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Article history:  The classification of static or mobile objects, from a signal or an image containing 

information as to their structure or their form, constitutes a constant concern of specialists 

in the electronic field. The remarkable progress made in past years, particularly in the 

development of neural networks and artificial intelligence systems, has further accentuated 

this trend. The fields of application and potential uses of Artificial Intelligence are 

increasingly diverse: understanding of natural language, visual recognition, robotics, 

autonomous system, Machine learning, etc. 

This paper is a state of the art on the classification of radar signals. It focuses on the 

contribution of artificial intelligence to the latter without forgetting target tracking. This by 

evoking the different feature extractors, classifiers and the existing identification deep 

learning algorithms. We detail also the process allowing carrying out this classification. 
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1. Introduction 

The desire to organize in order to simplify has progressively 

evolved towards the ambition of classifying to understand and, 

why not, to predict. This development has led to the release of 

several new techniques capable of satisfying this need. This is how 

artificial intelligence and the study of its different techniques has 

become a trend that attracts the interest of researchers in different 

fields. 

Neural networks consist of artificial neurons or nodes that are 

analogous to biological neurons [1]-[3]. They are the result of an 

attempt to design a very simplified mathematical model of the 

human brain based on the way we learn and correct our mistakes. 

Machine learning allows us to obtain computers capable of self-

improvement through experience [4]. 

The latter is today one of the most developed technical fields, 

bringing together computer science and statistics, leading to 

artificial intelligence and data science development [5]. Due to the 

explosion on the amount of information available online and at 

low cost, machine learning has experienced tremendous progress 

resulting in the nonstop development of new algorithms [6]. The 

use of data-intensive machine learning methods is in all fields of 

technology and science [1], [5], [6].  

Many companies and researches today claim to use artificial 

intelligence, when in fact the term does not apply to the 

technologies they use. In the same vein, there is more or less 

confusion between artificial intelligence and the concept of 

Machine Learning, without even mentioning Deep Learning. This 

paper will shed light on these different concepts by detailing each 

of them and then focuses on the different algorithms employed to 

extract features and classification of detected objects.  

This work complements the various state of the art studies 

already carried out in AI domain [1]-[3] and is mainly interested 

in its contribution to road safety through radar target classification 

(pedestrians, cyclists…). 

 
Figure 1: The evolution of artificial intelligence and the value of our work. 

For this, section 2 will represent a study on the classification 

of radar signals and targets without forgetting the tracking. Then 

on section 3 we will focus on artificial intelligence by detailing its 

different concepts in order to eliminate any confusion. We will 

also study the feature extractors and the algorithms of 
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classification generally used in the overall classification process. 

A summary bringing together results of the research work in 

literature in this field will be carried out before concluding, thus 

opening the way too many perspectives 

 

 

Figure 2: Content flow diagram 

2. Radar Signal Classification 

Classification can be defined as the search for a distribution 

of a set of elements into several categories [7]. Each category, 

called a class, groups together individuals who share similar 

characteristics. The objective is to obtain the most homogeneous 

and distinct classes possible. Identifying categories requires 

careful definition of a space in which the classification problem 

must be resolved [7, 8]. Such a space is often represented by 

vectors of parameters, as shown in Figure3, extracted from the 

elements to be classified and the classification is carried out by 

adopting a probabilistic, discriminative, neuronal or even 

stochastic approach. 

The method of classification of radar signals is presented in 

Figure 4 that contains the neural network procedures. Their 

continuous development and improvement have made it possible 

to clearly understand the potential and the limits of this technique 

in several fields. Among these, remote sensing, signal processing, 

identification and characterization of targets [1, 9]. 

Within these modes of classification, we find; the cluster 

method that seeks to construct a partition of a data set so that the 

data from the same group exhibit common properties or 

characteristics. It distinguishes them from the data contained in 

the other groups [10, 11]. As such, clustering (or regrouping) is a 

subject of research in learning stemming from a more general 

problem, namely classification. A distinction is made between 

supervised and unsupervised classification. In the first case, it is a 

question of learning to classify a new individual among a set of 

predefined classes, from training data (couples (individual, 

class)). Derived from statistics, and more specifically from Data 

Analysis (ADD), unsupervised classification, as its name 

suggests, consists of learning without a supervisor. From a 

population, it is a question of extracting classes or groups of 

individuals with common characteristics, the number and 

definition of classes not being given a priori. Clustering methods 

are used in a lot of domains of application ranging from biology 

(classification of proteins or genome sequences), to document 

analysis (texts, images, videos) or in the context of analysis of 

traces of use. Many unsupervised classification methods have 

been published in the literature and it is therefore hard to give an 

exhaustive list, despite the numerous articles published attempting 

to structure this very rich and constantly evolving field for more 

than 40 years [12-18]. 

