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 In the last few years of research and innovations, lots of spatial data in the form of points, 
lines, polygons and circles have been made available. Traditional indexing methods are not 
perfect to store spatial data. To search for nearest neighbour is one of the challenges in 
different fields like spatiotemporal data mining, computer vision, traffic management and 
machine learning. Many novel data structures are proposed in the past, which use spatial 
partitioning and recursive breakdown of hyperplane to find the nearest neighbour 
efficiently. In this paper, we have adopted the same strategy and proposed a nearest 
neighbour search algorithm for k-dSLst tree. k-dSLst tree is based on k-d tree and sorted 
linked list to handle spatial data with duplicate keys, which is ignored by most of the spatial 
indexing structures based on k-d tree. The research work in this paper shows experimentally 
that where the time taken by brute force nearest neighbour search increases exponentially 
with increase in number of records with duplicate keys and size of dataset, the proposed 
algorithm k-dSLstNearestNeighbourSearch based on k-dSLst tree performs far better with 
approximately linear increase in search time. 
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1. Introduction  

Geospatial datasets are huge and complex in structure and 
relationships. We need complex spatial operators to fetch the 
required information from spatial datasets. These complex spatial 
operators include intersection, overlap, adjacency etc. The 
traditional indexing structures can’t handle queries related to 
spatial details efficiently. Spatial queries use spatial relationships 
among different geometries and make use of n-dimensional 
geometric data such as points, lines and polygons to retrieve 
required data.  

A spatial query retrieves features depending on relationships of 
spatial data with geometry of queried data. The objective of spatial 
queries is to find out the spatial relationships in one or more 
subjects to search for spatial objects. The extracted information 
help in taking decisions related to various policies or for doing 
analysis in various fields. Spatial queries permit for the utilization 
of data types related to geometry like point, line etc. and take into 
consideration the spatial relationship in these geometries. Spatial 
indices are used for spatial database to optimize spatial query. The 
indices provide one of the optimization techniques for improving 
the quality of services based on location.  

1.1 Range Query  

The range queries are related with bounded areas. The output 
of such kind of queries contains some region that might be 
overlapped. The spatial objects are associated to each other within 
specific area or distance. These kinds of queries have associated 
area and require at least two parameters i.e. location and boundary 
limit. 

 

Example:  

Find all the hostels within 12 kilometers of a given university.  

Find all towns within 90 kilometers of a given village.  
 

1.2 Spatial Join Query  

These queries are the combination of more than one spatial 
query. We need spatial join operation for retrieving required 
information. These queries are expensive as join condition(s) 
involve areas and their proximity to each other. 

 

Example:  

Find all the cities near given lake.  
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The partitioning and summarization of spatiotemporal data is 
significant for numerous community based applications like 
environmental science, public safety and health [1]. The relations 
among spatial objects can be categorized in different ways such as 
classifications based on distance, topology and direction relations. 
These may be further joined using logical operators to depict 
neighbourhood relation between spatial objects [2]. 

2. Related Work 

2.1 Nearest Neighbour Query  

Nearest Neighbour Search (NNS) is also called as Proximity, 
Similarity or Closest Point Search. It is an optimization problem to 
find nearest points in metric spaces [3]. In such kind of queries, the 
data closet to the queried location is retrieved. Here, we search for 
objects which are nearest to the particular location. We can also 
query for xNN i.e. x nearest neighbours, in which search is done 
for x objects nearest to the queried location. The result might be 
ordered by their respective proximity to queried spatial location. 
[4] introduce a method to fetch nearest neighbour data in 3-
Dimensional space by making use of clustered hierarchical 
indexing tree structure. Studies show that this approach achieves 
remarkable improvement in response time analysis as compared to 
already existing spatial data accessing methods in databases.  [5] 
research work introduces a progressive algorithm for a search of 
approximate k-nearest neighbor. The most of the KNN algorithms 
though utilize k-nearest neighbor libraries for many of the data 
analysis procedures, but the fact is that these algorithms run only 
after indexing of the whole dataset, which means that the datasets 
are not online.  [6] proposed a method of parallel kd-tree 
construction for 3-D points on a Graphic Processing Unit. The 
method consists of a sorting algorithm to maintain high level of 
parallelism throughout the creation. 

