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In this paper, the problems of actuator and sensor fault estimation (FE) and fault-tolerant
control (FTC) for uncertain nonlinear systems represented by Takagi-Sugeno (T-S) fuzzy
models are investigated. First, a robust fuzzy adaptive sliding mode observer (SMO) is
designed to simultaneously estimate system states and both actuator and sensor faults. Then,
using the obtained on-line FE information, a static output-feedback fault-tolerant control
(SOFFTC) is developed to compensate the fault effects and stabilize the closed-loop system.
Moreover, sufficient conditions for the existence of the proposed observer and controller are
given in terms of linear matrix inequalities (LMIs). The robustness against uncertainties is
treated using the H∞ optimization technique to attenuate its effect on the estimation error.
Finally, the simulation results of nonlinear inverted pendulum with cart system validate the
efficiency of the proposed method.

1 Introduction

Modern industrial systems are affected usually by various event of
faults such as, loss of actuator effectiveness, failures or offsets of
actuators/sensors, deviations of output measurement, etc. Indeed,
the presence of fault causes an unacceptable performances of design
controllers, thus deteriorating the overall system execution, and so
leading to wrong dangerous situations.

Thus, it is important to encourage the development of research
on fault tolerant control (FTC), which is divided on two types. The
first one, the so-called passive FTC, is focused on to conceive a
robust controller against disturbances and uncertainties. A key limi-
tation is that the system stability cant be guaranteed in the presence
of faults.

Nevertheless, based on online fault estimation (FE), such as
the size and the shape, active FTC can develop robust controller
such that the fault effects are eliminated and the system stability is
achieved. In the literature, several research results on the FTC tech-
niques are documented, see for example [1–9], and the references

therein.

In industrial processes, most of systems are described by nonlin-
ear mathematical models. Takagi-Sugeno (TS) fuzzy systems [10]
provide a powerful tool to approximate nonlinear characteristics.
T-S fuzzy systems are nonlinear models represented by a set of local
linear models. By fuzzy blending of linear representations with
appropriate membership functions, the overall fuzzy model of the
system is achieved, which greatly simplifies the analysis and control
for complex nonlinear systems. Therefore, excellent results in FE
and FTC problems of T-S fuzzy systems are developed in [11–17].
In [18], a FTC is designed for TS fuzzy systems subject to actuator
faults. However, this result must verify the rank condition, which
is really hard to fulfill for many practical systems. In [19], the
problem of FE and FTC for a T-S fuzzy systems with uncertainties
and actuator faults is investigated without the requirement of rank
condition. It deals only with constant faults, however, the faults
are time-varying in many real systems. In [20], a sliding mode
observer (SMO) is designed to estimate sensor fault for nonlinear
stochastic systems for FTC. However, the actuator fault is not con-
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sidered. In [21], a FTC is developed for T-S fuzzy systems affected
by actuator faults. Since in many practical systems, actuator and
sensor faults may occur at the same time and uncertainties may
exist. It is desirable to consider actuator and sensor faults under
one unified framework. For example, in [22], a SMO-based FE and
FTC is designed for a class of nonlinear systems subject to actuator
and sensor faults. A major disadvantage of this approach is the
appearance of chattering mode. In [23], FE and FTC problems are
studied to simultaneously estimate sensor and actuator faults using
two observers and filter. However, this method is more expensive
since it requires a high additional computation cost. In [24], a ro-
bust adaptive observer is developed to simultaneously estimate state
and both sensor and actuator faults for nonlinear systems despite
the presence of disturbances. A FTC law is applied to stabilize
the closed-loop system and compensate the fault effects. However,
sufficient conditions of observer and controller gains are formulated
in an unified optimization problem and computed by solving a set
of LMIs only in single step. Unfortunately, these results need the
knowledge of the upper bounds of faults. If the information of fault
is unknown, the SMO cannot be obtained.

The aim of this work is to address fault estimation and fault
tolerant control problems for T-S fuzzy systems subject to simulta-
neously actuator faults, sensor faults and uncertainties. First, a novel
robust adaptive SMO is proposed to estimate the states and both
actuator and sensor faults using equivalent output error injection
approach. Then, based on online fault information a static output-
feedback fault-tolerant control (SOFFTC) is designed to compensate
the fault effects and stabilize the closed-loop system. All the design
conditions are formulated in an optimization problem under LMIs
constraints. Finally, the simulation result of an inverted pendulum
with cart system is given to prove the effectiveness of the proposed
method.

The main contributions of the present work are the following:

1. A novel fuzzy adaptive SMO is designed for the estimation
of states and faults in a T-S fuzzy systems affected by si-
multaneously actuator faults, sensor faults and uncertainties.
Robustness against uncertainties is analyzed using the H∞
technique to reduce its effect.

2. Most existing SMO design methods such as those reported
in [22–24] assume that the value of the upper bounds of actua-
tor faults ρa and sensor faults ρs is known. If the information
of fault is unknown or exceeds the admissible value, these
methods cannot be feasible. To overcome this problem, a
new adaptive law is constructed to estimate the upper bounds
online.

3. The problem of both actuator and sensor FE under one unified
framework for T-S fuzzy systems is investigated. Whereas,
many researchers have considered only sensor faults [25–27]
or actuator faults [28, 29].

4. Basedon the FE, a SOFFTC is designed to effectively accom-
modate the influence of fault and ensure the stability of the
resulting closed-loop system. The proposed method is easily
be implemented in practice and is much simpler than dynamic
output feedback fault tolerant controller.

5. Sufficient conditions of the observer and controller are for-
mulated in an optimization problem under LMIs constraints
which can be designed separately.

The rest of this paper is organized as follows: Section 2 presents
the problem formulation and preliminaries. The design of the ob-
server and the analysis of the stability of the error dynamics are
given in Section 3. FE is studied in Section 4. Section 5 gives the
SOFFTC scheme. Finally, simulation example in Section 6 validates
the efficiency of the proposed algorithm.

