustering techniques. The external cluster validation index determines the
order sequence of clustering techniques from which the appropriate cluster techniques are
recommended for the given datasets. From the recommended set, the samples of the best
clustering technique are considered as representative samples which can be used for gener-
ating the visual representation. The t-Distributed Stochastic Neighbor Embedding (t-SNE)
algorithm is applied to generate a low-dimensional embedding model of representative
samples, which is more suitable for visualization. The new data samples are added to the
generated model by using the interpolation technique. The low-dimensional embedding
results are quantitatively evaluated by k-NN accuracy and trustworthiness. The performance
analysis of representative k-NN sampling-based clustering results and embedding results
accomplished by seven differently characterized datasets.

1 Introduction

Exploratory analysis of Big Data is ubiquitous in an increasing
number of fields and vital to their progress. Visualization plays
a paramount role in an exploratory study. Data visualization is
applicable for the limited number of dimensions, which depends
on the perceptual capability of the analyst. For exploratory anal-
ysis, traditional visualization techniques may not provide useful
visual insights of high-dimensional data and they are restricted for a
limited number of dimensions. The conventional feature selection
methods may not provide helpful visual insights for exploratory
analysis, which happens due to the inappropriate feature selection.
There is a requirement of the feature extraction technique, which
shows the correlation between the original features of the data. The
Dimensionality Reduction (DR) technique transforms the data and
extract new features, which makes data analysis tractable. From the
last few decades, researchers have proposed various linear as well
as non-linear DR techniques in the context of visualization. The
linear DR techniques like Principal Component Analysis (PCA) [1],
Multidimensional Scaling (MDS) [2] and Factor Analysis (FA) [3]

deals with the simple structured data. It is challenging to extract
valuable information from complex structured data using linear DR.
In contradiction to linear DR, the non-linear DR techniques like
Isomap [4], Local Linear Embedding (LLE) [5], Laplacian Eigen-
map (LE) [6] and Stochastic Neighbor Embedding (SNE) [7] deals
with non-linear data. The paper [8] provides a complete comparative
study of DR techniques. The methodology of the DR technique
depends on its feature extraction criteria. The feature extraction
depends on the characteristics of interest in the data such as inter-
point distances, reconstruction weights, variation, linear subspace,
geodesic distances, linear tangent space, neighborhood graph and
conditional probability distribution.

Among all the DR techniques, t-Distributed Stochastic Neighbor
Embedding (t-SNE) [9], is an improved version of SNE, introduced
by Laurens Van Der Maaten and Geoffrey Hinton in 2008. The
t-SNE has gained impressive attention and enormous popularity
in several fields [10–12]. The empirical study states that the low-
dimensional visual representation of t-SNE is more robust than any
other DR technique. The t-SNE algorithm most commonly used
to preserve the original structure of the high-dimensional data in
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very low-dimensional embedding (i.e., either 2D or 3D). From past
several years the t-SNE has been explored in various aspects such as
optimization [13,14], scalability [14–17], dealing with non-numeric
data [18], outliers separation [17] and many more.

The t-SNE is a non-parametric technique that provides flexi-
bility in learning and reduces computational complexity. The non-
parametric nature limits t-SNE applicability to the out-off-sample
extension, which means the addition of new data samples into the
existing t-SNE environment is not possible. If we want to add
a new sample, then we should re-run the entire t-SNE model by
including a new sample. When the addition of new data points
increases, the computational cost of t-SNE also increases monotoni-
cally. Therefore, it does not apply to time-series and streaming data.
The LION-tSNE [17] of Boytsov et al. addressed the problem of
adding new data into the existing t-SNE environment using Local In-
verse Distance Weighting Interpolation (LIDWI) without re-running.
The outlier’s handing is also addressed by LION-tSNE using outlier
placement heuristic, which assumes that some percentile of outliers
present in the designed t-SNE and determine the outliers from the
newly added data points. In LION-tSNE, the sample t-SNE model
is designed based on the random sample selection, which may cause
the non representativeness of the data. The representative samples
are selected by our earlier approach called k-NN sampling [19]
and the resutlts are statistically significant which is measured by
statistical method pairwise t-test [20].

This paper is an extension of our earlier paper presented in High
Performance Computing, Data and Analytics (HiPC) [19], which
deals with the preservation of the underlying cluster structure of
high-dimensional data in low-dimensional t-SNE embedding with
a representative sample. The underlying cluster structure preserva-
tion is measured in terms of a quantitative metric. In the existing
methods, the low-dimensional embedding of t-SNE describes the
quality of the structure preservation. Still, it is an open problem
for giving the quantitative proof for the number of clusters that
exist in the original data. The proposed novel representative k-NN
sampling-based clustering approach for effective dimensionality
reduction-based visualization finds the solution. In the first step, the
proposed approach determines several distinct data samples using
our earlier proposed k-NN sampling algorithm. The number of
samples depends on the range of k (i.e., 1 ≤ k ≤ m), which gives
the neighborhood representation.

In the second step, the effective number of clusters existing
in the original dataset is determined by the sampled data using
clustering techniques such as k-Means [21], Agglomerative Hi-
erarchical Clustering (AHC) [22], Balanced Iterative Reducing
and Clustering using Hierarchies (BIRCH) [23], Fuzzy c-means
(FCM) [24], Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [25], Ordering Points To Identify the Clustering
Structure (OPTICS) [26], Mean Shift (MS) [27], Spectral Cluster-
ing (SC) [28], Expectation-Maximization Gaussian Mixture Model
(EMGMM) [29], Affinity Propagation (AP) [30] and Mini Batch
k-Means (MBKM) [31]. Each clustering technique generates cluster
labels for sampled data. The cluster labels of remaining data (i.e.,
data points other than selected samples) are labeled by the k-Nearest
Neighbor (k-NN) algorithm. The k-NN of each remaining data sam-
ple is subject to the selected samples. After assigning the labels to
the remaining data samples, the representative sample of each clus-

tering technique is determined by their external cluster validation
index called Fowlkes-Mallows Index (FMI) [32]. In our contribu-
tion, we are also recommending the order sequence of clustering
techniques among the selected techniques for a given dataset. We
are also presenting the Compactness (CP) [33], Calinski-Harabaz
Index (CHI) [33] and Contingency Matrix (CM) [34] of clustering
techniques for gaining a more detailed analysis about clustering.
The first technique in the order sequence denotes the best clustering
technique and the representative samples of it considered as the
samples for t-SNE model design for a given dataset. The cluster
validation index provides the comparison between representative
k-NN sampling-based clustering and the aggregate clustering (i.e.,
clustering on the whole dataset). The proposed representative k-NN
sampling-based clustering is scalable to all clustering techniques
which are suitable for numerical datasets. Also, we can apply any
clustering technique to the large scale dynamic data with represen-
tative k-NN sampling-based clustering. Due to the paper limitation,
we have chosen the most popular clustering techniques from differ-
ent groups.

In the third step, the sample t-SNE model is designed on a rep-
resentative sample of best clustering techniques, which transforms
the high-dimensional data into low-dimensional embedding. The
remaining data samples are added to the sample t-SNE environ-
ment with the help of LIDWI. The outliers from the remaining
samples are identified and controlled by proposed heuristic and
the identified outliers are placed into the t-SNE environment us-
ing outlier placement heuristic of Boystov et.al [17]. In the fourth
step, the t-SNE embedding of input data is quantitatively evaluated
by k-NN accuracy in the context of clustering and trustworthiness.
The quantitative evaluation answers the question, how much struc-
ture of high-dimensional data is preserved by the low-dimensional
t-SNE embedding. The k-NN accuracy of t-SNE embedding is mea-
sured in two ways: baseline accuracy and sampling accuracy. For
quantitative performance evaluation, the k-NN accuracy of t-SNE
embedding of representative k-NN sampling-based clustering and
aggregate clustering results are compared with the ground truth
class labels, which is measured in our earlier paper. In our earlier
approach, we used ground-truth class labels for obtaining the k-NN
accuracy of the t-SNE embedding but here we are using for checking
the derived cluster purity of representative k-NN sampling-based
clustering. The k-NN sampling-based clustering results and t-SNE
embedding of it are analyzed by seven differently characterized toy
and real-world datasets. In summary, our contribution consists of

• The order sequence of applicable clustering methods with
representative k-NN sampling-based clustering using cluster
validation index. The set of recommended techniques for the
given dataset using a threshold. The comparison between
representative k-NN sampling-based clustering and aggregate
clustering results.

• The outliers from the remaining samples are identified and
controlled by the proposed heuristic before adding into the
t-SNE embedding. The embedding structure quantitatively
evaluated by k-NN accuracy in the context of clustering and
trustworthiness.

The organization of the paper is as follows. In section 2, we
present the background knowledge that gives the basic mathemati-
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cal intuition required for understanding the clustering techniques,
t-SNE and other supplements. Section 3 presents the related work.
In section 4, we present a detailed description of the proposed k-NN
sampling-based clustering for the visualization of dynamic data. In
section 5, we are providing the details of datasets, experimental
setup and analysis of results. Finally, section 6 gives directions for
future work and conclusions.