 

Example: Find 5 nearest hostels with respect to given location 
comprised of n-dimensional coordinate.  

 

In this research paper, we are introducing the algorithm k-
dSLstTreeNearest for Nearest Neighbour in k-dSLst tree structure 
designed in our previous work to index spatial data with duplicate 
keys. 

3. Brute Force Method: Nearest Neighbour Search for 
Spatial Data with Duplicate Keys 

Brute Force exploration process, which is also called as 
Exhaustive/Blind Search, is extremely generalized technique to 
solve any problem. It systematically enumerates all possible 
contenders for the problem’s solution and tests to check if the 
contender fulfills the statement of the problem [7]. In this 
algorithm, we find the distance of every object in dataset from the 
position of the queried object. As, multiple objects can be found 
at the nearest neighbour location, a list is maintained to keep 
record of all objects with minimum distance. Algorithm 1, 
Distance bruteForceNearestNeighbourSearch 
(SpatialDataset, Location, ResultNN_BF 
*resultNearestNeighbourBF), receives spDataSet of 
SpatialDataSet type, k dimensional queryPosition of Location 
type to which nearest neighbour is to be found and returns either 

INFINITY, if no record is found in dataset or minimum distance 
of the nearest found object(s) from queryPosition in case record(s) 
is found. Also, a pointer resultNearestNeighbourBF of 
ResultNN_BF type is passed to save the address of result node(s), 
if found. 

If there is no record in dataset and list is empty i.e. spDataSet 
is NULL, bruteForceNearestNeighbourSearch will return 
INFINITY. On the other hand, if records exist in the list, initialize 
minDistance to INFINITY. Now, traverse every node in the 
spDataSet to find the distance between queryPosition and 
currentRecord. Also, update the minimum distance minDistance, 
if it is lesser than the minDistance calculated up to now. Now, 
insert object details in resultNearestNeighbourBF which satisfy 
the minimum distance condition.  

 
Algorithm 1  bruteForceNearestNeighbourSearch 

1: Begin 
2: if spDataSet is NULL  
3:     return INFINITY   
4: end if 
5: Initialize minDistance to INFINITY 
6: Set distanceSqr to 0 
7: Set currentRecord to spDataSet 
8: loop while currentRecord is NOT NULL 
9:     Find distanceSqr between currentRecord and    

    queryPosition 
10:     Insert calculated distaceSqr to currentRecord  

    temporarily 
11:     if distanceSqr < minDistance 
12:     then 
13:          minDistance = distanceSqr 
14:     end if 
15:     Move to next currentRecord 
16:     Reset distanceSqr to 0 
17: end loop 
18: Set currentRecord to spDataSet 
19: loop while currentRecord exist 
20:     if distanceSqr inserted to currentRecord temporarily ==      

    minDistance 
21:     then 
22:         add currentRecord to resultNearestNeighbourBF 
23:     end if 
24:     Move to next currentRecord 
25: end Loop 
26: return minDistance 
27: End  

 
4. k-dSLst Tree 

In our earlier research work, we had introduced an indexing 
structure k-dSLst tree to index spatial data with duplicate keys. k-
dSLst tree is based on k-d tree and sorted linked list. In this paper, 
we are introducing an algorithm to find nearest neighbour for a 
given n-dimensional spatial point in a spatial dataset. In k-dSLst 
tree, first a kdSLstNode is created according to n-dimensional 
spatial location of an object, and then we insert the data related to 
same object in dataSNode in kdSLstNode created above. If 
kdSLstNode related to n-dimensional point already exists, then 
dataSNode is inserted in a sorted way according to object_Id of 
the object in already existing kdSLstNode. When we insert the 
dataSNode, we need to find the right location for insertion by 
traversing the linked list at particular kdSLstNode. It will increase 
the insertion time as compared to k-dLst tree, but when comes to 
searching for a particular object at particular location, it will 
outperform k-dLst tree on an average.  
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 Figure 1 shows the structure of 2-dSLst tree for dataset 
records in 2-d space stored as kdSLstNodes in a 2-dSLst tree, 
which can be generalized for k-d space to create k-dSLst tree. A 
rectangular space is also represented by the leaf kdSLstNode 
which is further separated into two spaces by the newly inserted 
point. 
 

