

www.astesj.com 160

Nearest Neighbour Search in k-dSLst Tree

Meenakshi Hooda*, Sumeet Gill

Department of Mathematics, Maharshi Dayanand University, 124001, India

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 12 May, 2020
Accepted: 26 June, 2020
Online: 18 July, 2020

 In the last few years of research and innovations, lots of spatial data in the form of points,
lines, polygons and circles have been made available. Traditional indexing methods are not
perfect to store spatial data. To search for nearest neighbour is one of the challenges in
different fields like spatiotemporal data mining, computer vision, traffic management and
machine learning. Many novel data structures are proposed in the past, which use spatial
partitioning and recursive breakdown of hyperplane to find the nearest neighbour
efficiently. In this paper, we have adopted the same strategy and proposed a nearest
neighbour search algorithm for k-dSLst tree. k-dSLst tree is based on k-d tree and sorted
linked list to handle spatial data with duplicate keys, which is ignored by most of the spatial
indexing structures based on k-d tree. The research work in this paper shows experimentally
that where the time taken by brute force nearest neighbour search increases exponentially
with increase in number of records with duplicate keys and size of dataset, the proposed
algorithm k-dSLstNearestNeighbourSearch based on k-dSLst tree performs far better with
approximately linear increase in search time.

Keywords:
Nearest Neighbour
Spatial Indexing
k-d tree
Sorted Linked List
Duplicate Keys

1. Introduction

Geospatial datasets are huge and complex in structure and
relationships. We need complex spatial operators to fetch the
required information from spatial datasets. These complex spatial
operators include intersection, overlap, adjacency etc. The
traditional indexing structures can’t handle queries related to
spatial details efficiently. Spatial queries use spatial relationships
among different geometries and make use of n-dimensional
geometric data such as points, lines and polygons to retrieve
required data.

A spatial query retrieves features depending on relationships of
spatial data with geometry of queried data. The objective of spatial
queries is to find out the spatial relationships in one or more
subjects to search for spatial objects. The extracted information
help in taking decisions related to various policies or for doing
analysis in various fields. Spatial queries permit for the utilization
of data types related to geometry like point, line etc. and take into
consideration the spatial relationship in these geometries. Spatial
indices are used for spatial database to optimize spatial query. The
indices provide one of the optimization techniques for improving
the quality of services based on location.

1.1 Range Query

The range queries are related with bounded areas. The output
of such kind of queries contains some region that might be
overlapped. The spatial objects are associated to each other within
specific area or distance. These kinds of queries have associated
area and require at least two parameters i.e. location and boundary
limit.

Example:

Find all the hostels within 12 kilometers of a given university.

Find all towns within 90 kilometers of a given village.

1.2 Spatial Join Query

These queries are the combination of more than one spatial
query. We need spatial join operation for retrieving required
information. These queries are expensive as join condition(s)
involve areas and their proximity to each other.

Example:

Find all the cities near given lake.

ASTESJ

ISSN: 2415-6698

*Meenakshi Hooda, Maharshi Dayanand University, Haryana, India &
mshthebest@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 160-166 (2020)

www.astesj.com

Special Issue on Multidisciplinary Innovation in Engineering Science & Technology

https://dx.doi.org/10.25046/aj050419

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050419

M. Hooda et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 160-166 (2020)

www.astesj.com 161

The partitioning and summarization of spatiotemporal data is
significant for numerous community based applications like
environmental science, public safety and health [1]. The relations
among spatial objects can be categorized in different ways such as
classifications based on distance, topology and direction relations.
These may be further joined using logical operators to depict
neighbourhood relation between spatial objects [2].

2. Related Work

2.1 Nearest Neighbour Query

Nearest Neighbour Search (NNS) is also called as Proximity,
Similarity or Closest Point Search. It is an optimization problem to
find nearest points in metric spaces [3]. In such kind of queries, the
data closet to the queried location is retrieved. Here, we search for
objects which are nearest to the particular location. We can also
query for xNN i.e. x nearest neighbours, in which search is done
for x objects nearest to the queried location. The result might be
ordered by their respective proximity to queried spatial location.
[4] introduce a method to fetch nearest neighbour data in 3-
Dimensional space by making use of clustered hierarchical
indexing tree structure. Studies show that this approach achieves
remarkable improvement in response time analysis as compared to
already existing spatial data accessing methods in databases. [5]
research work introduces a progressive algorithm for a search of
approximate k-nearest neighbor. The most of the KNN algorithms
though utilize k-nearest neighbor libraries for many of the data
analysis procedures, but the fact is that these algorithms run only
after indexing of the whole dataset, which means that the datasets
are not online. [6] proposed a method of parallel kd-tree
construction for 3-D points on a Graphic Processing Unit. The
method consists of a sorting algorithm to maintain high level of
parallelism throughout the creation.