2 Background Knowledge
The following section describes the few techniques for understand-
ing the background formulation of our work. Section 2.1 gives a
detailed description of the selected clustering techniques for repre-
sentative k-NN sampling-based clustering. Section 2.2 describes
the mathematical intuition of the t-SNE algorithm. The intuition
behind the addition of the inlier data point into an existing t-SNE en-
vironment is explained in section 2.3. In section 2.4, we are giving
a detailed description of metrics that are used for the quantitative
evaluation of embedding.

2.1 Clustering and their performance measures

Section 2.1.1 describes the selected clustering techniques which
are used for representative k-NN sampling-based clustering. 2.1.2
provides detailed mathematical intuition of cluster validation in-
dexes such as Fowlkes-Mallows Index (FMI), Compactness (CP),
Calinski-Harabaz Index (CHI) and Contingency Matrix (CM).

2.1.1 Clustering Techniques

Clustering is unsupervised learning, where the similarly character-
ized data objects are grouped. The clusters of data objects can be
represented as a set C of subsets C1,C2, ....,Ck such that ∩k

i=1Ci = φ.
The different clustering algorithms are proposed based on their mea-
sures of similarity: partitional, hierarchical, fuzzy theory-based,
distribution-based, density-based, graph partition-based, grid-based,
model-based and many more. The user decides the number of
clusters present in the dataset by using a heuristic, trail-and-error
and evolutionary approaches such as density and probability den-
sity. From the groups mentioned above, we have chosen the most
frequently and popularly used algorithms for experimental evalua-
tion. But proposed representative k-NN sampling-based clustering
approach is scalable to all the clustering techniques which are suit-
able for the numerical datasets. We explored traditional clustering
algorithm [35–37] for our work.

In partitional clustering, data points assigned to any one of the
k-clusters using distance similarity measures such as Euclidean dis-
tance. k-means [21] clustering is one of the simplest, best-known
and benchmarked partition-based clustering. The k-means cluster-
ing classifies the given data points through a user-defined number of
clusters. The main goal of the k-means clustering is the initialization
of an appropriate k-centroids, one for each cluster. The objective of
k-means is the minimization of the sum of square distance which
can be defined as follows

S S D =

k∑
j=1

n∑
i=1

‖ x( j)
i − c j ‖

2 (1)

where ‖ x( j)
i − c j ‖

2 is a L2 norm between a data point x( j)
i and the

cluster center c j. In AP [30], at the initial stage, all data points
are considered as centroids and nodes of the network. The clus-
ters and their centroids are measured by transmitting the similarity
message recursively. The Mini Batch k-Means (MBKM) [31] is an
improved version of k-means, which performs clustering on batches
instead of considering each point. Therefore, MBKM requires less
computational time and is also applicable to large datasets.

In hierarchical clustering, groups are formed by iteratively di-
viding the data objects either in the bottom-up or top-down ap-
proach. The bottom-up approach is also known as Agglomerative
Hierarchical Clustering (AHC) [22], in which initially each data
object is considered as a separate group, then merging these small
groups into larger and larger groups until a single group formation
or certain threshold. The top-down approach is also known as Divi-
sive Hierarchical Clustering (DHC), and it works in reverse order
of the bottom-up approach. Both hierarchical approaches depend
on the linkage criteria such as single, complete and average link-
age. The linkage criteria determines the metric for merging two
similar characterized small clusters. For example, single linkage
criteria determines the minimum distance pair from the neighbor
clusters min

{
d(x, y) : x ∈ Ci, y ∈ C j

}
. The BIRCH [23] method has

proposed to deal with large datasets, outliers in robust and also to
reduce the computational complexity. The BIRCH method works
on the idea of Cluster Features (CF) which is a height-balanced tree.

The basic idea of fuzzy theory-based clustering is that the dis-
crete labeling is converted to continuous intervals, to describe the
belonging relationship among objects more reasonably. The Fuzzy
c-means (FCM) [24] is an extension of k-means where each data
point can be a member of multiple clusters with membership value.
The main advantage of FCM is that the formed groups are more
realistic.

The density-based clustering finds the clusters based on the
density of data points in a region. The principal objective of density-
based clustering is that for each instance of a group, there should be
at least a minimum number of neighbor instances within the given
radius. The DBSCAN [25] is the most well known density-based
clustering. In DBSCAN clustering, the data objects fall into three
groups: core-object, border-object and noise-object. The data points
of the core-object group have enough number of neighbors in the
given radius, and these data points are from the higher density region.
The data points of the border-object group have fewer neighbors
than the required number of neighbors in the given radius and they
are in the neighborhood of the core object group. The data points
of the noise-object group are not in either core or border-object
group. The advantage of DBSCAN clustering is that the generated
clusters are in arbitrary shape based on the given parameters such
as radius and number of minimum instances. The improved version
of DBSCAN is OPTICS [26], which overcomes the limitations of
DBSCAN. Mean-shift [27] algorithm determines the mean of offset
of the current data point, the next point is identified based on the
current point and the offset. The process will continue until some
criteria is satisfied.

The spectral clustering [28] is a graph partition-based technique
in which clustering is obtained by similarity graph partition. The
paper [28] describes the different ways of constructing the similarity
graph. While building the similarity graph, the data objects are con-
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sidered as vertices and the similarity (i.e., the similarity distance)
between the data objects is a weighted edge. The critical idea of
similarity measure is to find a method of graph partition by making
edges between different groups have low edge weight and the edges
of the same group have more edge weights. In similarity graph parti-
tioning, the cluster analysis is carried out by feature space obtained
by the eigenvectors corresponding to k largest eigenvalues of the
laplacian matrix [38] of similarity graph. The spectral clustering is
suitable for the datasets with arbitrary shape, high-dimensions and
outliers.

The EMGMM [29] is a model as well as a distribution-based
clustering technique in which cluster data obey the same indepen-
dent Gaussian distribution which exists in the original data distribu-
tion. The generated clusters are more realistic because a probability
distribution obtains them.

The performance and applicability of clustering depends on the
used dataset characteristics. Therefore, the researchers empirically
state that none of the clustering technique is generalized for any
datasets.

2.1.2 Cluster validation Measures

In our experimentation, we have used two internal and one external
cluster validation measure to evaluate the performance of clustering
techniques. The internal measure computes the performance of clus-
tering without using the ground-truth class labels. The compactness
(CP) [33] is an internal cluster validation measure which can be
computed as follows

CP =
1
n

k∑
l=1

nl

(∑
xi,x j∈Cl

d(xi, x j)

nl(nl − 1)/2

)
(2)

where d(xi, x j) is Euclidean distance between two objects in cluster
Cl and nl is the number of objects in Cl. The smaller CP value
of clustering is more compact and gives better clustering results.
The Calinski-Harabaz Index (CHI) [33] or Variance Ratio Crite-
rion is defined as the ratio of between-clusters dispersion mean and
the within-cluster dispersion mean. The CHI is an internal cluster
validation measure which is given by

CHI =

∑k
l=1 nld2(Cl,C)/(NC − 1)∑k

l=1
∑

x∈Cl
d2(x,Cl)/(n − NC)

(3)

Where n is the dataset size, C is the dataset center, nl is the size
of lth cluster, Cl is the lth cluster centroid and NC is the number of
clusters.

The external validation measure knows the ground truth class
labels. The primary purpose of the external validation index is to
choose an optimal clustering algorithm for a given dataset. The
external validation measure also checks the cluster purity. In our
experiment, we used Fowlkes-Mallows Index (FMI) [32] is the ge-
ometric mean between precision and recall. The FMI defined as
follows

FMI =
T P

√
(T P + FP)(T P + FN)

(4)

The FMI value is bounded between 0 and 1, 1 denotes that the
obtained clusters and the given ground truth classes are the same.
The large FMI indicates that the obtained clustering is purer.

We also measured the contingency matrix that reports the in-
tersection cardinality for every true/predicted cluster pair. The
contingency matrix gives sufficient statistics for all clustering met-
rics. But it is hard to interpret the contingency matrix of extensive
clustered data.

2.2 Student t-Distributed Stochastic Neighbor Embed-
ding (t-SNE)

The t-SNE [9] algorithm introduced by Laurens Van Der Maaten
and Geoffrey Hinton in 2008, based on the SNE algorithm. The
principal objective of SNE is to preserve the underlying structure of
high-dimensional data in low-dimensional embedding space. Lets
assume the given input dataX = {x1, x2, ....., xN}where each xi ∈ R

D

is a D-dimensional vector. The t-SNE computes the embedding
Y = {y1, y2, ...., yN} of X where each yi ∈ R

d is a d-dimensional
vector, where d � D and most commonly d =2 or 3. The similarity
between xi and x j of X is calculated by conditional probability pi j

is given by

p j/i =

exp
(
−d(xi,x j)2

2σi
2

)
∑N

k,i exp
(
−d(xi,xk)2

2σi
2

) , pi/i = 0, pi j =
p j/i + pi/ j

2N
(5)

where the bandwidth σi of Gaussian kernel, is obtained by binary
search by matching the perplexity of Pi and the user-defined per-
plexity (µ) which is given as a parameter. The perplexity is a smooth
measure of an adequate number of neighbors for each data point.
The equality and perplexity of Pi is as follows

µ = 2H(Pi) where H(Pi) = −

N∑
j

p j/i log2 p j/i (6)

where H(Pi) denotes the entropy and Pi is the conditional probabil-
ity distribution across all data points for the given xi. The yi and
y j are the corresponding low-dimensional values of xi and x j (i.e.,
the values of Y are initialized by Gaussian or uniform distribution).
The similarity between yi and y j is defined as

qi j =
(1 + d(yi, y j)2)−1∑N

l
∑N

k,l(1 + d(yl, yk)2)−1
(7)

where d(yi, y j) is defined as distance similarity measure such as
Euclidean distance. In low-dimensional embedding, the similarity
qi j is obtained by student t-distribution with one degree of freedom.
But, the similarity pi j of high-dimensional data uses the Gaussian
distribution. The cumulative function curvature of Gaussian distri-
bution is flatter than the cumulative function curvature of student
t-distribution with one degree of freedom. The principal idea of
using student t-distribution in low-dimensional embedding is to
overcome the crowding problem [7].