2 Problem Formulation and Preliminaries
Consider a TS fuzzy model with actuator faults, sensor faults and
uncertainties. The ith rule of the T-S fuzzy model is of the following
form:

Plant Rule i: If ξ1(t) is µ1,i and ... ξg(t) is µg,i, Then
ẋ(t) = Aix(t) + Biu(t) + Mi fa(t) + Eid(x, u, t)
y(t) = Cix(t) + N fs(t)
yc(t) = Ccix(t)

(1)

where x(t) ∈ Rn represents the state vector; u(t) ∈ Rm is the input;
y(t) ∈ Rp is the output; yc(t) ∈ Rp1 is the controlled output; Ai,
Bi, Mi, Ei, Ci, N and Cci are real known constant matrices with
appropriate dimensions; fa(t) : R+ → Rq and fs(t) : R+ → Rh rep-
resent additive actuator fault and sensor fault vector, respectively;
d(x, u, t) ∈ Rl models the uncertainties, which is assumed to be-
long to L2 [0,∞); the pairs (Ai,Ci) are observable, and the pairs
(Ai, Bi) are controllable; ξ j( j = 1, ..., g) are the premise variables,
and µ j,i( j = 1, ..., g; i = 1, ..., k) are fuzzy sets; g and k are the
number of premise variables and IF-THEN rules, respectively. The
fuzzy model is given by:

ẋ(t) =
k∑

i=1
µi (ξ(t)) (Aix(t) + Biu(t) + Mi fa(t) + Eid(x, u, t))

y(t) =
k∑

i=1
µi (ξ(t)) (Cix(t) + N fs(t))

yc(t) =
k∑

i=1
µi (ξ(t)) (Ccix(t))

(2)

where ξ(t) =
[
ξ1(t), ..., ξg(t)

]
, µi (ξ(t)) =

wi(ξ(t))
k∑

i=1
wi(ξ(t))

, wi (ξ(t)) =

g∏
j=1
θi j

(
µ j(t)

)
and here θi j(.) stands for the order of the membership

function of θi j. It is assumed that

wi (ξ(t)) ≥ 0, i = 1, ..., k,
k∑

i=1

wi (ξ(t)) > 0 (3)

for any ξ(t). Thus, for any ξ(t),
k∑

i=1
µi (ξ(t)) satisfies

µi (ξ(t)) ≥ 0, , i = 1, ..., k,
k∑

i=1

µi (ξ(t)) = 1 (4)

For simplicity, we will use µi to represent µi (ξ(t)).

Assumption 1. fa(t) and fs(t) are unknown but norm bounded

‖ fa(t)‖ ≤ ρa, ‖ fs(t)‖ ≤ ρs (5)
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where ρa and ρs are unknown positive scalars.

Assumption 2 [30]. The actuator fault distribution matrices Mi in
(2) satisfy:

rank (CMi) = rank (Mi) , i = 1, ..., k (6)

Assumption 3 [30].

rank
[

sIn − Ai Mi

Ci 0

]
= n + rank(Mi), i = 1, ..., k (7)

Lemma 1 [31]. For matrices A and B and any scalar ε > 0, we have

AB + (AB)T ≤ ε−1AAT + εBT B (8)

Lemma 2 [32]. If

S ii < 0, 1 ≤ i ≤ k (9)
2

r − 1
S ii + S i j + S ji < 0, 1 ≤ i , j ≤ k (10)

then, we have
k∑

i=1

k∑
j=1

µiµ jS i j < 0 (11)

Lemma 3 [33]. Under Assumption 2, there exists coordinate trans-
formations

z(t) =

[
z1(t)
z2(t)

]
= Tix(t), υ(t) =

[
υ1(t)
υ2(t)

]
= S iy(t)

such that

TiAiT−1
i =

[
A11,i A12,i
A21,i A22,i

]
,TiBi =

[
B1,i
B2,i

]
,TiMi =

[
M1,i

0

]
TiEi =

[
E1,i
E2,i

]
, S iN =

[
0

N2

]
, S iCiT−1

i =

[
C11,i 0

0 C22,i

]
where A11,i ∈ Rq×q, A22,i ∈ R(n−q)×(n−q), B1,i ∈ Rq×m, M1,i ∈ Rq×q,
E1,i ∈ Rq×l, N2 ∈ R(p−q)×h, C11,i ∈ Rq×q and C22,i ∈ R(p−q)×(p−q) is
invertible, i = 1, ..., k.

Through coordinate transformations, the system (2) is converted
into the following two subsystems:

ż1(t) =
k∑

i=1
µi

(
A11,iz1(t) + A12,iz2(t) + B1,iu(t) + M1,i fa(t)

+E1,id(x, u, t)
)

υ1(t) =
k∑

i=1
µi

(
C11,iz1(t)

) (12)


ż2(t) =

k∑
i=1
µi

(
A21,iz1(t) + A22,iz2(t) + B2,iu(t)

+E2,id(x, u, t)
)

υ2(t) =
k∑

i=1
µi

(
C22,iz2(t) + N2 fs(t)

) (13)

In addition, partition the matrix S i as:

S i =

[
S 11,i
S 22,i

]
(14)

where S 11,i ∈ R(p−q)×p and S 22,i ∈ Rq×p. The variable z1(t) can be
obtained by:

z1(t) =

k∑
i=1

µi

(
C−1

11,iS 11,iy(t)
)

(15)

We define a new state z3(t) =
∫ t

0 υ2(τ)dτ where ż3(t) =
k∑

i=1
µi

(
C22,iz2(t) + N2 fs(t)

)
. Then the augmented system with the

new state z3(t) is given as:
ż0(t) =

k∑
i=1
µi

(
A0,iz0(t) + A3,iz2(t) + B0,iu(t) + M0,i fs(t)

+E0,id(x, u, t)
)

υ3(t) =
k∑

i=1
µi

(
C0,iz0(t)

) (16)

where ż0(t) =

[
z2(t)
z3(t)

]
∈ Rn+p−2q, υ3(t) ∈ Rp−q, A0,i =[

A22,i 0
C22,i 0

]
∈ R(n+p−2q)×(n+p−2q), A3,i =

[
A21,i

0

]
∈ R(n+p−2q)×q,

B0,i =

[
B2,i
0

]
∈ R(n+p−2q)×m, E0,i =

[
E2,i
0

]
∈ R(n+p−2q)×l, M0,i =[

0
N2

]
∈ R(n+p−2q)×h and C0,i =

[
0 Ip−q

]
∈ R(p−q)×(n+p−2q).