Example: Find 5 nearest hostels with respect to given location
comprised of n-dimensional coordinate.

In this research paper, we are introducing the algorithm k-
dSLstTreeNearest for Nearest Neighbour in k-dSLst tree structure
designed in our previous work to index spatial data with duplicate
keys.

3. Brute Force Method: Nearest Neighbour Search for
Spatial Data with Duplicate Keys

Brute Force exploration process, which is also called as
Exhaustive/Blind Search, is extremely generalized technique to
solve any problem. It systematically enumerates all possible
contenders for the problem’s solution and tests to check if the
contender fulfills the statement of the problem [7]. In this
algorithm, we find the distance of every object in dataset from the
position of the queried object. As, multiple objects can be found
at the nearest neighbour location, a list is maintained to keep
record of all objects with minimum distance. Algorithm 1,
Distance bruteForceNearestNeighbourSearch
(SpatialDataset, Location, ResultNN_BF
*resultNearestNeighbourBF), receives spDataSet of
SpatialDataSet type, k dimensional queryPosition of Location
type to which nearest neighbour is to be found and returns either

INFINITY, if no record is found in dataset or minimum distance
of the nearest found object(s) from queryPosition in case record(s)
is found. Also, a pointer resultNearestNeighbourBF of
ResultNN_BF type is passed to save the address of result node(s),
if found.

If there is no record in dataset and list is empty i.e. spDataSet
is NULL, bruteForceNearestNeighbourSearch will return
INFINITY. On the other hand, if records exist in the list, initialize
minDistance to INFINITY. Now, traverse every node in the
spDataSet to find the distance between queryPosition and
currentRecord. Also, update the minimum distance minDistance,
if it is lesser than the minDistance calculated up to now. Now,
insert object details in resultNearestNeighbourBF which satisfy
the minimum distance condition.

Algorithm 1 bruteForceNearestNeighbourSearch

1: Begin
2: if spDataSet is NULL
3: return INFINITY
4: end if
5: Initialize minDistance to INFINITY
6: Set distanceSqr to 0
7: Set currentRecord to spDataSet
8: loop while currentRecord is NOT NULL
9: Find distanceSqr between currentRecord and

 queryPosition
10: Insert calculated distaceSqr to currentRecord

 temporarily
11: if distanceSqr < minDistance
12: then
13: minDistance = distanceSqr
14: end if
15: Move to next currentRecord
16: Reset distanceSqr to 0
17: end loop
18: Set currentRecord to spDataSet
19: loop while currentRecord exist
20: if distanceSqr inserted to currentRecord temporarily ==

 minDistance
21: then
22: add currentRecord to resultNearestNeighbourBF
23: end if
24: Move to next currentRecord
25: end Loop
26: return minDistance
27: End

4. k-dSLst Tree

In our earlier research work, we had introduced an indexing
structure k-dSLst tree to index spatial data with duplicate keys. k-
dSLst tree is based on k-d tree and sorted linked list. In this paper,
we are introducing an algorithm to find nearest neighbour for a
given n-dimensional spatial point in a spatial dataset. In k-dSLst
tree, first a kdSLstNode is created according to n-dimensional
spatial location of an object, and then we insert the data related to
same object in dataSNode in kdSLstNode created above. If
kdSLstNode related to n-dimensional point already exists, then
dataSNode is inserted in a sorted way according to object_Id of
the object in already existing kdSLstNode. When we insert the
dataSNode, we need to find the right location for insertion by
traversing the linked list at particular kdSLstNode. It will increase
the insertion time as compared to k-dLst tree, but when comes to
searching for a particular object at particular location, it will
outperform k-dLst tree on an average.

http://www.astesj.com/

M. Hooda et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 160-166 (2020)

www.astesj.com 162

 Figure 1 shows the structure of 2-dSLst tree for dataset
records in 2-d space stored as kdSLstNodes in a 2-dSLst tree,
which can be generalized for k-d space to create k-dSLst tree. A
rectangular space is also represented by the leaf kdSLstNode
which is further separated into two spaces by the newly inserted
point.