If pi j ∼ qi j,∀i, j ∈ N, then the given data is perfectly em-
bedded into the low-dimensional space. Otherwise, compute the
KL-divergence (i.e., error) between pi j and qi j that is equal to the
cross-entropy in Information Retrieval System (IRS). The cost func-
tion (C) or objective of t-SNE is defined as follows

C = KL(P ‖ Q) =

N∑
j

pi j log
pi j

qi j
(8)
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The simple gradient descent applied on cost function C for obtaining
the optimization or minimization of it. The simple gradient descent
of cost function C given by

∂C
∂yi

= 4
∑
j,i

(pi j − qi j)qi jZ(yi − y j) (9)

where Z = (1 + d(yi, y j)2)−1 is a normalization term of student t-
distribution. The Equation 9 produce either positive or negative
values depending on the pi j value. If an Equation 9 gives positive
value then there is an attractive force among the yi and y j of embed-
ding space. Otherwise, there is a repulsive force among the yi and
y j of embedding space. The degree of repulsion depends solely on
the closeness of points in the embedding space. In the optimization
process, the early exaggeration coefficient α > 1 plays a paramount
role in forming groups of similar objects of high-dimensional data
in low-dimensional embedding space. In the early exaggeration
process, the elements of similarity matrix (P) (i.e., pi j’s) multiplied
by the early exaggeration coefficient, which is measured by the
intuition given by George C. Linderman and Stefan Steinerberger
[39]. Therefore, similar data objects bring near to each other in
low-dimensional embedding space. This process can happen at the
early stage of optimization. The gradient descent of C after early
exaggeration is

∂C
∂yi

= 4
∑
j,i

αpi jqi jZ(yi − y j) − 4
∑
j,i

q2
i jZ(yi − y j) (10)

The momentum and learning rate parameters improve the optimiza-
tion process of the cost function. The momentum parameter reduces
the number of iterations of the cost function optimization. At the
initial stage of iteration, the momentum value is small until the
map points have become moderately well organized. The optimiza-
tion is improved by input approximation and tree-based algorithms
[13], which reduce the memory and computational complexity. The
updated values of Y at iteration t is obtained by

Y(t+1) = Y(t) + η
∂C
∂yi

+ α(t)(Y(t−1) − Y(t−2)) (11)

where α(t) is momentum at tth iteration, η is learning rate. The
work-flow of t-SNE is shown in the Figure 1.

The well-separated clusters of input data are well preserved
in the low-dimensional embedding by setting the early exaggera-
tion coefficient α and learning rate η. The intuition for setting the
above parameter is derived by George C. Linderman and Stefan
Steinerberger in [39]. According to the George C. Linderman and
Stefan Steinerberger observations the early exaggeration coefficient
α, learning rate η, and minimum probability pi j’s of same cluster
objects(i.e., xi and x j belong into the cluster Cl for all i , j) is
defined as follows.

α ∼
n

10
, η ∼ 1 and pi j =

1
10n | π−1(π(i)) |

(12)

where π : {1, 2, ...., n} → {1, 2, ..., k} assigns each data point to one
of the k clusters.

2.3 Local Inverse Distance Weighting Interpolation
(LIDWI)

The LIDWI [40] maps new data point x ∈ RD into the existing
embedding yi ∈ R

d, where {i = 1, 2, .......m}. The LIDWI deter-
mines the value of x as a weighted sum of values yi, where weight
is proportional to inverse distances. The LIDWI of x is

LIDWI(x) =
∑

‖x−xi‖≤rx

wi(x).yi, wi(x) =
‖ x − xi ‖

−p∑
‖x−xi‖≤rx

‖ x − xi ‖
−p

(13)
for instance, when the data point x → xi, the inverse distance
‖ x − xi ‖

−1→ ∞, the corresponding weight wi(x) → 1 ( i.e.,
∀ j,iw j(x)→ 0 due to the normalization) and LIDWI(x)→ yi. The
neighbor points selection is obtained by a radius rx parameter. The
parameter rx value is calculated by the heuristic proposed by Andrey
Boytsov et.al. [17]. In LIDWI, the power parameter p plays an im-
portant role. For instance, very small value of p predicts the value of
x around the center: y ≈ mean(yi) (unless x = xi) even the distance
‖ x − xi ‖ is low because the weight distribution is close to uniform.
When the power parameter is high and the distance ‖ x − xi ‖ is
low, the weight wi(x) of very first nearest neighbor is dominating
all other neighbors, therefore y ≈ yi where i = argmin ‖ x − x j ‖.
The overfitting suffers from either too small or too large values of
power parameter p. In LOIN-tSNE, the authors proposed a gen-
eralization for obtaining power parameter by using leave-one-out
cross-validation of the training sample. The computation of the
generalized power parameter is obtained by applying the LIDWI for
each training sample that produces the estimation of each yi. Then
the mean square distance between the estimated yi’s and real yi’s is
computed. The optimal power parameter is obtained by optimizing
the mean square error (i.e., the mean square distance is minimum).
The obtained power parameter is considered as a metric. However,
this metric is heuristic, not an exact criterion.

2.4 Performance evaluation metrics

2.4.1 k-NN accuracy

The existence of the cluster structure of high-dimensional data in
low-dimensional embedding is quantitatively measured by k-NN
accuracy of the t-SNE embedding in the context of clustering. The
k-NN accuracy is defined as the percentage of the neighbors having
the cluster label equivalent to the observational point cluster label.

2.4.2 Trustworthiness

Trustworthiness [41] is one of the measure to evaluate the quality of
the t-SNE embedding. Trustworthiness is defined as any unexpected
nearest neighbors in the output space are penalized in proportion to
their rank in the input space.

T (k) = 1 −
2

Nk(2N − 3k − 1)

n∑
i=1

∑
x j∈Uk(xi)

(r(xi, x j) − k) (14)

where Uk(xi) is the k-NN of xi in embedding space, r(xi, x j), i , j
the rank of x j when the data vectors are ordered based on their
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Figure 1: Work-flow of t-SNE algorithm [19]

Euclidean distance from the data vector xi in the original data space.
It is bounded between 0 and 1, where 1 represents the complete
structure of the data preserved in the embedding space.

3 Related Work

Our earlier proposed k-NN sampling based tSNE mainly con-
centrates on the preservation of the underlying structure of high-
dimensional data in low-dimensional embedding space with rep-
resentative samples. The obtained low-dimensional embedding
structure describes the quality of the structure using ground-truth
class labels. But the low-dimensional embedding does not give
the quantitative proof for the number of clusters that exist in the
original data. In [39] authors gave the theoretical observations for
well-separated clusters of high-dimensional data in low dimensional
embedding space.

The researchers have proposed various methods to incorporate
new data samples into the existing t-SNE environment. Most of the
existing techniques designed a mapping function f : X → Y, which
accepts multi-dimensional data and returns its low-dimensional
embedding. The designed mapping functions are used for incorpo-
rating the new data samples into the existing t-SNE environment. In
[14–16] authors have proposed different approaches for adding a
new data sample or scaling up the t-SNE algorithm.

Andrey Boytsov et.al. [17] proposed the LION-tSNE algorithm
based on local IDWI for adding new data sample into an existing t-
SNE environment. It also addresses the outlier handling approaches.
Our earlier work extended the idea of the LION-tSNE algorithm
by proposing a k-NN sampling method for designing a represen-
tative sampling based t-SNE model. It allows the selection of the
sample concerning their k-nearest neighbors instead of random
sampling. In this paper, we are proposing the novel representative
k-NN sampling-based cluster approach for effective dimensionality
reduction-based visualization of dynamic data, which determines
the underlying cluster by using the most popular clustering tech-
niques. The obtained cluster structure is quantitatively evaluated by
k-NN accuracy in the context of clustering and trustworthiness.