Lemma 4 [33]. The pair (A0,i,C0,i) is observable, if the pair
(A22,i,C22,i) is detectable, i = 1, ..., k. Then, there exists matrices Li,
having the special structure Li =

[
L1,i 0

]
, such that A22,i+LiC22,i

is stable, i = 1, ..., k.
Let the transformation of coordinates h(t) =[

hT
1 (t) hT

2 (t)
]T

= TL,iz0(t) with

TL,i =

[
In−q Li

0 Ip−q

]
, i = 1, ..., k (17)

where h1(t) ∈ Rn−q and h2(t) ∈ Rp−q. Therefore, the system (16) is
converted into the following system:

ḣ(t) =
k∑

i=1
µi

(
Ah,ih(t) + TL,iA3,iz2(t) + Bh,iu(t)

+Eh,id(x, u, t) + Mh,i fs(t)
)

υ3(t) =
k∑

i=1
µi

(
Ch,ih(t)

) (18)

where

Ah,i =

[
A22,i + LiC22,i −(A22,i + LiC22,i)Li

C22,i −C22,iLi

]
, Bh,i =

[
B1,i
0

]
Eh,i =

[
E1,i
0

]
,Mh,i =

[
0

N2

]
,Ch,i =

[
0 Ip−q

]
Therefore, T-S fuzzy subsystems (12) and (13) can be rewritten
respectively as:

ż1(t) =
k∑

i=1
µi

(
A11,iz1(t) + A12,iz2(t) + B1,iu(t) + M1,i fa(t)

+E1,id(x, u, t)
)

υ1(t) =
k∑

i=1
µi

(
C11,iz1(t)

) (19)
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

ḣ1(t) =
k∑

i=1
µi

(
(A22,i + LiC22,i)h1(t) − (A22,i + LiC22,i)Lih2(t)

+A12,iz1(t) + B1,iu(t) + E1,id(x, u, t)
)

ḣ2(t) =
k∑

i=1
µi

(
C22,ih1(t) −C22,iLih2(t) + N2 fs(t)

)
υ3(t) = h2(t)

(20)

3 Adaptive Sliding Mode Observers De-
sign

For system (19), we construct the following adaptive SMO:
˙̂z1(t) =

k∑
i=1
µi

(
A11,iẑ1(t) + A12,iĥ1(t) − A12,iLiυ3(t)

+B1,iu(t) + M1,iν1,i(t) + (A11,i − As
11,i)C

−1
11,i(υ1(t) − υ̂1(t))

)
υ̂1(t) =

k∑
i=1
µi

(
C11,iẑ1(t)

) (21)

where ẑ1(t), ĥ1(t) and υ̂1(t) denote, respectively, the estimated z1(t),
h1(t) and υ1(t). As

11,i ∈ Rq×q is a stable matrix and ν1,i(t) is defined
by:

ν1,i(t) =


(
ρ̂a + la,i

) MT
1,iP1

(
C−1

11,iS 11,iυ1(t)−ẑ1(t)
)∥∥∥∥MT

1,iP1

(
C−1

11,iS 11,iυ1(t)−ẑ1(t)
)∥∥∥∥ if C−1

11,iS 11,iυ1 − ẑ1 , 0

0 otherwise

where P1 ∈ Rq×q > 0 is the Lyapunov matrix for As
11,i, ρ̂a is adaptive

parameter to estimate the unknown parameter ρa, and the scalar ρ̂a

is introduced using an update law

˙̂ρa = σ1

∥∥∥∥MT
1,iP1

(
C−1

11,iS 11,iυ1(t) − ẑ1(t)
)∥∥∥∥ (22)

with constant σ1 > 0.
For system (20), we design the following adaptive SMO:

˙̂h1(t) =
k∑

i=1
µi

(
(A22,i + LiC22,i)ĥ1(t) − (A22,i + LiC22,i)

×Liυ3(t) + B1,iu(t) + A21,iC−1
11,iυ1(t)

)
˙̂h2(t) =

k∑
i=1
µi

(
C22,iĥ1(t) −C22,iLiĥ2(t)

−(C22,iLi + Ki) (υ3(t) − υ̂3(t)) + N2ν2,i(t)
)

υ̂3(t) = ĥ2(t)

(23)

where ĥ1(t) and υ̂3(t) denote, respectively, the estimated of h1(t) and
υ3(t), Ki ∈ R(p−q)×(p−q) is the observer gains, and ν2,i(t) is defined
by:

ν2,i(t) =


(
ρ̂s + ls,i

) NT
2 P02(υ3(t)−υ̂3(t))

‖NT
2 P02(υ3(t)−υ̂3(t))‖

if υ3(t) − υ̂3(t) , 0

0 otherwise

where P02 ∈ R(p−q)×(p−q) > 0, ρ̂s is adaptive parameter to estimate
the unknown parameter ρs, and the scalar ρ̂s is introduced using an
update law

˙̂ρs = σ2
∥∥∥NT

2 P02 (υ3(t) − υ̂3(t))
∥∥∥ (24)

with constant σ2 > 0.