 

Figure 3: Illustration of the classification approach if two   parameters are used to 

define the space in which the classification problem must be solved. 

Entropy of similarity is a method from Shannon's entropy. 

The latter named "entropy" his definition of the amount of 

information. We will therefore talk indifferently in Shannon about 

the quantity of data generated from a message or the entropy of 

this message source. The classification method based on entropy 

will then make it possible to answer several questions which were 

encountered in all sociological or scientific surveys, namely: the 

measurement of the correlation between the characters and their 

selectivity, the homogeneity of the groups as well as problems of 

formation of new homogeneous classes [19].  

Entropy methods are dedicated to the analysis of irregular 

and complex signals [20]. The support vector machine [7, 8], or 

large-margin separators, represents a set of supervised learning 

techniques intended to deal with the issue of discrimination and 

regression. Support vector machines represents an extension of 

linear classifiers. They were used because they are capable to 

work with big amount of information, the low number of 

hyperparameters, their performance and fiability. SVM have been 

used in many fields [21-23]. 

According to the data, the performance of support vector 

machines is of the same order, or even better, then that of a neural 

network or of  a  Gaussian  mixture  model.  Also,  the  timescale 

characteristics [24], the modulation domain [25], basic function 

neural networks [26], Rihaczek distribution and Hough transform 

[27], which is a pattern recognition technique invented in 1959 by 

Paul Hough, subject to a patent, and used in the processing of 

digital images. The simplest application can detect lines present in 

an image, but modifications can be made to this technique to detect 
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other geometric shapes; it is the generalized Hough transform 

developed by Richard Duda and Peter Hart in 1972 [28-30], 

frequency estimation [28], pulse repetition interval [31], two- 

dimensional bispectrum [32], etc. 

These methods of classification represent research in several 

disciplines [22, 30, 33-35]. To allow proper operation in complex 

signal environments with many radar transmitters, signal 

classification should be able to handle not determined, corrupt, 

and equivocal measurements reliably. 

For radar classification of vehicle type and determination of 

speed profitably by calculation, Cho and Tseng [35] created an 

improved algorithm that will help smart transport applications in 

real time containing eight types of mode setting categorization of 

radar signals. 

In general, during a transmission the scattered waves depend 

on the distance to the target, so to measure these waves we need to 

measure this distance. In the literature, the scattered waves 

received are processed by algorithms to detect the presence, the 

distance and the type of the target [36-40]. Among the target 

classification methods are the AALF, AALP and ABP method 

[24]. 

Tracking is a very important element in this process. There 

are different tracking methods summarized in Figure 5 and Figure 

6. 
 

3. Introduction to Artificial Intelligence 

Artificial intelligence (AI) has come to the fore in recent 

years. It is used in several applications for various disciplines [41-

54]. Artificial Intelligence (AI) as we know it is weak Artificial 

Intelligence, as opposed to strong AI, which does not exist yet. 

Today, machines are capable of reproducing human behavior, but 

without conscience. Later, their capacities could grow to the point 

of turning into machines endowed with consciousness and 

sensitivity. 

AI has evolved a lot thanks to the emergence of Cloud 

Computing and Big Data, which is an inexpensive computing 

power that gives accessibility to a large amount of data. Thus, the 

machines are no longer programmed; they learn instead [53, 54]. 

The following subsections aim to highlight machine 

learning, deep learning and extreme machine learning 

respectively, in order to eliminate any confusion between these 

concepts. 

 
Figure 4: Radar signal classification mode 

3.1. Machine Learning 

Machine Learning is a sub-branch of artificial intelligence, 

which consists of creating algorithms capable of improving 

automatically with experience [45-50]. We also speak in this case 

of self-learning systems. Machine Learning, or automatic 

learning, is capable of reproducing a behavior thanks to 

algorithms, themselves fed by a lot of information. In front of a 

lot of circumstances, the algorithm learns which behavior to 

follow and decision to take creating a model. The machine makes 

the tasks automate depending on the situation [54-58]. 