4 Proposed representative k-NN sampling-
based clustering for effective visualiza-
tion Framework

The proposed representative k-NN sampling-based clustering for
effective dimensionality reduction-based visualization of dynamic
data framework is shown in the Figure 2. It has four phases: at
phase 1, data preprocessing is done for removing the redundant data
points and filling the empty variables with appropriate values. At
phase 2, the proposed k-NN sampling-based clustering is applied
to determine: (i) The generation of k distinct samples using mutual
k-NN sampling with static graph updation algorithm. (ii) The list
of clustering techniques applicable for the given dataset. (iii) The
optimal sample size produces the best grouping for each concerned
clustering technique. (iv) The ordered sequence of recommended
clustering techniques for the given dataset from which the best clus-
tering technique is selected by using FMI scores. The detailed rep-
resentative k-NN sampling-based is clustering presented in section
4.1. At phase 3, the dimensionality reduction-based visualization is
obtained by t-SNE algorithm, which derives the low-dimensional
embedding of data and the LIDWI algorithm is used to interpolate
the new data points into the learned t-SNE model. The outliers
from the remaining data points are identified and controlled by the
proposed heuristic. The dimensionality reduction-based visualiza-
tion is described in section 4.2. In the final phase, the quantitative
measure of the t-SNE embedding is computed by k-NN accuracy
and trustworthiness. The process of quantitative metric derivation is
described in section 4.3.

4.1 Representative k-NN sampling-based clustering

Initially, the k distinct samples are generated by the modified al-
gorithm of our earlier proposed method. The sample generation
depends on the parameter k of k-NN sampling. Each k generates
one distinct sample; the boundary of k is denoted as 1 ≤ k ≤ m,
where m is the maximum number of neighbors required for pre-
serving the behaviour of any data point of the given dataset. Our
earlier approach has given two different k-NN sampling strategies
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Figure 2: Proposed framework of representative k-NN sampling-based clustering for an effective dimensionality reduction-based visualization of dynamic data using
LION-tSNE with quantitative measure of cluster accuracy

such as static and dynamic k-NN sampling based on k-NN graph
modification. In this paper, we are considering only static k-NN
sampling in which the k-NN graph is modified statically that means
no new edge is added among any two vertices of the k-NN graph.
The main reason for selecting static k-NN sampling is that the t-SNE
embedding results of it are more statistically significant than the
dynamic one. The Nearest Neighbor score (NN score) and Mutual
Nearest Neighbor score (MNN score) of each node of the k-NN
graph are used for selecting the samples. Lets assume k-NN graph
is a directed graph G = (V, E), the edge E(v1, v2) gives v2 as a neigh-
bor of v1 and neighborhood of v1 is denoted by Nv1. The out-degree
of each vertex is equal to k, and the in-degree of a vertex depends
on the neighborhood property of other vertices (i.e., the data point
xi belong into the neighborhood of other datapoints). In our method,
each data point is a vertex of the k-NN graph and k is a parameter
for deriving the edges between neighboring vertices. The NN score
of data point xi is equal to the in-degree of xi which is defined as
follows

NN score(xi) =| {x j | xi ∈ Nx j } |,∀ j,ix j ∈ X (15)

where X denotes whole data set, Nx j denotes the neighborhood of
x j. The MNN score of data point xi is at most k which is given by

MNN score(xi) =| {x j | xi ∈ Nx j } | where x j ∈ Nxi ,∀ j,ix j ∈ X

(16)
From the NN score and MNN score matrix the Representative Sam-
ple (RS) xi selection and the sample x j Represented by Representa-
tive Sample (RRS) xi is given by

RS (xi) = f irst index{argmaxxi∈X{NN score(xi)}∩
argmaxxi∈X{MNN score(xi)}} (17)

RRS (x j) = {x j | x j ∈ Nxi } where xi ∈ Nx j ,∀ j,ix j, xi ∈ X (18)

The updated mutual k-NN sampling with a static graph updation
algorithm is shown in Algorithm 1. Initially, the Train samples
(i.e., representative samples set) and Rep samples (i.e., the sam-
ple represented by the selected training sample that is the first

nearest mutual neighbor of train sample) are null sets. For each
iteration, the data point x which has maximum NN and maxi-
mum MNN score appended to the Train samples set. The data
point y is appended to the Rep samples if y ∈ Nx and x ∈ Ny

that denotes the point x and y are more similar (i.e., the distance
d(x, y) < d(x, z) where ∀z ∈ Nx) to each other. The data point
x and y are deleted from X and their corresponding vertices are
deleted from the k-NN graph. After deleting the vertices of x and
y, the corresponding in-edges and out-edges are removed from the
k-NN graph and the graph is updated accordingly. The elements of
Train samples and Rep samples are obtained iteratively, the itera-
tion repeats until the NN score of the remaining X is equal to zero.

Algorithm 1: Mutual k-NN Sampling with a static graph updation

Data: data set X = {x1, x2, .....xN }, parameter k for minimal training sample
selection

Result: Return Train samples, Rep samples
Train samples = ∅

Rep samples = ∅

begin
Compute k-NN graph of X
repeat

Compute NN S core(X)
Compute MNN S core(X)
index = [NN S core(X) == argmax{NN S core(X)}] /* gives
all index which are having same NN Score */

if len(index) > 1 then
train index = argmax{MNN S core(xi)} where i ∈ index

end
else

train index = index
end
x = X[train index]
Train samples = Train samples ∪ x
Determine the mutual neighbors of train index
y = Most NMN(x) /* return first mutual nearest neighbor
of x */

if y ∈ Nx&x ∈ Ny then
Rep samples = Rep samples ∪ y

end
Delete x and y from X and update the k-NN graph

until (NN − S core(X) = 0));
end

In our earlier approach of static graph updation, we have con-
sidered the whole mutual neighborhood set of x as the samples
represented by x. The whole neighborhood set selection causes
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loss of information due to that reason the earlier approach select
Train samples set at an early stage of k value. The data points
of the remaining X (i.e., the data point do not belong into either
Train samples set or Rep samples set) is handled in two different
ways. Handling of the remaining samples is described in subsection
4.4. The mutual k-NN sampling with a static graph updation algo-
rithm generates a various set of Train samples and Rep samples
with different k-values.

The clustering techniques which are described in subsection
2.1.1 are applied on each Train samples set of mutual k-NN sam-
pling with a static graph updation algorithm that is called a sampling-
based clustering. The cluster labels for the data points other than
the Train samples are assigned by using k-NN algorithm. For exam-
ple, the dataset size is N, the Train samples size is n and then the
unmarked sample size is N − n(i.e., the samples are not assigned
with any labels). The k-NN of each unmarked sample is derived
from the associated Train samples set. The label assignment of
each unmarked sample depends on the labels of its k-NN, a label
with maximum occurrence in k-NN that is assigned to a sample.
From each clustering technique, the optimal Train samples set is
obtained by the FMI score. The FMI is an external validation in-
dex that uses the ground truth class labels. Therefore, the number
of clusters is defined as a constant that is equal to the number of
ground truth classes. The FMI score of optimal Train samples of
clustering techniques generates an order sequence of the clustering
techniques. From the order sequence, we can recommend the most
desirable techniques for a given dataset from the selected set of tech-
niques. From this recommendation, the best suitable technique is
selected and its optimal Train samples set is considered as the best
representative sample. The threshold parameter is used to derive
the recommended techniques, which is defined as the FMI score
difference between two adjacent techniques of order sequence. The
three cluster validation index such as FMI score, CHI score and
CP of representative k-NN sampling-based clustering are compared
with their aggregate clustering (i.e., clustering on whole dataset)
validation index of chosen clustering techniques. The result compar-
ison is discussed in subsection 5.3. The algorithm of representative
k-NN sampling-based clustering is shown in Algorithm 2. The em-
bedding of selected optimal Train samples and addition of other
data samples into an existing t-SNE environment is described in the
following section.

4.2 Dimensionality reduction-based visualization

The subsection 4.2.1 describes the low-dimensional embedding of
a representative sample with t-SNE algorithm. Subsection 4.2.2
describes the addition of new data samples into an existing t-SNE
environment that is called out-off-sample extension.

4.2.1 Low-dimensional embedding of a representative sample with
t-SNE algorithm

Barnes-Hut t-SNE (BH-tSNE) [13] algorithm is an optimized ver-
sion of the t-SNE algorithm. BH-tSNE optimizes the t-SNE objec-
tive function by input similarity approximation and gradient descent
approximation. Therefore, it generates low-dimensional embedding
of data with minimum computational and memory complexity than

original t-SNE. In our approach, the BH-tSNE algorithm is used in
two different ways for calculating the low-dimensional embedding
space: 1. Baseline t-SNE embedding, 2. Sampled t-SNE embedding.
The baseline t-SNE embedding is obtained by applying BH-tSNE
on the whole dataset. In contrast, the sampled t-SNE embedding is
obtained by applying BH-tSNE on the best representative sample,
which is selected from the representative k-NN sampling-based clus-
tering. The Baseline t-SNE embedding results analyze the overall
structure of the data in low-dimensional embedding. The sampled
t-SNE embedding results analyze the data structure with sampled
data and allows the addition of new data samples into an existing
t-SNE environment, which solves the scalability issue of the t-SNE.
For obtaining a well-separated cluster in low-dimensional t-SNE
embedding, the value of early exaggeration coefficient α, learning
rate η and input similarity probability pi j’s are adjusted according
to the George C.linderman and Stefan Steinerberger intuition. In
our experimentation, the initial solutions of t-SNE is assigned in
three different ways, such as random, PCA based and MDS based
initial solutions. The random initial solution takes many iterations
for convergence. The PCA and MDS based initial solutions over-
come the problem of random initialization and they produce better
accuracy results, but their initial solution is cost-effective. Adding
new data points into a designed t-SNE model is discussed in the
below section.