The root kdSLstNode will have discriminator 0. It will be 1 for
two sons at the next level, and will be incremented for every next
level until it reaches up to k-1 on kth level. Then it again starts with
0 for k+1th level and the cycle repeats till the end of k-dSLst tree.

So, nextDiscriminator (level_i) = (level_i + 1) mod k.

Notations:
K: Keys of kdSLstNode
N: kdSLstNode of k-dSLst tree structure
K0(N),K1(N) … Kk-1(N):k keys of kdSLstNode N
lSon(N): Left branch of kdSLstNode N
rSon(N): Right branch of kdSLstNode N
dc(N): Discriminator of kdSLstNode N

Now, whether to insert new kdSLstNode as left son or right
son depends on the result of comparison of keys. Let dc be the
discriminator for kdSLstNode N. If Kdc(N) != Kdc(Q) then the
successor kdSLstNode Q will be inserted either on left or right side
of N i.e. either lSon(N) or rSon(N). If Kdc(N) < Kdc(Q), then Q will
be inserted on right side of N i.e. as rSon(N) else on left side of N
i.e. as lSon(N). But, if Kdc(N) = Kdc(Q), then the keys for
remaining dimensions will be compared. A superkey SK of
kdSLstNode N is defined by cyclical concatenation of all keys
starting with Kdc(N) as

SKdc(N) = Kdc(N) Kdc+1(N) … Kdck-1(N) Kdc0(N) ... Kdc-1(N)

Now if SKdc(Q) < SKdc(N) then Q will be added as lSon(N) else Q
will be added as rSon(N).

Now, in case of duplicate keys i.e. if SKdc(Q) = SKdc(N), then
address of new dataSNode will be saved in the same already
existing kdSLstNode node as a sorted linked list of dataSNodes.

5. Nearest Neighbour Search in k-dSLst Tree

Nearest Neighbour Search is a challenge in various domains
like computer vision, spatial data mining and machine learning.
There is explosive growth of location based data on the Internet
and it is becoming a challenge day by day to store and manage
this available data in an efficient way. The researchers have
designed many indexing data structures using spatial partitions
and recursive hyperplane decomposition to index spatial data.
These indexing structures also speed up the nearest neighbour
search. But, when it comes to spatial data with duplicate keys,
many of the indexing structures do not handle them. K-dSLst tree
structure is a combination of k-d tree and sorted linked list. The
k-d tree having N nodes require O (Log N) inspections to search
for nearest neighbour as it requires the traversal to at least one leaf
of the tree. Also, as the nearest neighbour search needs to traverse
a node at most once, it will not visit more than N nodes [8]. Linked
list is maintained to hold all the objects at particular spatial
location rather than one only.

To find nearest neighbour for any queried n-dimensional point,
the search is started at the root of indexing tree and subtrees are
explored recursively using the given rule of pruning spatial
subtrees: If the nearest neighbour discovered up to now is nearer
than the distance between the queried point and hyperplane
coordinates corresponding to the current kdSLstNode, we can
prune the exploration of this kdSLstNode and its subtrees further.
A kdSLstNode needs to be explored further only if it contains
point which is nearer as compared to the best one found so far.
The effectiveness of the pruning rule depends on finding a nearby
point. To do this, we need to organize the recursive method in a
way that if we have two probable subtrees to traverse down further,
we must opt for the subtree on the same side of the splitting line
as is the queried point. The nearest point searched while exploring
the first subtree may enable pruning of second subtree.

In this paper, we are proposing Nearest Neighbour Search
algorithm k-dSLstTreeNearest for kdSLst tree which was
designed and implemented for indexing spatial data with
duplicate spatial keys. Algorithms 2 and Algorithm 3 show the
proposed work. The Algorithm 2 k-dSLstTreeNearest takes two
parameters as arguments. First is the root node of the k-dSLst tree
and second is the position containing N-dimensional coordinates
about which the nearest neighbour is to be searched. Rather than
returning a single nearest neighbour object, the algorithm returns
the list of all nearest neighbours. If root node of the tree or hyper
rectangle points to NULL then INFINITY is returned back to
show that there is no nearest neighbour, otherwise root node is
considered as nearest neighbour to start with. The variable
distanceSqr holds the distance in between nearest point up to now
and position of point about which nearest neighbour search is
queried.