Let us define e1(t) = z1(t) − ẑ1(t), e2(t) = h1(t) − ĥ1(t) and
e3(t) = h2(t) − ĥ2(t), then the error dynamic system as follows:

ė1(t) =
k∑

i=1
µi

(
A11,ie1(t) + A12,ie2(t) + E1,id(x, u, t)

+M1,i( fa(t) − ν1,i(t))
)

ė2(t) =
k∑

i=1
µi

(
(A22,i + LiC22,i)e2(t) + E2,id(x, u, t)

)
ė3(t) =

k∑
i=1
µi

(
C22,ie2(t) + Kie3(t) + N2( fs(t) − ν2,i(t))

)
(25)

Define r(t) as

r(t) = He(t) = H

 e1(t)
e2(t)
e3(t)

 (26)

where

H :=

 H1 0 0
0 H2 0
0 0 H3

 (27)

with H1 ∈ Rq×q, H2 ∈ R(n−q)×(n−q) and H3 ∈ R(p−q)×(p−q). The adap-
tive SMO design method under H∞ performance to be addressed in
this work is

(i) The observer error dynamics system (25) with d(x, u, t) = 0
is asymptotically stable, namely, there is no uncertainty;

(ii) For a given γ1 > 0. The following H∞ performance is satis-
fied: ∫ T

0
rT (t)r(t)dt < γ1

∫ T

0
dT (x, u, t)d(x, u, t)dt (28)

for all T > 0 and d(x, u, t) ∈ L2

[
0 ∞

)
under zero initial

conditions.

3.1 Stability analysis

Theorem 1. Consider T-S fuzzy system (2) under Assumptions 13.
The observer error dynamics system (25) is asymptotically stable
and satisfy (28) with attenuation level γ1 > 0, if there exist matrices
P1 > 0, P01 > 0, P02 > 0, Xi, Yi, i = 1, ..., k, such that:

Minimize γ1 subject to
Γ1,i P1A12,i 0 P1E1,i
∗ Γ2,i CT

22,iP02 P01E2,i

∗ ∗ Γ3,i 0
∗ ∗ ∗ −γ1I

 < 0 (29)

where

Γ1,i = (As
11,i)

T P1 + P1As
11,i + HT

1 H1

Γ2,i = A22,iP01 + P01AT
22,i + XiC22,i + CT

22,iX
T
i + HT

2 H2

Γ3,i = Yi + YT
i + HT

3 H3

If the optimization problem is solved, then we can obtain the fol-
lowing observer gains

Li = P−1
01 Xi

Ki = P−1
02 Yi
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Proof. Let the following Lyapunov functional candidate:

V(t) = V1(t) + V2(t) + V3(t) (30)

where V1(t) = eT
1 (t)P1e1(t) + 1

σ1
ρ̃2

a, V2(t) = eT
2 (t)P01e2(t), V3(t) =

eT
3 (t)P02e3(t) + 1

σ2
ρ̃2

s , ρ̃a = ρa − ρ̂a and ρ̃s = ρs − ρ̂s. The derivative
of V1(t) satisfy:

V̇1(t) =

k∑
i=1

µi

(
eT

1 (t)
(
(As

11,i)
T P1 + P1As

11,i

)
e1(t)

+2eT
1 (t)P1A12,ie2(t) + 2eT

1 (t)P1E1,id(x, u, t)

+2eT
1 (t)P1M1,i( fa(t) − ν1,i(t))

)
+

2
σ1
ρ̃a(− ˙̂ρa) (31)

Using the definition of ν1,i(t) and the bound of fa(t), we have

eT
1 (t)P1M1,i( fa(t) − ν1,i(t)) +

1
σ1
ρ̃a(− ˙̂ρa)

= eT
1 (t)P1M1,i fa(t) −

(
ρ̂a + la,i

)
eT

1 (t)P1M1,i
MT

1,iP1e1(t)∥∥∥MT
1,iP1e1(t)

∥∥∥
+

1
σ1

(ρa − ρ̂a)
(
−σ1

∥∥∥MT
1,iP1e1

∥∥∥)
= eT

1 (t)P1M1,i fa(t) −
(
ρa + la,i

) ∥∥∥MT
1,iP1e1(t)

∥∥∥
≤

∥∥∥MT
1,iP1e1(t)

∥∥∥ ρa −
(
ρa + la,i

) ∥∥∥MT
1,iP1e1(t)

∥∥∥
= −la,i

∥∥∥MT
1,iP1e1(t)

∥∥∥ < 0 (32)

Therefore

V̇1(t) ≤

k∑
i=1

µi

(
eT

1 (t)
(
(As

11,i)
T P1 + P1As

11,i

)
e1(t)

+2eT
1 (t)P1A12,ie2(t) + 2eT

1 (t)P1E1,id(x, u, t) (33)

Similarly, the derivatives of V2(t) and V3(t) can be obtained as:

V̇2(t) =

k∑
i=1

µi

(
eT

2 (t)
(
(A22,i + LiC22,i)T P01

+P01(A22,i + LiC22,i)
)

e2(t)

+2eT
2 (t)P01E2,id(x, u, t)

)
(34)

V̇3(t) =

k∑
i=1

µi

(
eT

3 (t)
(
KT

i P02 + P02Ki

)
e3(t)

+2eT
3 (t)P02C22,ie2(t)

+2eT
3 (t)P02N2( fs(t) − ν2,i(t))

)
(35)

Similarly, we obtain

2eT
3 (t)P02N2( fs(t) − ν2,i(t)) ≤ −ls,i

∥∥∥NT
2 P02e3(t)

∥∥∥ < 0 (36)

From (30), (33)(36), the time derivative of V(t) is

V̇(t) ≤

k∑
i=1

µi (ξ(t))
(
eT

1 (t)
(
(As

11,i)
T P1 + P1As

11,i

)
e1(t)

+2eT
1 (t)P1A12,ie2(t) + 2eT

1 (t)P1E1,id(x, u, t)

+eT
2 (t)

(
(A22,i + LiC22,i)T P01 + P01(A22,i + LiC22,i)

)
e2(t)

+2eT
2 (t)P01E2,id(x, u, t) + eT

3 (t)
(
KT

i P02 + P02Ki

)
e3(t)

+2 eT
3 (t)P02C22,ie2(t)

)
(37)

When d(x, u, t) = 0, we have

V̇(t) ≤
k∑

i=1

µi


 e1(t)

e2(t)
e3(t)


T

Λi

 e1(t)
e2(t)
e3(t)


 (38)

where

Λi =

 Q1,i P1A12,i 0
AT

12,iP1 Q2,i CT
22,iP02

0 P02C22,i Q3,i

 (39)

with

Q1,i = (As
11,i)

T P1 + P1As
11,i

Q2,i = (A22,i + LiC22,i)T P01 + P01(A22,i + LiC22,i)
Q3,i = KT

i P02 + P02Ki

If Λi < 0, then V̇(t) < 0, which implies that e → 0 as t → ∞.
Therefore, the error dynamics system is asymptotically stable.