4.2.2 Out-off-sample extension: Interpolation and Outlier han-
dling

The addition of new data point to t-SNE embedding depends on the
parameter rx, ry and rclose values. The value of parameter rx, ry and
rclose is obtained from the best representative sample and the t-SNE
embedding of it. The parameter rx is defined as the percentile of the
1-NN distance of a representative sample that decides whether the
given new data point is either inlier or outlier. In our proposal, we
came to know that the objects of the representative sample set are
representing at least one sample of the dataset. Therefore, the repre-
sentative sample set does not contain any outlier object and we have
considered the parameter rx as the maximum 1NN distance of it. If
the new data point x has at least one data point within the rx from
the representative sample set, then x is an inlier, otherwise outlier.
The dilation factor (df) is used to derive a heuristic rx = (1 + d f ) ∗ rx

which controls the consideration of outliers percentage. The LIDWI
interpolation technique is used for adding an inlier data point to
the t-SNE embedding of the representative sample set. The out-
lier placement depends on the parameter ry and rclose. The outliers
placed into the t-SNE embedding of the representative sample set
according to the heuristic of Boytsov et.al. [17]. The k-NN accuracy
and trustworthiness of t-SNE embedding quantitatively evaluate
the existence of a high-dimensional cluster in the low-dimensional
embedding. The quantitative evaluation described in the following
section.

4.3 Quantitative metric derivation: k-NN accuracy

In our experimentation, the k-NN accuracy is calculated in two
different ways: baseline accuracy and sampling accuracy. The k-
NN accuracy of t-SNE embedding of aggregate data is known as
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Algorithm 2: Representative k-NN Sampling-based clustering

Data: data set X = {x1, x2, .....xN }, parameter k for minimal training sample selection
Result: Order sequence of recommended techniques, Representative samples, samples represented by representative samples and best cluster technique
Recommended tech = ∅

begin
for k ← 1 to Max kval do

train sample, rep sample = k-NN Sample(k)
for i← 0 to NumberO fClusterTechniques do

train labels = Clustering(train sample, i) /* apply ith clustering technique on train sample set */

remaining samples = X − train sample
Compute labels of remaining samples using k-NN algorithm (i.e., remain labels)
cluster labels=train labels ∪ remain labels
Compute cluster validation indexes such as FMI, CHI and CP using cluster labels, ground truth class labels
if FMI > optimal FMI[i] then
/* optimal FMI[i] = 0, where i = 0,1,..., NumberOfClusterTechniques */

optimal FMI[i] = FMI
RS[i] = train sample
RRS[i] = rep sample

end
end

end
Sort optimal FMI list: optimal FMI[1] > optimal FMI[2] > .... > optimal FMI[l]
Swap the RS and RRS lists values and maintain the tech index list of clustering techniques according to the sorted optimal FMI
for i← 1 to size(tech index) do

if optimal FMI[i] − optimal FMI[i + 1] ≤ threshold then
Recommended tech = Recommended tech ∪ tech index[i]

end
end
The First element of Recommended tech represents the best clustering technique among the selected clustering techniques and corresponding RS is chosen as

sample for t-SNE embedding.
end

baseline accuracy. The sampling accuracy is computed in three
different forms such as training accuracy, test accuracy and overall
accuracy. The k-NN accuracy of t-SNE embedding of the represen-
tative sample is known as training accuracy. The k-NN accuracy of
interpolated samples (i.e., the samples other than the representative
sample) is known as test accuracy. The k-NN accuracy of combined
low-dimensional space (i.e., the integration of t-SNE embedding of
sampled data and interpolated data) is known as overall accuracy.
The k-NN accuracy typically depends on the parameter k, which is
considered as fixed in our experimentation which is discussed in sub-
section 5.2. For instance, the smaller k will give good performance
accuracy and while increasing the k, performance accuracy will de-
crease. The selection of parameter k also plays a paramount role in
k-NN accuracy measure. The relationship between the parameter k
and accuracy is shown in the Figure 3. For quantitative performance
evaluation, the k-NN accuracy of representative k-NN sampling-
based clustering and aggregate clustering are compared with the
k-NN accuracy of ground truth class labels, which is discussed in
subsection 5.3.

4.4 t-SNE sample selection criteria

In our experimentation, we have considered two different sample
selection criteria for designing the t-SNE model. In the first criteria,
the samples are mostly representative of at least one or more other
samples. The samples are obtained by a mutual k-NN sampling
with a static graph updation algorithm and the best representative
sample is selected by the representative k-NN sampling-based clus-
tering. We observe that most of these samples were chosen from the
dense region because they produce good NN score and MNN score.

Therefore, these samples do not contain any outliers. In this cri-
terion, the outliers from the remaining sample addition are not
sufficiently identified by the adequate 1-NN distance. The outliers
consideration is controlled by the proposed heuristic, which is dis-
cussed in subsection 4.2.2. In the second criteria, the data points
added to the representative sample from the remaining data points
using (t,m, s)-Nets sampling [42]. For the addition of (t,m, s)-Nets
samples, we used the same procedure of our earlier work. The
(t,m, s)-Nets select samples randomly in a uniform distribution.
These samples may not represent any other samples and the samples
may change among the executions due to the randomness. There-
fore, the samples of this criteria may contain outliers. The outliers
of this criteria are handled in similar ways as they are handled in
our earlier approach.

Figure 3: Relationship between k-value of k-NN accuracy and k-NN accuracy which
is obtained from the baseline accuracy of k-NN sampling-based clustering.
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5 Experimental result analysis
Here we are briefing the datasets, experimental setup and the result
analysis. Section 5.1 describes the numerical datasets of different
characterizations. The details about the experimental setup is given
in section 5.2. The results analysis of each dataset is described in
section 5.3.

5.1 Datasets

In our experimental evaluation, we have considered differently char-
acterized datasets such as IRIS, Breast-Cancer, Leukemia, Wine,
MNIST, Olivetti-Faces, and COIL-20. The Table 1 provides a de-
tailed description of all the datasets which are downloaded from the
UCI Machine Learning repository [43]. For our experimentation,
the features of IRIS, Breast-Cancer and Wine datasets are normal-
ized between zero and one, which improves the computational
complexity. Initially, the KernelPCA [44] is applied to reduce the
dimensionality of the high-dimensional datasets such as Leukemia,
MNIST, Olivetti-Faces and COIL-20. The Leukemia dataset is a
micro-array of gene expression. The MNIST, Olivetti-Faces and
COIL-20 are image datasets that are represented in pixel orienta-
tions. The MNIST is a handwritten digits dataset. The Olivetti-
faces dataset consists ten face images of 40 individuals with small
variation in viewpoint, the addition of glass and large variation in
expression. The COIL-20 is an image of 20 group objects such as
animals, furniture and etc.

Table 1: Overview of datasets along with their size, dimensions, and classes

Dataset Name Size Dimensions # Classes
IRIS 150 4 3
Breast Cancer 569 30 2
Leukemia-ALL-AML 72 7129 2
Wine 178 13 3
MNSIT 70K 784 10
Olivetti faces 400 10304 40
COIL-20 1440 1024 20

5.2 Experimental configuration

In our experimentation, The parameter k of Algorithm 1 is initialy
considered as 1 ≤ k ≤ 50. The upperbound of k is equal to largest
perplexity value from the literature study [9]. The perplexity is
set between 5 and 50 for a fairly good visual representation of any
real-world data. In our proposal, the samples of any clustering
technique depends on the parameter k. Also, we observed that when
there is an increment in parameter k then there is an increment or
no change in FMI score of clustering until certain k value. The
FMI score becomes stable afterwards. In our experimentation at
most of the cases, the selected clustering technique generates rep-
resentative sample with k value less than or equal to 20. In other
cases, the cluster technique generates representative sample with
k value greater than 20. But there is an small increment in FMI
score comparatively FMI score of clustering with k value less than
or equal to 20. Therefore, we have generalized the k-value as less
than or equal to 20. The sensitivity of parameter k needs to be
investigated more in future. The number of clusters is defined as a

constant that is equal to the number of ground truth classes. The
original class labels are not used anywhere in the experimental eval-
uation. The ground truth class labels are used only for measuring
the FMI score that determines the cluster purity. The threshold
parameter is set to 0.05 that provides the intuition for selecting the
recommended clustering techniques from the order sequence. The
threshold parameter derived from the statistical method where the
maximum allowable difference between two consecutive values of
either increasing or decreasing order sequence is 5%. The recom-
mended set size and threshold parameters are inversly proposional
to each other. The sensitivity of threshold parameter needs to be
investigated further. From the recommended set, the best technique
is chosen and the optimal sample of it being considered as the best
representative sample for designing the t-SNE model. The repre-
sentative sample is embedded in a 2D space using the BH-tSNE
algorithm. The parameters of BH-tSNE are set up according to the
paper [13] experimental setup. In addition to that, we initialized the
embedding space Y by sampling the point yi from a uniform distri-
bution with [−0.02, 0.02]2 for obtaining well-separated clusters in
embedding space. The datasets with more than 50 dimensions, their
dimensionality is reduced to 50 by kernel PCA. The dimensionality
reduction speeds up the computation of the probability distribution
of the input similarity and suppresses some noise. The results of
the BH-tSNE algorithm are shown in 2D scatter-plot representation.
The minimum value of pi j of clustered data, the early exaggeration
factor α and the learning rate η values are assigned similar to the
George C.linderman and Stefan Steinerberger paper.