Algorithm 2 k-dSLstTreeNearest

1: Begin
2: if k-dSLstTreeRoot is NULL
3: return NIL;
4: if k-dSLstTreeHRect is NULL

Figure 1: Structure of k-dSLst tree for 2-d keys
(It can be generalized for k-d keys)

A

 B

 D

 C

 E F G

 H I

0

1

0

1

Discriminator

http://www.astesj.com/

M. Hooda et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 160-166 (2020)

www.astesj.com 163

5: return NIL;
6: Initialize resultOfNearest_kdSLst with k-dSLstTreeRoot.
7: Initialize distanceSqr with 0.
8: Find distanceSqr between resultOfNearest_kdSLst and

queryPosition.
9: CALL k-dSLstTreeNearestIterative(k-dSLstTreeRoot,

queryPosition, &resultOfNearest_kdSLst, &distanceSqr, k-
dSLstTreeHRect).

10: if (resultOfNearest_kdSLst)
11: then
12: Traverse the sorted linked list of dataSNodes to show all

 objects at resultOfNearest_kdSLst
13: Visualize resultOfNearest_kdSLst
14: end if
15: End

An iterative Algorithm 3 k-dSLstTreeNearestIterative is
called with parameters which include root node of the k-dSLst tree,
position queried about for nearest neighbour, pointer to save result
node, minimum distance up to now and hyper rectangle of the tree.

Algorithm 3 k-dSLstTreeNearestIterative

1: Begin
2: Initialize currentDim to kdsLstNode’s dimension
3: Set decideLeftRight by difference in queryPosition and kdSLstNode

coordinate values for currentDim
4: if decideLeftRight <= 0
5: then
6: Set nearerSubTree to lSon(kdSLstNode)
7: Set fartherSubTree to rSon(kdSLstNode)
8: Update nearerHyperRectCoordinates and

 fartherHyperRectCoordinates
9: using k-dSLstTreeHRect
10: else
11: Set nearerSubTree to rSon(kdSLstNode)
12: Set fartherSubTree to lSon(kdSLstNode)
13: Update nearerHyperRectCoordinates and

 fartherHyperRectCoordinates
14: using k-dSLstTreeHRect
15: end if
16: if nearerSubTree exists
17: then
18: Save nearerHyperRectCoordinates to decideLeftRight

 temporarily
19: Update nearerHyperRectCoordinates with kdSLstNode

 coordinates for currentDim
20: CALL k-dSLstTreeNearestIterative (nearerSubTree,

 queryPositions, resultOfNearest_kdSLst,
 resultDistanceSqr, k-dSLstTreeHRect);

21: Update nearerHyperRectCoordinates with
22: decideLeftRight;
23: end if
24: Reset distanceSqr with 0
25: loop for every dimension dim
26: Compute distanceSqr between kdSLstNode coordinates

 [dim] -queryPosition[dim]
27: end loop
28: if distanceSqr less than resultDistanceSqr
29: then
30: Update resultOfNearest_kdSLst and resultDistSqr

 accordingly
31: end if
32: if fartherSubTree exist
33: then
34: Save fartherHyperRectCoordinates to decideLeftRight

 temporarily
35: Update fartherHyperRectCoordinates with kdSLstNode

 coordinates for currentDim
36: if closest point of k-dSLstTreeHRect is closer than
37: resultDistanceSqr
38: then
39: CALL k-dSLstTreeNearestIterative (fartherSubTree,

 queryPositions, resultOfNearest_kdSLst,
 resultDistanceSqr, k-dSLstTreeHRect);

40: end if
41: Update fartherHyperRectCoordinates with decideLeftRight;
42: end if
43: end

Depending on the distance of query point from current point

for current dimension, we decide nearer and farther sub trees and
update the coordinates of nearer and farther hyper rectangles
accordingly. If we find any sub tree which is nearer, we call

Algorithm 3 k-dSLstTreeNearestIterative iteratively with
updated parameters. Now, check the distance of the queried point
from the current point so far and update the value of resultDistSqr,
if it is nearer. Now, also repeat the search for farther sub tree to
test for any other nearer point on other side of the slice. The
algorithm saves the nearest neighbour N-dimensional coordinates
in resultOfNearest_kdSLst. At last, we traverse the complete
linked list of dataSNode at resultOfNearest_kdSLst to show all of
the nearest neighbours. Also, all of the nearest neighbours are
displayed graphically using QGIS software.