When d(x, u, t) , 0, we define

J1(t) = V̇(t) + rT (t)r(t) − γ1dT (x, u, t)d(x, u, t) (40)

Substituting (37) and (26) into (28) yields

J1(t) = V̇(t) + rT (t)r(t) − γ1dT (x, u, t)d(x, u, t)

=

k∑
i=1

µi

(
eT

(
Λi + HT H

)
e + +2eT

1 (t)P1E1,id(x, u, t)

+2eT
2 (t)P01E2,id(x, u, t) − γ1dT (x, u, t)d(x, u, t)

)
=

k∑
i=1

µi


 e1(t)

e2(t)
e3(t)


T

Λi

 e1(t)
e2(t)
e3(t)


+2

 e1(t)
e2(t)
e3(t)


T  P1 0 0

0 P01 0
0 0 0


 E1,i

E2,i
0

 d(x, u, t)

−γ1dT (x, u, t)d(x, u, t)
)

=

k∑
i=1

µi




e1(t)
e2(t)
e2(t)

d(x, u, t)


T

ψi


e1(t)
e2(t)
e2(t)

d(x, u, t)


 (41)

with

ψi =


Q1,i + HT

1 H1 P1A12,i 0 P1E1,i
∗ Q2,i + HT

2 H2 CT
22,iP02 P01E2,i

∗ ∗ Q3,i + HT
3 H3 0

∗ ∗ ∗ −γ1I

 (42)

The previous inequalities are nonlinear because of P01Li and P02Ki.
This problem can be solved using the variable change Xi = P01Li

and Yi = P02Ki. Applying the Schur complement, we can obtain the
LMI form (29). So if J1(t) < 0, the error dynamics system (25) is
stable satisfying the H∞ performance (28). �.
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3.2 Sliding motion analysis

For system (25), Let

S = {(e1(t), e2(t), e3(t)) |e1(t) = 0, e3(t) = 0 } (43)

Theorem 2. Consider system (2) satisfying Assumptions 13. The
system error dynamics (25) can be driven to the sliding surface S in
finite time and remain on it if the LMI (29) is solvable and the gains
la,i and ls,i satisfy:

la,i ≥
∥∥∥M−T

1,i

∥∥∥ (∥∥∥A12,i
∥∥∥ ‖e2(t)‖ +

∥∥∥E1,i
∥∥∥ ‖d(x, u, t)‖

))
+ ηa,i(44)

ls,i ≥
∥∥∥N−T

2

∥∥∥ ∥∥∥C22,i
∥∥∥ ‖e2(t)‖ + ηs,i (45)

where ηa,i and ηs,i are two positive scalars, i = 1, ..., k.

Proof:
Consider V1(t) = eT

1 (t)P1e1(t) + 1
σ1
ρ̃2

a and V3(t) = eT
3 (t)P02e3(t) +

1
σ2
ρ̃2

s . The differentia of V1(t) can be obtained as:

V̇1(t) =

k∑
i=1

µi

(
eT

1 (t)
(
(As

11,i)
T P1 + P1As

11,i

)
e1(t)

+2eT
1 (t)P1A12,ie2(t) + 2eT

1 (t)P1E1,id(x, u, t)

+2eT
1 (t)P1M1,i( fa(t) − ν1,i(t))

)
+

2
σ1
ρ̃a(− ˙̂ρa) (46)

Since (As
11,i)

T P1 + P1As
11,i < 0, then we can get

V̇1(t) ≤

k∑
i=1

µi

(
2eT

1 (t)P1A12,ie2(t) + 2eT
1 (t)P1E1,id(x, u, t)

−la,i
∥∥∥MT

1,iP1e1(t)
∥∥∥)

≤

k∑
i=1

µi

[
‖P1e1(t)‖

(∥∥∥A12,i
∥∥∥ ‖e2(t)‖ +

∥∥∥E1,i
∥∥∥ ‖d(x, u, t)‖

)
−la,i

∥∥∥MT
1,iP1e1(t)

∥∥∥]
≤

k∑
i=1

µi

[∥∥∥MT
1,iP1e1(t)

∥∥∥ (∥∥∥M−T
1,i

∥∥∥ (∥∥∥A12,i
∥∥∥ ‖e2(t)‖

+
∥∥∥E1,i

∥∥∥ ‖d(x, u, t)‖
))
−la,i

]
(47)

From (46), one obtains

V̇1(t) ≤ −2ηa,i

∥∥∥MT
1,iP1e1(t)

∥∥∥ ≤ −2ηa,i

∥∥∥M1,i
∥∥∥ √

λmin(P1)V1/2
1 (t) (48)

If (45) is verified, then

V̇3(t) ≤ −2ηs,i

∥∥∥NT
2 P02e3(t)

∥∥∥ ≤ −2ηs,i ‖N2‖
√
λmin(P02)V1/2

3 (t) (49)

Then the reachability condition [34] is verified.