The root kdSLstNode will have discriminator 0. It will be 1 for 
two sons at the next level, and will be incremented for every next 
level until it reaches up to k-1 on kth level. Then it again starts with 
0 for k+1th level and the cycle repeats till the end of k-dSLst tree.  
 
So, nextDiscriminator (level_i) = (level_i + 1) mod k. 
 
Notations: 
K: Keys of kdSLstNode 
N: kdSLstNode of k-dSLst tree structure 
K0(N),K1(N) … Kk-1(N):k keys of kdSLstNode N 
lSon(N): Left branch of kdSLstNode N 
rSon(N): Right branch of kdSLstNode N 
dc(N): Discriminator of kdSLstNode N 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now, whether to insert new kdSLstNode as left son or right 
son depends on the result of comparison of keys. Let dc be the 
discriminator for kdSLstNode N. If Kdc(N) != Kdc(Q) then the 
successor kdSLstNode Q will be inserted either on left or right side 
of N i.e. either lSon(N) or rSon(N). If Kdc(N) < Kdc(Q), then Q will 
be inserted on right side of N i.e. as rSon(N) else on left side of N 
i.e. as lSon(N). But, if Kdc(N) = Kdc(Q), then the keys for 
remaining dimensions will be compared. A superkey SK of 
kdSLstNode N is defined by cyclical concatenation of all keys 
starting with Kdc(N) as  

SKdc(N) =  Kdc(N) Kdc+1(N) …  Kdck-1(N) Kdc0(N) ... Kdc-1(N) 

Now if SKdc(Q) < SKdc(N) then Q will be added as lSon(N) else Q 
will be added as rSon(N). 

Now, in case of duplicate keys i.e. if SKdc(Q) = SKdc(N), then 
address of new dataSNode will be saved in the same already 
existing kdSLstNode node as a sorted linked list of dataSNodes.  

5. Nearest Neighbour Search in k-dSLst Tree 

Nearest Neighbour Search is a challenge in various domains 
like computer vision, spatial data mining and machine learning. 
There is explosive growth of location based data on the Internet 
and it is becoming a challenge day by day to store and manage 
this available data in an efficient way. The researchers have 
designed many indexing data structures using spatial partitions 
and recursive hyperplane decomposition to index spatial data. 
These indexing structures also speed up the nearest neighbour 
search. But, when it comes to spatial data with duplicate keys, 
many of the indexing structures do not handle them. K-dSLst tree 
structure is a combination of k-d tree and sorted linked list. The 
k-d tree having N nodes require O (Log N) inspections to search 
for nearest neighbour as it requires the traversal to at least one leaf 
of the tree. Also, as the nearest neighbour search needs to traverse 
a node at most once, it will not visit more than N nodes [8]. Linked 
list is maintained to hold all the objects at particular spatial 
location rather than one only.  

To find nearest neighbour for any queried n-dimensional point, 
the search is started at the root of indexing tree and subtrees are 
explored recursively using the given rule of pruning spatial 
subtrees: If the nearest neighbour discovered up to now is nearer 
than the distance between the queried point and hyperplane 
coordinates corresponding to the current kdSLstNode, we can 
prune the exploration of this kdSLstNode and its subtrees further. 
A kdSLstNode needs to be explored further only if it contains 
point which is nearer as compared to the best one found so far. 
The effectiveness of the pruning rule depends on finding a nearby 
point. To do this, we need to organize the recursive method in a 
way that if we have two probable subtrees to traverse down further, 
we must opt for the subtree on the same side of the splitting line 
as is the queried point. The nearest point searched while exploring 
the first subtree may enable pruning of second subtree. 