6. Performance Evaluation:
bruteForceNearestNeighbourSearch vs k-
dSLstNearestNeighbourSearch

We have implemented the algorithms using language C and
GNU Compiler Collection (GCC) compiler - version 6.4.3 on
Operating System Ubuntu-10.04.1-Desktop-amd64. For
visualization of spatial datasets and output of algorithms
bruteForceNearestNeighbourSearch and k-
dSLstNearestNeighbourSearch, we have used Quantum
Geographic Information System (QGIS) Desktop 2.12.1.

In our experiments, we are using synthetic datasets which hold
spatial details of vehicles. The datasets include vehical-id, spatial
coordinates (latitude, longitude) and other non-spatial attributes.
We have taken six datasets of different sizes listed in Table 1
given next.

Table 1: Datasets with Duplicate Keys for Performance Evaluation

S. no. Dataset Number of records
1 Dataset-01 215
2 Dataset-02 430
3 Dataset-03 860
4 Dataset-04 1720
5 Dataset-05 3440
6 Dataset-06 10320

The six datasets are visualized in Figure 2 through Figure 7
using QGIS Desktop 2.12.1. These figures show the spatial
location of different vehicles.

While evaluating performance of searching for nearest
neighbour using Algorithm 1
bruteForceNearestNeighbourSearch and Algorithm 2 k-
dSLstNearestNeighbourSearch, we are using the query point Q
(43, 20), with Latitude as 43 and Longitude as 20. Both algorithms

http://www.astesj.com/

M. Hooda et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 160-166 (2020)

www.astesj.com 164

give the same results i.e. show the same Vehicles’ Id as nearest
neighbours for query point Q. But, the time taken by both
algorithms is different. As the number of records in datasets and
number of nearest neighbours increase, the algorithm k-
dSLstNearestNeighbourSearch outperforms
bruteForceNearestNeighbourSearch.

Figure 2: Vehicles’ location as per Spatial Dataset – 1
(215 Spatial Records).

Figure 3: Vehicles’ location as per Spatial Dataset – 2
(430 Spatial Records).

Figure 4: Vehicles’ location as per Spatial Dataset – 3
(860 Spatial Records).

Figure 5: Vehicles’ location as per Spatial Dataset – 4
(1720 Spatial Records).

Figure 6: Vehicles’ location as per Spatial Dataset – 5
(3440 Spatial Records).

Figure 7: Vehicles’ location as per Spatial Dataset – 6
(10320 Spatial Records).

Figure 8: Nearest Neighbors of Q(43, 20) in Dataset – 1.

http://www.astesj.com/

M. Hooda et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 160-166 (2020)

www.astesj.com 165

Figures 8 through 13 visualize the output of nearest neighbour
query for query point Q (43, 20). Figures list Ids of all Vehicles
found nearest to Q. Figures show that the algorithm k-
dSLstNearestNeighbourSearch is well efficient to find multiple
Vehicle Ids at the same nearest spatial location.

Figure 9: Nearest Neighbors of Q(43, 20) in Dataset – 2.

Figure 10: Nearest Neighbors of Q(43, 20) in Dataset – 3.

Figure 11: Nearest Neighbors of Q(43, 20) in Dataset – 4.

Table 2 shows the number of records found as nearest
neighbours and the time taken by both algorithms in microseconds
for searching the same. Results show that algorithm k-
dSLstNearestNeighbourSearch is more efficient as compared to
bruteForceNearestNeighbourSearch as the number of spatial
records increases and capable of finding all nearest neighbours for

spatial datasets with duplicate spatial keys. The search time take
by algorithm bruteForceNearestNeighborSearch is increasing
continuously and there is exponential rise from Dataset-05 to
Dataset-06 as number of records increase from 3440 to 10320.
Search time of algorithms is also affected by the number of
records found at nearest location which are 64 in case of Dataset-
05 and 192 in case of Dataset-06. As compared to algorithm
bruteForceNearestNeighborSearch which takes 407 micro secs. and
1391 micro secs. for nearest neighbor search in Dataset-05 and Datset-06
respectively, algorithm k-dSLstNearestNeighbourSearch takes
much less time i.e. 162 micro secs. and 223 micro secs. for
corresponding datasets.