4 Fault Estimation
From Theorem 2, an ideal sliding mode take place on S and
ė1(t) = e1(t) = 0. Consequently, the error dynamics of e1(t) be-
comes:

0 =

k∑
i=1

µi

(
A12,ie2(t) + E1,id(x, u, t) + M1,i( fa(t) − ν1eq,i(t))

)
(50)

where ν1eq(t) denotes the equivalent term [34] replaced by:

ν1eq,i(t) =
(
ρ̂a + la,i

) MT
1,iP1

(
C−1

11,iS 11,iυ1(t) − ẑ1(t)
)∥∥∥∥MT

1,iP1

(
C−1

11,iS 11,iυ1(t) − ẑ1(t)
)∥∥∥∥ + δa

(51)

where δa > 0. Since M1,i is invertible, (50) can be rewritten as:

ν1eq,i(t) − fa(t) = M−1
1,i

(
A12,ie2(t) + E1,id(x, u, t)

)
(52)

Computing the L2 norm of (52) yields∥∥∥ν1eq,i(t) − fa(t)
∥∥∥

2

=
∥∥∥M−1

1,i
(
A12,ie2(t) + E1,id(x, u, t)

)∥∥∥
2

≤
∥∥∥M−1

1,i A12,i
∥∥∥

2‖e2(t)‖2 +
∥∥∥M−1

1,i E1,i
∥∥∥

2‖d(x, u, t)‖2
≤

∥∥∥M−1
1 A12

∥∥∥
max‖e(t)‖2 +

∥∥∥M−1
1 E1

∥∥∥
max‖d(x, u, t)‖2

≤
(√
γ1

∥∥∥M−1
1 A12

∥∥∥
maxσmax(H−1)

+
∥∥∥M−1

1 E1
∥∥∥

max

)
‖d(x, u, t)‖2 (53)

where
∥∥∥M−1

1 A12
∥∥∥

max = max
i=1,...,k

(∥∥∥M−1
1,i A12,i

∥∥∥
2

)
and

∥∥∥M−1
1 E1

∥∥∥
max =

max
i=1,...,k

(∥∥∥M−1
1,i E1,i

∥∥∥
2

)
. since ‖e(t)‖ ≤ σmax(H−1)

√
γ1 ‖d(x, u, t)‖. It

follows that:

sup
‖d‖,0

=

∥∥∥ν1eq,i(t) − fa(t)
∥∥∥

2

‖d(x, u, t)‖2
=
√
γ1β1 + β2 (54)

where β1 =
∥∥∥M−1

1 A12
∥∥∥

maxσmax(H−1) and β2 =
∥∥∥M−1

1 E1
∥∥∥

max. Thus
for a small

√
γ1β1 + β2, fa(t) can be estimated as:

f̂a(t) �
k∑

i=1

µi

(ρ̂a + la,i
) MT

1,iP1

(
C−1

11,iS 11,iυ1(t) − ẑ1(t)
)∥∥∥∥MT

1,iP1

(
C−1

11,iS 11,iυ1(t) − ẑ1(t)
)∥∥∥∥ + δa


(55)

Similarly, we can get

sup
‖d‖,0

=

∥∥∥ν2eq,i(t) − fs(t)
∥∥∥

2

‖d(x, u, t)‖2
=
√
γ1

∥∥∥N−1
2 C22

∥∥∥
maxσmax(H−1) (56)

Therefore for small
√
γ1

∥∥∥N−1
2 C22

∥∥∥
maxσmax(H−1), fs(t) can be esti-

mated as:

f̂s(t) �
k∑

i=1

µi

(ρ̂2 + ls,i
) NT

2,iP03e3(t)∥∥∥NT
2,iP03e3(t)

∥∥∥
 (57)

5 Fault Tolerant Controller Design
Define corrected output as:

yc(t) =

k∑
i=1

µi

(
Cix(t) + N

(
fs(t) − f̂s(t)

))
(58)

System (2) becomes:
ẋ(t) =

k∑
i=1
µi (Aix(t) + Biu(t) + Mi fa(t) + Eid(t))

yc(t) =
k∑

i=1
µi

(
Cix(t) + Ne f s(t)

) (59)
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where e fs(t) = fs(t) − f̂s(t).
A SOFFTC law [35] is designed as follows:

u(t) =

k∑
i=1

µi

(
K̄iyc(t) − Ḡi f̂a(t)

)
(60)

where Ki and Gi are gains matrices to be determined.
Substituting (60) in (59), we have

ẋ(t) =

k∑
i=1

k∑
j=1

µiµ j

(
Aix(t) + Bi(K̄ jCix(t)

+K̄ jNe f s(t) − Ḡ j f̂a(t)
)

+Mi fa(t) + Eid(x, u, t))

=

k∑
i=1

k∑
j=1

µiµ j

(
Aix(t) + BiK̄ jCix(t) + BiK̄ jNe f s(t)

−BiḠ j f̂a(t) + Mi fa(t) + Eid(x, u, t)
)

(61)

The gain Gi is designed so that BiGi = Mi where B+
i is the pseudo

inverse of Bi [36]. It follows that

ẋ(t) =

k∑
i=1

k∑
j=1

µiµ j

((
Ai + BiK̄ jCi

)
x(t) + BiK̄ jNe f s(t)

+Mie f a(t) + Eid(x, u, t)
)

(62)

where e f a(t) = fa(t) − f̂a(t). Then, we get
ẋ(t) =

k∑
i=1

k∑
j=1
µiµ j

[(
Ai + BiK̄ jCi

)
x(t) + B̄i jϕ(t)

]
yc(t) =

k∑
i=1
µi

(
Cix(t) + Ne f s(t)

) (63)

where B̄i j =
[

BiK̄ jN Mi Ei

]
and ϕ(t) =[

eT
f s(t) eT

f a(t) dT (x, u, t)
]T

. The control purpose in this pa-
per for the closed-loop fuzzy system (63) is to design a SOFFTC
(60) such that

(i) The closed-loop fuzzy system (63) with (ϕ(t) = 0) is asymptoti-
cally stable .

(ii) For a given scalar γ2 > 0, the following H∞ performance is
satisfied: ∫ L

0
‖yc(t)‖22dt < γ2

∫ L

0
‖ϕ(t)‖22dt (64)

for all L > 0 and ϕ(t) ∈ L2 [0,∞) under zero initial condi-
tions.