Figure 5: Tracking methods types and definition 
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Figure 6: Representation of the different tracking categories  

 

Figure 7: Representation of ML types 

There are three main types of Machine Learning [57]-[62] 

represented in figure 7: In supervised learning, the algorithms are 

based on already categorized datasets, in order to understand the 

criteria used for classification and reproducing them [63]-[66]. In 

unsupervised learning, algorithms are trained from raw data, from 

which they try to extract patterns [67]-[70]. Finally, in 

reinforcement learning, the algorithm functions as an autonomous 

agent, which observes its environment and learns as it interacts 

with it [67], [69]. 

Machine learning is a broad field, which includes many 

algorithms. Among the most famous are regressions (linear, 

multivariate, polynomial, regularized, logistic, etc.); these are 

curves that approximate the data. Naïve Bayes' algorithm; which 

gives the probability of the prediction, in knowledge of previous 

events [71-76]. Clustering is always using mathematics; we will 

group the data into packets so that in each packet the data is as 

close as possible to each other [77-79].  

There are also more sophisticated algorithms based on 

several statistical techniques such as the Random Forest (a forest 

of voting decision trees), Gradient Boosting, Support Vector 

Machine [21], [23] The learning techniques showed in Figure7 

with (*) have emerged recently with their use mainly limited to 

object recognition, including the classification of radar targets in 

urban areas. 

Machine learning is a very important approach for 

classification. For instance, the classification of a single target e.g. 

a pedestrian or a cyclist is relatively simple because the micro- 

Doppler signatures of the pedestrian and the cyclist are different, 

but the problem arises when classifying overlapping targets e.g. 

pedestrians and cyclists. The classification here is much more 

difficult, which requires the intervention of deep learning 

techniques to deal with this issue. 

3.2. Deep Learning 

Deep Learning aim to understand concepts in a more 

précised way. In a neural network, successive layers of data are 

combined to learn the concepts. The simplest networks have only 

two layers: an input and an output, knowing that each one can 

have several hundreds, thousands, even millions of neurons. 

Among the most used deep learning algorithms, we have: 

• Artificial neural networks (ANN): these are the simplest and 

are often used in addition because they sort information well 
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• Convolutional neural networks (CNN): Applies apply filters 

to the information collected in order to have new data (for 

example, bringing out the contours in an image can help to 

find where is the face) 

• Recurrent neural networks (RNN): the best known are 

LSTM, which have the ability to retain information and reuse 

it soon after. They are used for text analysis (NLP), since 

each word depends on the previous few words (so that the 

grammar is correct) 

As well as more advanced versions, such as auto-encoders 

[80], Boltzmann machines, self-organizing maps (SOM), etc. 

Figure8 shows the key algorithms of deep learning and the 

research fields that are interested in it. 

3.3. Extreme learning machine 

Extreme Learning Machine (ELM) is usually used for pattern 

classification. It can be considered as an algorithm for direct 

overshadow single layer neural networks. The latter mastery the 

slow training speed and over-adjustment complications compared 

to the conventional neural network learning algorithm. ELM is 

based on the empirical theory of risk inferiorization. The learning 

process of it requires only one iteration. The multiple iterations 

and local minimization are avoided by the algorithm. We can find 

ELM useful in multiple fields and applications thanks to its 

robustness, controllability, good generalization capacity and its 

fast learning rate.  

The researchers proposed modifications to the algorithms, to 

improve ELM [80-85] proposes the fully complex ELM (C-

ELM). The latter extends the ELM algorithm from the real 

domain to the complex domain. Given the significant time 

consumed by the update procedure using the old data with the new 

information received, an online sequential ELM (OS-ELM) is 

proposed in [81-86], which can learn the training data one by one 

or block by block and discard the data for which the training has 

already been carried out. A new adaptive set model of ELM (Ada- 

ELM) is proposed in [82, 87] and allows better prediction 

performances to be obtained. It can automatically adjust the 

overall weights. 

ELM performance is affected by hidden layer nodes. These 

are difficult to determine, the incremental ELM (I_ELM) [84, 89], 

the pruned ELM (P_ELM) [84, 89] and the self-adaptive ELM 

(SaELM) [85, 90] have been proposed in other works ELM 

achieves good results and shortens training times that takes 

several days in deep learning to a few minutes by ELM.  