Figure 12: Nearest Neighbors of Q(43, 20) in Dataset – 5.

Figure 13: Nearest Neighbors of Q(43, 20) in Dataset – 6.

Table 2: bruteForceNearestNeighbourSearch vs k-dSLstNearestNeighbourSearch

S.
no.

Dataset No. of
records
found at
Nearest
location

Time taken for search (in
microseconds)

bruteForceNearest
NeighborSearch

Algorithm

k-
dSLstNearest
NeighbourSea
rch Algorithm

1 Dataset-01 4 29 106
2 Dataset-02 8 46 89
3 Dataset-03 16 90 96
4 Dataset-04 32 212 110
5 Dataset-05 64 407 162
6 Dataset-06 192 1391 223

Figure 14 shows the results of
bruteForceNearestNeighbourSearch vs k-
dSLstNearestNeighbourSearch graphically.

http://www.astesj.com/

M. Hooda et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 160-166 (2020)

www.astesj.com 166

Figure 14: Search time: bruteForceNearestNeighbourSearch vs k-

dSLstNearestNeighbourSearch

7. Conclusion and Future Scope

The k-dSLstNearestNeighbourSearch algorithm for
searching nearest neighbour in spatial datasets with duplicate keys
is based on k-dSLst indexing tree structure which is further
based on k-d tree and sorted single linked list data structures. We
have compared the proposed algorithm with brute-force approach.
The performance evaluation shows that the search time taken by
algorithm bruteForceNearestNeighborSearch increases
exponentially as numbers on data records and nearest neighbours
increases. But in case of algorithm k-
dSLstNearestNeighbourSearch for the same datasets, the time
take for search is much less and doesn’t rise exponentially. The
performance evaluation of both algorithms shows that the
proposed work in this paper revealed better performance when
compared to the conventional brute-force approach.

The work can be further expanded to search for N nearest
neighbours and objects within a given range. Also, the spatial data
structure k-dSLst tree can be extended to accommodate temporal
data also to index spatio-temporal datasets.

References

[1] S. Shekhar et al., Spatiotemporal Data Mining: A Computational Perspective,
International Journal of Geo-Information ISSN 2220-9964, 04, 2306-2338,
2015.

[2] S. Geetha, S. Velavan, “Optimization of Location Based Queries using Spatial
Indexing, International Journal of Soft Computing, 4, 2014.

[3] Verma et al., “Comparison of Brute-Force and K-D Tree Algorithm,
International Journal of Advanced Research in Computer and Communication
Engineering, January, 03, 2014.

[4] A. Suhaibaha, et al., “3D Nearest Neighbour Search Using a Clustered
Hierarchical Tree, The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XXIII ISPRS Congress,
XLI-B2, 2016.

[5] J. Jaemin, et al., “A progressive k-d tree for approximate k-nearest neighbors,
IEEE Workshop on Data Systems for Interactive Analysis (DSIA), 2017.

[6] W. David, R. Rafael, “Parallel kd-Tree Construction on the GPU with an
Adaptive Split and Sort Strategy, International Journal of Parallel
Programming, 46, 1139–1156, 2018.

[7] Stoimen. Computer Algorithms: Brute Force String Matching. Stoemen's web
log. [Online] March 2012.

[8] M.W. Andrew, “Efficient Memory-based Learning for Robot Control.
Technical Report No. 209, Ph. D Thesis, Computer Laboratory, University of
Cambridge, 1991.

http://www.astesj.com/

	1. Introduction
	1.1 Range Query
	1.2 Spatial Join Query

	2. Related Work
	2.1 Nearest Neighbour Query

	3. Brute Force Method: Nearest Neighbour Search for Spatial Data with Duplicate Keys
	4. k-dSLst Tree
	5. Nearest Neighbour Search in k-dSLst Tree
	6. Performance Evaluation: bruteForceNearestNeighbourSearch vs k-dSLstNearestNeighbourSearch
	7. Conclusion and Future Scope
	References