The data points other than the representative samples are inter-
polated into the BH-tSNE of a representative sample using LIDWI.
The parameter rx is obtained by either proposed heuristic or intuition
of LION-tSNE. In the proposed heuristic dilation factor is bounded
between 0 and 1. The parameter ry, ryclose and power are measured
similar to LION-tSNE algorithm.

Table 2: Parameters setting for the experimental setup

Parameter Value
k of k-NN sampling 1 ≤ k ≤ 20
Threshold 0.05
Perplexity 5 - 50
Early exaggeration coefficient ∼ N

10
Adaptive learning rate 1 − 200
Dilation Factor 0 ≤ d f ≤ 1
rx at dist perc 95 - 100
ry at dist perc 100
ryclose at dist perc 10
Fixed k-value for k-NN accuracy 3 - 10

Table 2 provides the parameter settings of our experimental eval-
uation. The parameter perplexity represents the effective number
of neighbors for each data point. For instance, the small value of
perplexity creates subgroups within the same cluster of t-SNE re-
sults. In contrast to small, the large value of it does not maintain the
clear separation between two clusters of t-SNE results. Both cases
suffer from either under-fitting or over-fitting problem that causes a
lack of visual clarity. The empirical studies state that the perplexity
value between 5 to 70 gives a good visual representation of t-SNE
results. The parameter dist per represents the overall percentile of
the representative sample that needs to be considered as inliers. For
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(a) IRIS (b) IRIS (c) Breast-Cancer (d) Breast-Cancer

(e) Leukemia-ALL-AML (f) Leukemia-ALL-AML (g) Wine (h) Wine

(i) MNIST (j) MNIST (k) Olivetti-Faces (l) Olivetti-Faces

(m) COIL-20 (n) COIL-20

Figure 4: The column one and column three (i.e., sub-figure ((a), (c), (e), (g), (i), (k) and (m)) shows the threshold derivation (i.e., the integration of doted horizontal and
vertical lines) of all seven datasets from the order sequence curve. The column two and column four (i.e., sub-figure (b), (d), (f), (h), (j), (l) and (n)) shows the relationship
curve of all datasets from the order sequence, which provides the relationship between the FMI scores of proposed representative k-NN sampling-based clustering and
aggregate clustering.

example, if we take dist per as 95th percentile, that means out of
100 points, 95 points are considered as inliers and the remaining 5
points are outliers. The parameter k plays an important role in the
computation of k-NN accuracy of the data. The effect of parameter
k is shown in the Figure 3. It is clear that when there is an increment
in k value, accuracy decreases monotonically. The result evaluation
of representative k-NN sampling-based clustering is discussed in
the next section.

5.3 Result analysis

In our experimentation, we have considered most frequently and
popularly used clustering techniques. The Figure 4 shows the

curves of all seven datasets of subsection 5.1. The Figure 4 gives
the threshold derivation for the recommended order sequence and re-
lationship between the FMI scores of proposed representative k-NN
sampling-based clustering and aggregate clustering. In the Figure
4, the x-axis represent the clustering technique names in the order
sequence of FMI scores (i.e., FMI(t1) > FMI(t2) > .... > FMI(tl)
where ti represents ith best clustering technique) and y-axis repre-
sents the corresponding FMI Scores. Column one and column three
of Figure 4 (i.e., sub-figure (a), (c), (e), (g),(i), (k) and (m)) shows
the threshold derivation for the recommendation of clustering tech-
niques for all the given seven datasets. The column two and column
four of Figure 4 (i.e., sub-figure (b), (d), (f), (h), (j), (l) and (n))
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Table 3: The applicable clustering and their recommended order sequence for the given seven datasets.

Dataset Applicable cluster methods Recommended order sequence of cluster methods
IRIS k-Means, Agglomerative, BIRCH, Spectral, EMGMM, FCM, DBSCAN, AP,

MBKM, OPTICS, MS
EMGMM

Breast-cancer k-Means, Agglomerative, BIRCH, Spectral, EMGMM, FCM, DBSCAN, AP,
MBKM, OPTICS, MS

EMGMM, BIRCH, k-Means, MBKM, FCM, Agglomerative, AP, Spec-
tral

Leukemia k-Means, Agglomerative, BIRCH, Spectral, EMGMM, FCM, DBSCAN, AP,
MBKM, OPTICS

MBKM, EMGMM, DBSCAN, AP, k-Means, BIRCH, Agglomerative,
OPTICS, Spectral, FCM

Wine k-Means, Agglomerative, BIRCH, Spectral, EMGMM, FCM, DBSCAN, AP,
MBKM, OPTICS, MS

Agglomerative, Spectral, MBKM, AP, FCM, k-Means, EMGMM, MS,
OPTICS

MNIST k-Means, Agglomerative, BIRCH, Spectral, EMGMM, FCM, DBSCAN, AP,
MBKM, OPTICS

BIRCH, Agglomerative, EMGMM, k-Means, AP, MBKM

Olivetti-faces k-Means, Agglomerative, BIRCH, Spectral, EMGMM, FCM, DBSCAN, AP,
MBKM, OPTICS

BIRCH, Agglomerative, k-Means, EMGMM, MBKM, AP

COIL-20 k-Means, Agglomerative, BIRCH, Spectral, EMGMM, FCM, DBSCAN, AP,
MBKM, OPTICS

DBSCAN, Agglomerative

shows the relationship curve that provides the relationship between
the FMI Score of representative k-NN sampling-based clustering
and aggregate clustering for all the given seven datasets. The Figure
4 clearly shows that the proposed representative k-NN sampling-
based clustering results are superior to the aggregate clustering
results.

The sets of applicable and recommended order sequence of clus-
tering techniques for the given seven datasets is listed in the Table 3.
The CP and HCI of representative k-NN sampling-based clustering
and aggregate clustering of all clustering techniques are listed in
the Table 4 and 5. The Table 4 and 5 clearly states that the
CP of the proposed representative k-NN sampling-based clustering
is smaller than the aggregate clustering for some techniques. In
contrary techniques, the compactness is in reverse order, but the
compactness difference is very minute in both situations. The CHI
is also deriving the relationship between both clustering as same as
CP where the CP is small, and then there is a large CHI score.

The contingency matrices of representative k-NN sampling-
based clustering and aggregate clustering of IRIS, Wine, Breast-
cancer and Leukemia datasets are shown in the Table 6, 7, 8 and 9.
If the number of classes of the given dataset is larger, then it is diffi-
cult to analyze the data with the contingency matrix. Therefore, the
contingency matrix of MNIST, Olivetti-Faces and COIL-20 datasets
are not addressed. The Table 6, 7, 8 and 9 clearly states that the
proposed representative k-NN sampling-based clustering classifies
the labels much similar to the ground truth class labels compared to
aggregate clustering. The Tabel 9 represents the contingency matrix
of the Leukemia dataset, which indicates that none of the selected
technique gives the best clustering results. Still, representative k-NN
sampling-based clustering produces better results than the aggregate
clustering.

For Quantitative evaluation, the baseline k-NN accuracy of pro-
posed representative k-NN sampling-based clustering is compared
with baseline k-NN accuracy of aggregate clustering and baseline
k-NN accuracy of ground truth class labels. The baseline k-NN ac-
curacy and trustworthiness of representative k-NN sampling-based
clustering, aggregate clustering and ground truth class labels of
seven datasets are listed in Table 10. The Table 10 clearly indicates
that the proposed method produces more robust results than others.

Table 4: Compactness and CHI score of representative k-NN sampling-based cluster-
ing, overall sampling clustering (i.e., assigning the cluster labels based on the KNN
of remaining samples in the context of representative samples) and the aggregate
clustering of IRIS, Breast-Cancer, Leukemia and Wine datasets for the selected
clustering techniques.