In this paper, we are proposing Nearest Neighbour Search 
algorithm k-dSLstTreeNearest for kdSLst tree which was 
designed and implemented for indexing spatial data with 
duplicate spatial keys. Algorithms 2 and Algorithm 3 show the 
proposed work. The Algorithm 2 k-dSLstTreeNearest takes two 
parameters as arguments. First is the root node of the k-dSLst tree 
and second is the position containing N-dimensional coordinates 
about which the nearest neighbour is to be searched. Rather than 
returning a single nearest neighbour object, the algorithm returns 
the list of all nearest neighbours. If root node of the tree or hyper 
rectangle points to NULL then INFINITY is returned back to 
show that there is no nearest neighbour, otherwise root node is 
considered as nearest neighbour to start with. The variable 
distanceSqr holds the distance in between nearest point up to now 
and position of point about which nearest neighbour search is 
queried.  

Algorithm 2 k-dSLstTreeNearest 
 

1: Begin 
2: if k-dSLstTreeRoot is NULL  
3:     return NIL; 
4: if k-dSLstTreeHRect is NULL 

Figure 1: Structure of k-dSLst tree for 2-d keys 
(It can be generalized for k-d keys) 
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5:     return NIL; 
6: Initialize resultOfNearest_kdSLst with k-dSLstTreeRoot. 
7: Initialize distanceSqr with 0. 
8: Find distanceSqr between resultOfNearest_kdSLst and 

queryPosition. 
9: CALL k-dSLstTreeNearestIterative(k-dSLstTreeRoot, 

queryPosition,   &resultOfNearest_kdSLst, &distanceSqr, k-
dSLstTreeHRect). 

10: if (resultOfNearest_kdSLst)  
11: then 
12:     Traverse the sorted linked list of dataSNodes to show all  

                    objects at resultOfNearest_kdSLst   
13:     Visualize resultOfNearest_kdSLst 
14: end if 
15: End 

An iterative Algorithm 3 k-dSLstTreeNearestIterative is 
called with parameters which include root node of the k-dSLst tree, 
position queried about for nearest neighbour, pointer to save result 
node, minimum distance up to now and hyper rectangle of the tree. 

Algorithm 3 k-dSLstTreeNearestIterative  
 

1: Begin 
2: Initialize currentDim to kdsLstNode’s dimension 
3: Set decideLeftRight by difference in queryPosition and kdSLstNode 

coordinate values for currentDim 
4: if decideLeftRight <= 0  
5: then 
6:     Set nearerSubTree to lSon(kdSLstNode) 
7:     Set fartherSubTree to rSon(kdSLstNode) 
8:     Update nearerHyperRectCoordinates and    

    fartherHyperRectCoordinates    
9:     using k-dSLstTreeHRect 
10: else  
11:     Set nearerSubTree to rSon(kdSLstNode) 
12:     Set fartherSubTree to lSon(kdSLstNode) 
13:     Update nearerHyperRectCoordinates and    

    fartherHyperRectCoordinates    
14:     using k-dSLstTreeHRect  
15: end if 
16: if nearerSubTree exists 
17: then 
18:     Save nearerHyperRectCoordinates to decideLeftRight  

    temporarily 
19:     Update nearerHyperRectCoordinates with kdSLstNode  

    coordinates for  currentDim 
20:     CALL k-dSLstTreeNearestIterative (nearerSubTree,   

     queryPositions, resultOfNearest_kdSLst,  
     resultDistanceSqr, k-dSLstTreeHRect); 

21:     Update nearerHyperRectCoordinates with   
22:      decideLeftRight; 
23: end if 
24: Reset distanceSqr with 0 
25: loop for every dimension dim 
26:     Compute distanceSqr between kdSLstNode coordinates   