Theorem 3. The closed-loop system (63) is asymptotically stable
and satisfy the H∞ performance index (64), if there exist matrix
P̄x > 0, matrices R, S̄ i and scalar ε > 0, such that:

Ψii < 0, 1 ≤ i ≤ k
2

r−1 Ψii + Ψi j + Ψ ji < 0, 1 ≤ i , j ≤ k
CiP̄x = RCi, 1 ≤ i ≤ k

(65)

where

Ψi j =

Φi j 0 Mi N P̄xCT
i BiK̄ j 0

∗ −2γ2P̄x + γ2I 0 0 P̄xNT 0 εP̄xCi

∗ ∗ −γ2I 0 0 0 0
∗ ∗ ∗ −γ2I 0 0 0
∗ ∗ ∗ ∗ −γ2I 0 0
∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ −εI


with

Φi j = AiP̄x + P̄xAi + BiS jCi + BT
i S T

j CT
i

The controller gains are obtained by:

K̄i = R−1S̄ i

Proof. Choose Vx(t) = xT (t)Pxx(t), where Px > 0. Its derivative is:

V̇x(t) =

k∑
i=1

k∑
j=1

µiµ j

(
xT (t)

(
(Ai + BiK̄ jCi)

T Px

+Px(Ai + BiK̄ jCi)
)

x(t) + 2xT (t)PxB̄i jϕ(t)
)

(66)

Let

Jx(t) = V̇x(t) + yT
c (t)yc(t) − γcϕ

T (t)ϕ(t) (67)

where

yT
c (t)yc(t) =

k∑
i=1

k∑
j=1

µiµ j

((
Cix(t) + Ne f s(t)

)T

(
C jx(t) + Ne f s(t)

))
=

k∑
i=1

k∑
j=1

µiµ j

(
xT (t)CT

i C jx(t) + xT (t)CT
i Ne f s(t)

+eT
f s(t)N

T C jx(t) + eT
f s(t)N

T Ne f s(t)
)

(68)

Define Z =
[

N 0 0
]
, then

yT
c (t)yc(t) =

k∑
i=1

k∑
j=1

µiµ j

(
xT (t)CT

i C jx(t)

+ϕT (t)ZT Zϕ(t) + 2xT (t)CT
i Zϕ(t)

)
(69)

So we obtain

Jx(t) =

k∑
i=1

k∑
j=1

µiµ j

(
xT (t)

(
(Ai + BiK̄ jCi)

T Px

+Px(Ai + BiK̄ jCi)
)

x(t) + 2xT (t)PxB̄i jϕ(t)

+xT (t)CT
i C jx(t) + ϕT (t)ZT Zϕ(t)

+2xT (t)CT
i Zϕ(t) − γ2ϕ

T (t)ϕ(t)
)

=

k∑
i=1

k∑
j=1

µiµ j

[
x(t)
ϕ(t)

]T

Θi j

[
x(t)
ϕ(t)

]
where

Θi j =

[
Υi j PxB̄i j + CT

i Z
∗ −γ2I + ZT Z

]
(70)
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with Υi j = (Ai + BiK̄ jCi)T Px + Px(Ai + BiK̄ jCi) + CT
i C j.

Thus, Jx(t) < 0, if

k∑
i=1

k∑
j=1

µiµ jΘi j < 0 (71)

By applying Schur complement, (70) can be written as:

Θi j =


Ῡi j PxBiK̄ jN PxMi PxEi CT

∗ −γ2I 0 0 NT

∗ ∗ −γ2I 0 0
∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −γ2I

 (72)

where Ῡi j = (Ai + BiK̄ jCi)T Px + Px(Ai + BiK̄ jCi).
Premultiplying and postmultiplying by Π = diag

{
P−1

x , P
−1
x , I, I, I

}
and its transpose in (72), then we obtain

k∑
i=1

k∑
j=1

µiµ j




Ωi j BiK̄ jNP̄x Mi N P̄xCT
i

∗ −γ2P̄xP̄x 0 0 P̄xNT

∗ ∗ −γ2I 0 0
∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −γ2I


 < 0 (73)

where Ωi j = AiP̄x + P̄xAi + BiK̄ jCiP̄x + P̄T
x CT

i K̄T
j BT

i and P̄x = P−1
x .

Based on Lemma 1, it is easy to obtain that

P̄x + P̄x ≤ P̄xP̄x + I (74)

From γ2 > 0, (74) can be expressed as:

−γ2P̄xP̄x ≤ −2γ2P̄x + γ2I (75)

Then, (73) can be rewritten as:

k∑
i=1

k∑
j=1

µiµ jΣi j < 0 (76)

where

Σi j =


Ωi j BiK̄ jNP̄x Mi N P̄xCT

i
∗ −2γ2P̄x + γ2I 0 0 P̄xNT

∗ ∗ −γ2I 0 0
∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −γ2I

 (77)

Notice that the matrix inequality Ωi j < 0 is a Bilinear Matrix In-
equalities (BMIs). Denoting CiP̄x = RCi and K̄ jR = S̄ j, so that
K jCiP̄x = S̄ jCi. Substituting the result into (77) yields

k∑
i=1

k∑
j=1

µiµ jΞi j ≤ 0 (78)

where

Ξi j =


Φi j BiK̄ jNP̄x Mi N P̄xCT

i
∗ −2γ2P̄x + γ2I 0 0 P̄xNT

∗ ∗ −γ2I 0 0
∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −γ2I

 (79)

with

Φi j = AiP̄x + P̄xAi + BiS jCi + BT
i S T

j CT
i (80)

The gains of controller are given by

K̄i = R−1S̄ i (81)

Furthermore, Ξi j can be further decomposed as below:

∆i j + UV + (UV)T < 0 (82)

where

∆i j =


Φi j 0 Mi N P̄xCT

i
∗ −2γ2P̄x + γ2I 0 0 P̄xNT

∗ ∗ −γ2I 0 0
∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −γ2I


U =

[
K̄T

j BT
i 0 0 0 0

]T

V =
[

0 NP̄x 0 0 0
]

By using Lemma 3, it is follows that

∆i j + UV + (UV)T ≤ ∆i j + ε−1UUT + εVT V (83)

From (83), (78) is equivalent to

k∑
i=1

k∑
j=1

µiµ jΨi j < 0 (84)

where

Ψi j =

Φi j 0 Mi N P̄xCT
i BiK̄ j 0

∗ −2γ2P̄x + γ2I 0 0 P̄xNT 0 εP̄xCi

∗ ∗ −γ2I 0 0 0 0
∗ ∗ ∗ −γ2I 0 0 0
∗ ∗ ∗ ∗ −γ2I 0 0
∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ −εI