IRIS
Method Samp. Compactness CHI Score

size Samp.
cltr

Overall
cltr

Aggr.
cltr

Samp.
cltr

Overall
cltr

Aggr.
cltr

k-Means 73 0.4945 0.5601 0.5557 221.54 347.56 358.56
Agglomerative 63 0.5143 0.5579 0.5606 178.78 353.21 348.03
Birch 73 0.5291 0.5646 0.8507 183.85 335.22 193.97
Spectral 60 0.5234 0.5606 0.5709 167.457 348.03 322.48
EMGMM 63 0.5316 0.5754 0.5789 161.44 317.59 307.76
FCM 72 0.5107 0.5633 0.5576 197.71 340.79 355.71
DBSCAN 73 0.6379 0.7047 0.6723 104.84 175.96 124.78
AP 73 0.52 0.557 0.5588 196.99 354.54 353.22
MBKM 74 0.4834 0.5613 0.5562 234.32 343.95 356.28
OPTICS 73 0.5894 0.6071 1.0919 120.53 259.45 15.99
MS 70 0.527 0.557 0.6002 188.2 354.45 289.52
Breast-Cancer
k-Means 291 1.5608 1.6064 1.6013 203.91 355.42 364.09
Agglomerative 290 1.5735 1.6073 1.6322 199.73 356.80 319.01
Birch 291 1.5698 1.6083 1.9509 193.53 352.67 53.96
Spectral 289 1.5694 1.6177 1.6449 197.34 351.45 328.74
EMGMM 276 1.5744 1.6096 1.6168 178.38 350.08 337.00
FCM 276 1.5645 1.6048 1.6001 186.30 358.22 363.04
DBSCAN 291 1.9493 2.0004 1.9735 21.27 19.66 38.11
AP 213 1.5146 1.6088 1.6088 156.95 356.82 358.62
MBKM 268 0.8824 1.6047 1.6007 180.883 359.63 363.83
OPTICS 268 1.9635 2.0179 2.0069 21.72 24.65 38.41
MS 213 1.9138 2.0054 1.9412 19.79 17.65 68.97
Leukemia-ALL-AML
k-Means 22 3.4413 3.9367 3.9279 1.567 1.173 1.685
Agglomerative 19 3.3494 3.9315 3.9222 1.874 1.269 1.756
Birch 19 3.3494 3.9315 3.919 1.874 1.269 1.921
Spectral 19 3.3076 3.915 3.92 1.707 1.279 1.845
EMGMM 20 3.4012 3.9415 3.9237 1.337 0.953 1.591
FCM 20 3.3743 3.939 3.9271 1.622 1.117 1.619
DBSCAN 17 3.2654 3.9436 3.9225 1.351 0.959 1.326
AP 14 2.8993 3.895 3.9355 1.548 0.882 1.292
MBKM 22 3.3088 3.8957 3.9366 1.102 0.859 1.122
OPTICS 19 3.315 3.922 3.9071 0.859 0.717 1.317
MS ... .... .... .... .... .... ....
Wine
k-Means 82 1.3275 1.4298 1.4289 47.255 82.828 83.373
Agglomerative 87 1.3207 1.4356 1.4328 45.964 80.465 81.327
Birch 82 1.555 1.6567 1.629 19.859 34.395 42.564
Spectral 87 1.3532 1.4348 1.4298 42.372 81.014 82.828
EMGMM 71 1.3481 1.4331 1.4348 39.846 81.796 81.698
FCM 85 1.3473 1.4317 1.4305 45.029 82.346 83.135
DBSCAN 64 1.6181 1.6656 1.9606 15.719 37.502 3.102
AP 82 1.5534 1.3368 1.4458 45.362 80.714 80.828
MBKM 87 1.3562 1.4848 1.4278 42.472 81.784 81.523
OPTICS 85 1.4484 1.4531 1.4248 38.866 82.796 81.698
MS 71 1.3489 1.4371 1.4748 49.846 81.797 80.598
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Table 5: Compactness and CHI score of representative k-NN sampling-based cluster-
ing, overall sampling clustering (i.e., assigning the cluster labels based on the KNN
of remaining samples in the context of representative samples) and the aggregate
clustering of MNIST Handwritten digits, Olivetti-Faces and COIL-20 datasets for
the selected clustering techniques.

MNIST
Method Samp. Compactness CHI Score

size Samp.
cltr

Overall
cltr

Aggr.
cltr

Samp.
cltr

Overall
cltr

Aggr.
cltr

k-Means 4481 3816.4 3897.8 3877.8 233.97 477.45 492.48
Agglomerative 4900 3936.2 3974.2 3974.2 206.16 409.22 395.43
Birch 4900 3936.2 3974.2 3974.2 206.16 409.22 395.43
Spectral 4735 4662.2 4694.5 4695.0 1.048 1.0308 1.0459
EMGMM 4206 3862.2 3930.6 3977 200.8 443.59 400.32
FCM 4835 3962.2 4374.5 4555. 1.248 1.308 1.59
DBSCAN 4735 4662.2 4694.5 4695. 1.048 1.0308 1.0459
AP 4496 3832.5 3978.6 3897.3 213.97 457.78 472.34
MBKM 4783 4216.4 4597.1 4577.3 224.17 467.65 452.18
OPTICS 4625 3962.5 4094.3 4195.7 1.258 1.13 1.045
MS ... .... .... .... .... .... ....
Olivetti-Faces
k-Means 200 1568 1784.5 1565.8 10.384 14.009 21.210
Agglomerative 178 1495.9 1798.8 1546.8 10.718 13.634 22.008
Birch 178 1495.9 1798.8 1546.8 10.718 13.634 22.008
Spectral 188 2235 2545.9 2608.4 0.6858 0.6839 0.9924
EMGMM 165 1528.9 1812.8 1591.5 9.211 13.168 20.272
FCM 178 2479.3 2659.4 2732.6 4.321 4.874 4.178
DBSCAN 194 2679.4 2750.5 2745.1 4.021 3.804 5.782
AP 194 1628.9 1852.8 1691.5 10.321 14.168 20.872
MBKM 178 1668.6 1852.8 1671.5 9.711 12.168 21.275
OPTICS 165 1598.4 1932.8 1891.5 8.217 13.468 22.728
MS ... .... .... .... .... .... ....
COIL-20
k-Means 679 10.333 10.362 10.180 87.911 183.571 188.454
Agglomerative 701 10.239 10.237 10.294 90.220 184.703 181.461
Birch 701 10.577 10.562 11.1165 87.377 180.283 162.538
Spectral 676 14.852 14.944 17.447 28.585 57.964 27.4288
EMGMM 679 10.273 10.243 10.356 87.832 186.73 187.686
FCM 689 12.872 13.645 15.745 34.784 56.768 34.58
DBSCAN 679 18.843 18.962 19.769 19.532 38.902 38.548
AP 701 10.573 10.253 10.856 83.83 188.63 186.656
MBKM 679 10.253 10.143 10.366 80.832 188.73 187.656
OPTICS 679 10.243 10.233 10.326 87.432 185.738 184.286
MS ... ... ... ... ... ... ...

Table 6: Contingency matrix of k-NN sampling-based and original clustering on
IRIS dataset with best k-NN sampling-based clustering technique (i.e., EMGMM).

Class labels generated by
k-NN sampling-
based clustering Aggregate clustering

C1 C2 C3 C1 C2 C3

O
ri

gi
na

l C1 50 0 0 50 0 0
C2 0 49 1 0 45 5
C3 0 2 48 0 0 50

Table 7: Contingency matrix of k-NN sampling-based and original clustering on Wine
dataset with best k-NN sampling-based clustering technique (i.e., Agglomerative).

Class labels generated by
k-NN sampling-
based clustering Aggregate clustering

C1 C2 C3 C1 C2 C3

O
ri

gi
na

l C1 0 0 59 2 0 57
C2 69 2 0 69 2 0
C3 1 47 0 0 48 0

The sampling k-NN accuracies such as train, test and overall of
t-SNE embedding of a representative sample and interpolation of

other samples are listed in Table 11 and the overall trustworthiness is
also covered. The best representative sample of representative k-NN
sampling-based clustering and random sampling of IRIS dataset is
shown in Figure 5. The 2D scatter-plots shown in Figure 5 are
the first two coordinates of IRIS dataset. The Figure 5(a) shows
the best representative sample of k-NN sampling and the Figure
5(c) shows the representative sample of k-NN sampling along with
samples of (t,m,s)-Nets of remaining data points. The Figure 5(b)
and 5(d) shows the random sampling of size equal to the sample size
of Figure 5(a) and 5(c). The samples of Figure 5(a) are constant
and consistent comparatively other sampling.

Table 8: Contingency matrix of k-NN sampling-based and original clustering on
Breast-Cancer dataset with best k-NN sampling-based clustering technique (i.e.,
EMGMM).

Class labels generated by
k-NN sampling-
based clustering Aggregate clustering
C1 C2 C1 C2

O
ri

gi
na

l C1 21 191 16 196
C2 352 5 340 17

Table 9: Contingency matrix of k-NN sampling-based and original clustering on
Leukemia dataset with best k-NN sampling-based clustering technique (i.e., MBKM).

Class labels generated by
k-NN sampling-
based clustering Aggregate clustering
C1 C2 C1 C2

O
ri

gi
na

l C1 0 47 9 38
C2 2 23 6 19

Table 10: Baseline k-NN accuracy of k-NN sampling based clustering, original
clustering and ground truth class labels

Dataset Trust Baseline k-NN Accuracy
Name Sampling

Clustering
Aggregate
Clustering

Ground-truth
class labels

IRIS 0.9861 0.9735 0.9666 0.96
Breast-Cancer 0.958 0.9876 0.9862 0.9577
Leukemia 0.6799 0.9875 0.6643 0.7485
Wine 0.9552 0.9774 0.9828 0.9717
MNIST Digits 0.9895 0.9259 0.9483 0.9512
Olivetti face 0.9494 0.6775 0.8287 0.88
COIL-20 0.9972 0.9554 0.9709 0.9743

The Figure 6 shows the 2D scatter-plot visualization of IRIS
data with outliers projection. In Figure 6, we are also showing
the outliers (i.e. denoted by large grey color circle) of original
data after finding the outliers from the addition of remaining data
points with the radius rx which is obtained by the proposed heuristic
rx = (1 + d f ) ∗ rx with d f = 0.2. It clearly states that sampled data
obtain the outliers of original data.