    [dim] -queryPosition[dim] 
27: end loop 
28: if distanceSqr less than resultDistanceSqr 
29: then 
30:     Update resultOfNearest_kdSLst and resultDistSqr   

     accordingly 
31: end if 
32: if fartherSubTree exist  
33: then 
34:     Save fartherHyperRectCoordinates to decideLeftRight   

    temporarily 
35:     Update fartherHyperRectCoordinates with kdSLstNode    

     coordinates for  currentDim 
36: if closest point of k-dSLstTreeHRect is closer than    
37: resultDistanceSqr 
38: then 
39:      CALL k-dSLstTreeNearestIterative (fartherSubTree,  

             queryPositions, resultOfNearest_kdSLst,  
                  resultDistanceSqr, k-dSLstTreeHRect); 

40: end if 
41: Update fartherHyperRectCoordinates with decideLeftRight; 
42: end if 
43: end 

 
Depending on the distance of query point from current point 

for current dimension, we decide nearer and farther sub trees and 
update the coordinates of nearer and farther hyper rectangles 
accordingly.  If we find any sub tree which is nearer, we call  

Algorithm 3 k-dSLstTreeNearestIterative iteratively with 
updated parameters. Now, check the distance of the queried point 
from the current point so far and update the value of resultDistSqr, 
if it is nearer. Now, also repeat the search for farther sub tree to 
test for any other nearer point on other side of the slice. The 
algorithm saves the nearest neighbour N-dimensional coordinates 
in resultOfNearest_kdSLst. At last, we traverse the complete 
linked list of dataSNode at resultOfNearest_kdSLst to show all of 
the nearest neighbours. Also, all of the nearest neighbours are 
displayed graphically using QGIS software. 

6. Performance Evaluation: 
bruteForceNearestNeighbourSearch vs k-
dSLstNearestNeighbourSearch 

We have implemented the algorithms using language C and 
GNU Compiler Collection (GCC) compiler - version 6.4.3 on 
Operating System Ubuntu-10.04.1-Desktop-amd64. For 
visualization of spatial datasets and output of algorithms 
bruteForceNearestNeighbourSearch and k-
dSLstNearestNeighbourSearch, we have used Quantum 
Geographic Information System (QGIS) Desktop 2.12.1. 

In our experiments, we are using synthetic datasets which hold 
spatial details of vehicles. The datasets include vehical-id, spatial 
coordinates (latitude, longitude) and other non-spatial attributes. 
We have taken six datasets of different sizes listed in Table 1 
given next. 

Table 1: Datasets with Duplicate Keys for Performance Evaluation 

S. no. Dataset Number of records 
1 Dataset-01 215 
2 Dataset-02 430 
3 Dataset-03 860 
4 Dataset-04 1720 
5 Dataset-05 3440 
6 Dataset-06 10320 

 

The six datasets are visualized in Figure 2 through Figure 7 
using QGIS Desktop 2.12.1. These figures show the spatial 
location of different vehicles. 

While evaluating performance of searching for nearest 
neighbour using  Algorithm 1 
bruteForceNearestNeighbourSearch and Algorithm 2 k-
dSLstNearestNeighbourSearch, we are using the query point Q 
(43, 20), with Latitude as 43 and Longitude as 20. Both algorithms 
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give the same results i.e. show the same Vehicles’ Id as nearest 
neighbours for query point Q. But, the time taken by both 
algorithms is different. As the number of records in datasets and 
number of nearest neighbours increase, the algorithm k-
dSLstNearestNeighbourSearch outperforms 
bruteForceNearestNeighbourSearch.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Vehicles’ location as per Spatial Dataset – 1 
(215 Spatial Records). 

 

Figure 3: Vehicles’ location as per Spatial Dataset – 2 
(430 Spatial Records). 

 

Figure 4: Vehicles’ location as per Spatial Dataset – 3 
(860 Spatial Records). 

 

Figure 5: Vehicles’ location as per Spatial Dataset – 4 
(1720 Spatial Records). 