It is difficult to achieve such performance by conventional 

learning techniques. Example of datasets are showed in Table 1. 

Artificial intelligence is widely used for the classification of 

radar targets. The following section will focus on the 

classification procedure and the different feature extractors and 

classifiers used in machine learning. The most famous and most 

used algorithms in our field (road safety) will be mentioned as 

well. 

 

Figure 8: Algorithms and characteristic problems linked to deep learning and the research fields, which are interested in it. 
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Table 1: Examples of Datasets and their learning methods and training time 
 

Datasets Learning Methods Testing 

Accuracy 

Training time 

MINIST OCR ▪ ELM (multi hidden layers, unpublished) 

▪ ELM (multi hidden layers, ELM auto encoder) 

▪ Deep Belief Networks (DBN) 

▪ Deep Boltzman Machines (DBM) 

▪ Stacked Auto Encoders (SAE) 

▪ Stacked Denoising Auto Encoders (SDAE) 

99.6% 

99.14% 

98.87% 

99.05% 

98.6% 

98.72% 

▪ Several minutes 

▪ 281.37s (CPU) 

▪ 5.7 hours (GPU) 

▪ 19 hours (GPU) 

▪ >17 hours (GPU) 

▪ >17 hours (GPU 

3D Shape 

Classification 

▪ ELM (multi hidden layers, local receptive fields) 

▪ Convolutional Deep Belief Network (CBDN) 

81.39% 

77.32% 

▪ 306.4s (CPU) 

▪ >2 days (GPU) 

Traffic sign 

recognition 

(GT SRB Dataset) 

▪ HOG+ELM 

▪ CNN+ELM (Convolutional neural networks (as 

feature extractors)+ ELM (as classifiers) 

▪ Multi-column deep neural network (MCDNN) 

99.56% 

99.48% 

 

99.46% 

▪ 209s (CPU) 

▪ 5 hours (CPU) 

 

▪ >37 hours (GPU) 

 

4. Artificial Intelligence for Radar Target’s Identification 

and Classification 

There is a lot of characteristics for target identification using 

micro Doppler signature and ML algorithms that have been 

studied in other research and interesting results have been 

presented [47, 48]. Many public datasets for target classification 

are introduced in [93-100]. 

It lays the groundwork for disentangling data into 

independent components [85]. PCA ignores the less important 

components [85]. We can use SVD in order to find PCA by 

truncating the less important base vectors in the original SVD 

matrix. 

Most of the research done is on supervised learning, but very 

little of it uses unsupervised machine learning. The latter turns out 

to be one of the latest trends and added value in recent work [8, 

49] and this based on sparse coding. 

4.1. Feature Extraction 

4.1.1. Feature Extraction based on sparse coding (sparse) 

Sparse coding is a technique based on the study of algorithms 

aimed at learning a sparse / sparse useful representation of all data 

[99-106]. The next step consists in encoding so that each data will 

be in the form of sparse code. The algorithm uses information from 

the input to learn the sparse representation. This can be applied 

clearly to any type of information. We call this unsupervised 

learning. It will find the representation without losing any part or 

aspect of the data [106]. To do this, two main constraints try to be 

satisfied using sparse coding algorithms. Figure 9 describes them: 

In reality, we just give more than the number of dimensions 

in which the original data is encoded or sometimes the same 

amount. Figure10 describes the target identification system based 

on sparse coding. Radar data in the time domain must be processed 

before sparse coding. This is done using the short-term Fourier 

transform (STFT), which is a method of time-frequency analysis 

used for micro-Doppler signatures by other researchers. 

 
Figure 9: Procedure using sparse coding 

 

Figure 10: Functional diagram of the proposed functionality extractor based on 

sparse coding 

We use the Hamming window to extract micro-Doppler 

signatures from targets. After the STFT, comes the step of the 

complete dictionary construction, for this each spectrogram must 
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be reshaped into a matrix. The micro Doppler signature is 

converted into a matrix with the concatenation of the two parts 

(real and imaginary), whose dimension is 2U x M. We generate 

the dataset for training using N given samples. We then gather the 

data received from the targets from all the angles.  The dimension 

of the data set for each angle X ^ k is 2U x MN. 