The 2D scatter-plot visualization of embedding space of rep-
resentative k-NN sampling-based clustering of the MNIST dataset
is shown in the Figure 7. The Figure 7 shows the baseline 2D
scatter-plot of t-SNE embedding of whole MNIST data of size 10K
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Table 11: Quantitative measure using k-NN accuracy of k-NN sampling based clustering, original clustering and ground truth class labels

Optimal Sample
Dataset Sample Trust Sampling k-NN Accuracy
Name Size Sampling-based clustering aggregate clustering Ground truth class labels

Train Test Overall Train Test Overall Train Test Overall
IRIS 73 0.9594 0.9726 0.9594 0.9661 0.9753 0.9405 0.9652 0.9589 0.9324 0.9585
Breast Cancer 291 0.9239 0.9896 0.9856 0.9820 0.9690 0.9856 0.9876 0.9452 0.9676 0.9546
Leukemia 33 0.5665 0.9416 1.0 0.9875 0.6714 0.4102 0.6266 0.6363 0.5897 0.6247
Wine 87 0.9299 0.9377 0.956 0.9379 0.966 0.967 0.9604 0.9511 0.945 0.9548
MNIST 4900 0.9635 0.9346 0.8956 0.9120 0.9201 0.91 0.9206 0.9335 0.8972 0.9170
Olivetti-Faces 200 0.968 0.6076 0.5128 0.6045 0.6356 0.7948 0.8270 0.6334 0.7794 0.8578
COIL-20 701 0.9941 0.9841 0.9417 0.9509 0.9529 0.9634 0.9749 0.9426 0.9688 0.9727
Random Sample of size equal to optimal sample
IRIS 73 0.9654 0.9726 0.9859 0.98 0.9808 0.9802 0.977 0.9616 0.9661 0.9728
Breast Cancer 291 0.9337 0.9759 0.9712 0.9753 0.9828 0.9892 0.9929 0.9553 0.9496 0.9472
Leukemia 33 0.5495 1.0 0.9722 0.9866 5654 0.6111 0.6133 0.5771 0.4444 0.6087
Wine 87 0.9316 0.9639 0.9662 0.9517 0.9431 0.9662 0.949 0.9671 0.9775 0.9547
MNIST 4900 0.9599 0.9122 0.8918 0.9001 0.9157 0.8977 0.9081 0.9249 0.8956 0.9048
Olivetti-Faces 200 0.9578 0.5080 0.5050 0.5860 0.7235 0.7121 0.7869 0.6967 0.6767 0.7842
COIL-20 701 0.9935 0.9543 0.9362 0.9449 0.9699 0.9606 0.9652 0.9273 0.9375 0.9515
Optimal Sample plus Lhs Sample
IRIS 79 0.965 0.9746 1.0 0.9797 0.9733 0.9852 0.9862 0.9594 0.9852 0.9632
Breast Cancer 305 0.9348 0.9736 0.9772 0.9806 0.9934 0.9848 0.9912 0.9608 0.9810 0.9701
Leukemia 41 0.5979 0.9777 1.0 0.9723 0.5361 0.6551 0.5994 0.5964 0.6551 0.6285
Wine 95 0.9356 0.956 0.9512 0.9488 0.9461 0.9634 0.9717 0.9671 0.9512 0.9545
MNIST 5327 0.9684 0.9289 0.9092 0.9144 0.9195 0.9158 0.9210 0.9276 0.9073 0.9180
Olivetti-Faces 211 0.9641 0.6591 0.5271 0.6175 0.6418 0.7826 0.8492 0.6888 0.7989 0.886
COIL-20 729 0.9942 0.9705 0.9464 0.9536 0.9425 0.9690 0.9743 0.9263 0.9760 0.9785
Random Sample of size equal to Optimal Sample plus (t,m,s)-Nets Sample
IRIS 79 0.9626 1.0 0.9705 0.9661 0.9772 0.9558 0.9657 0.9866 0.9705 0.9728
Breast Cancer 305 0.9339 0.9802 0.9734 0.9806 0.9902 0.9924 0.9894 0.9542 0.9772 0.9683
Leukemia 41 0.5557 0.9492 1.0 0.9732 0.6333 0.6451 0.6365 0.7289 0.4516 0.679
Wine 95 0.9434 0.9444 0.9518 0.949 0.9456 0.9638 0.9493 0.9666 0.9518 0.9487
MNIST 5327 0.9616 0.9326 0.8977 0.9138 0.9316 0.8977 0.9172 0.9433 0.8959 0.9177
Olivetti-Faces 211 0.9708 0.6642 0.4867 0.6011 0.6938 0.7671 0.8108 0.6673 0.7724 0.85
COIL-20 729 0.9949 0.9838 0.9381 0.9558 0.9381 0.9620 0.9721 0.9330 9648 0.9666

with representative k-NN sampling-based clustering labels as the
colors of scatter point groups.

(a) Proposed representative k-NN sampling (b) Random sample of size equal to the size
of proposed representative k-NN sampling

(c) Proposed representative k-NN sampling
along with the samples from remain samples
using (t,m,s)-Nets

(d) Random sample of size equal to the size of
proposed representative k-NN sampling plus
(t,m,s)-Nets samples

Figure 5: Training sample selection (i.e., represented by blue star scatter-plot point)
from IRIS dataset with four different strategies.

The Figure 8 shows the four different 2D scatter-plot represen-
tation of MNIST dataset. In Figure 8(a), we are representing the

2D scatter-plot of sampled t-SNE along with the interpolation of
inliers and placement of outliers. The sampled t-SNE is designed
based on the best representative sample of the representative k-NN
sampling-based clustering concerning the best clustering technique.
The inliers of remaining samples (i.e, other than representative sam-
ples) are interpolated to t-SNE with the parameter rx that is obtained
from the proposed heuristic. The outlier of remaining samples are
placed into an existing t-SNE environment based on the Boystov
et.al heuristic.

Figure 6: The 2D scatter-plot of IRIS data which denotes the outliers from the newly
added sample with proposed heuristic.

In Figure 8(a), the outliers are placed separately from other
embedding points. The Figure 8(b) shows the 2D scatter-plot of
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(t,m,s)-Nets based t-SNE along with interpolation of other samples.
The (t,m,s)-Nets based t-SNE is designed with a combination of
representative k-NN sampling-based clustering and (t,m,s)-Nets of
remaining samples. The (t,m,s)-Nets samples are selected from the
data samples, which are having NN-score as zero after selecting
the samples using a mutual k-NN sampling with a static graph up-
dation algorithm. The inliers of remaining samples (i.e, other than
representative samples plus (t,m,s)-Nets samples) are interpolated
to t-SNE with the parameter rx that is obtained from the Boystov
et.al heuristic. The Figure 8(c) and 8(d) shows the 2D scatter-plots
of a random sampled t-SNE along with the addition of new data
samples. The random sample size is equal to the sample size of
Figure 8(a) and 8(b). The inliers and outliers of remaining samples
are placed according to the intuitions of Figure 8(a) and 8(b). The
representative k-NN sampling-based results are statistically signifi-
cant than the random sampling based results which is derived in our
earlier paper [19]. The following section describe the conclusion
and future work.

6 Conclusion and Future Work
In this paper, we have proposed a representative k-NN sampling-
based clustering approach, which generates cluster results on a
sampling basis. The most frequently used clustering techniques
are applied to obtain the sampling-based cluster results. Initially,
we determine the applicable set of techniques for the given dataset.
From the applicable set, sampling-based clustering results of each
technique are evaluated by an external cluster validation index called
FMI-score. The applicable techniques are arranged in an orderly
sequence of their FMI scores. Some threshold parameter derives
the recommendation of clustering techniques for the given dataset.
From the recommended set, the first technique is selected as the
most desirable clustering for the given dataset.

Figure 7: The baseline 2D visual representation of Representative k-NN sampling-
based clustering t-SNE embedding where t-SNE applied on whole data

The samples of this technique are used for generating the low-
dimensional embedding of input data. The embedding results are
visualized and quantitatively evaluated in the context of sampling-
based cluster results. The proposed approach is expanded to identify
all the applicable set of clustering techniques for the given dataset,
which can be done as future work. There is scope for implementing

the proposed algorithm in a distributed environment that can be
applied to Big Data.

(a) Sampled t-SNE of representative sample (b) Sampled t-SNE of representative sample
plus (t,m,s)-Nets sample

(c) Sampled t-SNE of random sample of size
equal to representative sample size

(d) Sampled t-SNE of random sample of size
equal to representative sample plus (t,m,s)-
Nets sample size

Figure 8: 2D representation of four different t-SNE embedding of MNIST dataset,
(a) t-SNE embedding of representative train sample and the interpolation of inliers
as well as placement of outliers with proposed heuristic, (b) t-SNE embedding of
representative train sample which includes the samples from (t,m,s)-Nets and the
interpolation of inliers as well as placement of outliers with A Boystov et.al heuristic,
(c) t-SNE embedding of random sample of size equal to the size of sub-figure (a) and
the interpolation of inliers as well as placement of outliers with proposed heuristic,
(d) t-SNE embedding of random sample of size equal to the size of sub-figure (b)
and the interpolation of inliers as well as placement of outliers with A Boystov et.al
heuristic.
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