 

Figure 6: Vehicles’ location as per Spatial Dataset – 5 
(3440 Spatial Records). 

 

Figure 7: Vehicles’ location as per Spatial Dataset – 6 
(10320 Spatial Records). 

 

Figure 8: Nearest Neighbors of Q(43, 20) in Dataset – 1. 
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Figures 8 through 13 visualize the output of nearest neighbour 
query for query point Q (43, 20). Figures list Ids of all Vehicles 
found nearest to Q. Figures show that the algorithm k-
dSLstNearestNeighbourSearch is well efficient to find multiple 
Vehicle Ids at the same nearest spatial location. 

 
Figure 9: Nearest Neighbors of Q(43, 20) in Dataset – 2. 

 
Figure 10: Nearest Neighbors of Q(43, 20) in Dataset – 3. 

 
Figure 11: Nearest Neighbors of Q(43, 20) in Dataset – 4. 

Table 2 shows the number of records found as nearest 
neighbours and the time taken by both algorithms in microseconds 
for searching the same. Results show that algorithm k-
dSLstNearestNeighbourSearch is more efficient as compared to 
bruteForceNearestNeighbourSearch as the number of spatial 
records increases and capable of finding all nearest neighbours for 

spatial datasets with duplicate spatial keys. The search time take 
by algorithm bruteForceNearestNeighborSearch is increasing 
continuously and there is exponential rise from Dataset-05 to 
Dataset-06 as number of records increase from 3440 to 10320. 
Search time of algorithms is also affected by the number of 
records found at nearest location which are 64 in case of Dataset-
05 and 192 in case of Dataset-06. As compared to algorithm 
bruteForceNearestNeighborSearch which takes 407 micro secs. and 
1391 micro secs. for nearest neighbor search in Dataset-05 and Datset-06 
respectively, algorithm k-dSLstNearestNeighbourSearch takes 
much less time i.e. 162 micro secs. and 223 micro secs. for 
corresponding datasets. 

 
Figure 12: Nearest Neighbors of Q(43, 20) in Dataset – 5. 

 
Figure 13: Nearest Neighbors of Q(43, 20) in Dataset – 6. 

Table 2: bruteForceNearestNeighbourSearch vs k-dSLstNearestNeighbourSearch 

S. 
no. 

Dataset No. of 
records 
found at 
Nearest 
location 

Time taken for search (in 
microseconds) 

bruteForceNearest
NeighborSearch 

Algorithm 

k-
dSLstNearest
NeighbourSea
rch Algorithm 

1 Dataset-01 4 29 106 
2 Dataset-02 8 46 89 
3 Dataset-03 16 90 96 
4 Dataset-04 32 212 110 
5 Dataset-05 64 407 162 
6 Dataset-06 192 1391 223 

Figure 14 shows the results of 
bruteForceNearestNeighbourSearch vs k-
dSLstNearestNeighbourSearch graphically. 
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Figure 14: Search time: bruteForceNearestNeighbourSearch vs k-

dSLstNearestNeighbourSearch  

7. Conclusion and Future Scope 

The k-dSLstNearestNeighbourSearch algorithm for 
searching nearest neighbour in spatial datasets with duplicate keys 
is based on k-dSLst indexing tree structure which is further 
based on k-d tree and sorted single linked list data structures. We 
have compared the proposed algorithm with brute-force approach. 
The performance evaluation shows that the search time taken by 
algorithm bruteForceNearestNeighborSearch increases 
exponentially as numbers on data records and nearest neighbours 
increases. But in case of algorithm k-
dSLstNearestNeighbourSearch for the same datasets, the time 
take for search is much less and doesn’t rise exponentially. The 
performance evaluation of both algorithms shows that the 
proposed work in this paper revealed better performance when 
compared to the conventional brute-force approach.  
 

The work can be further expanded to search for N nearest 
neighbours and objects within a given range. Also, the spatial data 
structure k-dSLst tree can be extended to accommodate temporal 
data also to index spatio-temporal datasets.  
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