If (84) is verified, we have Jx(t) < 0, which can guarantee the
closed-loop system is asymptotically stable. �

6 Simulation Example
In this example, The inverted pendulum with cart system [37] is
considered:

ẋ1 (t) = x2 (t)

ẋ2 (t) =
g sin(x1(t))−mlax2

2(t) sin(2x1(t))
2 −ba cos(x1(t))x4(t)−a cos(x1(t))(F− fc)
4l
3 −mla cos (x1(t))2

ẋ3 (t) = x4 (t)

ẋ4 (t) =
−mga sin(2x1(t))

2 + 4mla
3 x2

2(t) sin(x1(t))−bax4(t)+ 4a
3 (F− fc)

4
3−ma cos (x1(t))2

where x1(t) and x2(t) are the angular position and velocity, respec-
tively; x3(t) and x4(t) are the cart position and velocity, respectively;
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m is the pendulum mass, M is the cart mass, g is the gravity con-
stant, and a = 1/(m + M) . The values of the parameters used in this
simulation are m = 0.2kg, M = 0.8kg, l = 0.5m, and L = 2m .

Then, we get the TS fuzzy system with the following fuzzy
rules:
Rule1: If x1(t) is about 0, Then{

ẋ(t) = A1x(t) + B1(u(t) + fa(t)) + E1d(t)
y(t) = C1x(t) + N fs(t)

Rule1: If x1(t) is about ± π4 , Then{
ẋ(t) = A2x(t) + B2(u(t) + fa(t)) + E2d(t)
y(t) = C2x(t) + N fs(t)

where

A1 =


0 1 0 0
g

4l
3 −m l a

0 0 b a
4l
3 −m l a

0 0 0 1
−m g a
4
3 −m a

0 0 −b a
4
3 −m a

 , A2 =


0 1 0 0

g 2
√

2
π

4
3 −

m l a
2

0 0 b a
√

2
2

4l
3 −

m l a
2

0 0 0 1
−m g a 2

π
4
3 −

m a
2

0 0 − b a
4
3 −

m a
2



B1 = E1 =


0
−a

4l
3 −m l a

0
4a
3

4
3−m a

 , B2 = E2 =


0
−a

√
2

2
4l
3 −

m l a
2

0
4 a
3

4
3−

m a
2



C1 = C2 =

 1 0 0 0
0 0 1 0
0 0 1 1

 ,N =
[

0 1 0
]T

we set d(x, u, t) = − fc + m l x2
2 (t) sin (x1 (t)) where fc =

ρ sign (x4 (t)) with ρ = 0.05 . The membership functions for rules 1
and 2 are chosen based on the method of sector nonlinearity [38] as
follows:

µ1(x1(t)) =
1 − 1

1+exp(−14(x1(t)− π
8 ))

1 + exp(−14(x1(t) + π
8 ))

µ2(x1(t)) = 1 − µ1(x1(t))

By Choosing H1 = 1, H2 = I3 and H3 = I2, we can solve the
optimization problem of Theorem 1 using Matlab LMI Toolbox
and we obtain γ1 = 0.3614, As

11,1 = −3.2457, As
11,2 = −3.2457,

P1 = 1.62 and

P01 =

 0.164 0.043 −0.3
0.033 0.109 −0.454
−0.5 −0.404 11.248

 , P02 =

[
0.463 0

0 0.804

]

The observer gains can be calculated as follows:

L1 =

 5.0126 1.0616
17.4978 20.7737
−1.3711 −7.8575

 , L2 =

 5.0066 1.0558
14.7712 20.7980
−1.0564 −11.1295


K1 =

[
−2.47 0.075
0.053 −4.381

]
,K2 =

[
−2.341 0.014
0.042 −3.862

]

Solving the optimization problem in Theorem 3 results the fol-
lowing controller gain matrices for a minimum attenuation level
γ2 = 1.6128:

K̄1 =
[
−2.7838 −6.8067 −11.1030

]
K̄2 =

[
−2.1520 −7.5055 −11.8265

]
We simulate the closed-loop system be choosing σ1 = 10,

σ2 = 15, δ1 = 0.01, δ2 = 0.02, la,1 = la,2 = 10 and ls,1 = ls,2 = 12,
initial conditions x10 = π/20, x20 = 0, x30 = 2 and x40 = 0. fa(t)
and fs(t) are assumed that, respectively

fa(t) =

{
0 t < 6

sin(π(t − 6)) t ≥ 6 , fs(t) =

{
0 t < 8

0.5 t ≥ 8

The simulation results of this example are given in Figures 1-5.
Figures 1 and 2 show that the proposed adaptive SMO can estimate
the actuator and sensor faults simultaneously despite the presence
of uncertainties.
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a
(t)

Figure 1: The actuator fault fa(t) and its estimation.
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Figure 2: The sensor fault fs(t) and its estimation.

Simulation results for the systems outputs response are illus-
trated in Figures 3-5. It is clear to see that the outputs without
SOFFTC do not converge to the outputs of the fault-free model (i.e.
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without any fault). However, the outputs’s trajectories of the system
with SOFFTC reach the outputs of nominal model.
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Figure 3: Output y1(t) under the static output feedback FTC.
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Figure 4: Output y2(t) under the static output feedback FTC.
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Figure 5: Output y3(t) under the static output feedback FTC.

7 Conclusion
In this paper, we have considered the problems of FE and FTC for
T-S fuzzy systems with uncertainties, actuator and sensor faults,
simultaneously. Using the H∞ optimization technique, an adaptive
fuzzy sliding mode observer has been firstly designed to estimate the
system state, actuator and sensor faults, simultaneously. Secondly,
using the information of online fault estimates, a novel SOFFTC has
been developed to compensate the faults and stabilize the closed-
loop system. Thus, sufficient condition for the existence of the
proposed ASMO and SOFFTC has been formulated in terms of
LMIs. Finally, a simulation example was used to show the effective-
ness of the proposed methods.
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