The resulting data set that we have trained is made of signals 

from the types of targets combined (pedestrians and cyclists for 

example). D and W (matrix coefficient) are deducted from the 

information of training in the optimization equation (1) 

(𝐷,̂ �̂�) =  arg 𝑚𝑖𝑛𝐷,𝑊  
1

2
(𝐷𝑊 − 𝑋) +  𝛿 ∑  (𝑊𝑚

2𝐾𝐽
𝑚−1 )    (1) 

Reading equation (1) from the left to the right, the last term 

represents the error of reconstruction between the original data 

and its representation based on the dictionary D. A better 

approximation compared to the original data can be made using the 

minimization of this term. The work here is to play with D and W 

both at the same time, adjusting them to solve the equation. 

Among the methods adopted for learning the complete 

dictionary, we have the K-SVD method. We will first search for 

W without touching D then on the second iterations we will search 

for both D and W while keeping the non-zero elements in W intact 

and fixed. 

 
Figure 11: Reduction of sparse coding characteristics (for pedestrians and 

cyclists’ case) [8] 

SVD ensures the normalization of atoms in the dictionary to 

each other. K-SVD takes over between the information coding 

with the existing dictionary and the regular updating of the 

dictionary in order to obtain a better fit. 

The functionality extraction based on a sparse representation 

can be obtained once the D dictionary has been created. At this 

stage, the set of sparse matrices can be directly used as 

classification characteristics. It should be noted that the 

functionality dimensions are still very important and requires 

reduction. For this, some numerical characteristics, such as the 

mean value and the standard deviation, can be calculated from the 

sparse matrix. 

We illustrate in Figure 11 an example of the sparse coding 

functionalities reduced with an angle of 30 ° (this is the case of a 

pedestrian and a cyclist). 

Numerical characteristics can be used in the classification, 

even if some information are rejected by the calculation. The 

sparse matrix and its reduced characteristics are used in [8] to 

carry out the classification. Five numerical characteristics of 

sparse matrices are used for the classification, namely: mean 

values, standard deviations, maximum values, minimum values, 

and difference between the maximum and minimum values. 

4.1.2. SVD-based feature extraction 

SVD makes it possible to build an empirical model, without 

an underlying theory, all the more precise when terms are injected 

into it [92]. The effectiveness of the method depends in particular 

on the way in which the information is presented to it. We can 

describe the SVD decomposition with the equation (2). 

𝐹 = 𝑈𝑆𝑉𝑇                                            (2) 

S is a diagonal matrix of singular values. We note that the 

components of S represent only scaling factors and therefore don’t 

have any information of the spectrogram.  The matrices U and V 

contains singular vectors of F in the two directions (left and right). 

It represents the information of both the time and the Doppler 

domain of an MD signature. We can use the singular vector as a 

characteristic for categorization. 

4.1.3. Robust principal component analysis RPCA 

We can calculate the average frequency profile as the 

average value of the MD signatures along the time axis of the 

absolute value in the frequency domain. It is demonstrated in (3) 

𝑀𝐹𝑃(𝑣) =  
1

𝑀
 ∑ 𝑆𝑇𝐹𝑇(𝑣, 𝑚)𝑀

𝑚−1                            (3) 

A betterment of the MFP using PCA and minimum 

covariance determinant estimator is discussed and presented in 

several works and the method is described with the equation (4) 

F = PCAQ( MFP(v))                                  (4) 

4.2. Classifiers 

The objective of [50] is to study the changes in the 

categorization performance with the parameters of signal 

processing and the procedures of extracting characteristics 

applicable to backscattered signals from the UWB radar [51-54]. In 

the literature, many algorithms have been used for classification. In 

[41], the classifiers were used: MDC [107-122], NB [111-115], k-

NN [113] and SVM [21, 23, 116].  

The comparison of recognition rates of the frequency FM 

using many discriminant analyzes (LDA) and support vector 

machine (SVM) are presented in Figure 12 that suggests that the 

support vector machine approach is a method efficient 

classification of radar signals with an elevated recognition 

percentage. SVM has the maximum failure rate (≤97%) and it is 

lower for LDA (≤ 94%) and tends to change. 

Those categorization procedures are used to given processed 

products based whether the cross-validation or leave-a-out 

method.  The appraise and estimation of the performance of every 

classifier is done using independent tests of the learning set, thus 

minimizing the generalization inaccuracy. 
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In [7], the author used supervise learning after classifying 

specific objects. Two main phases known as the training phase 

and the test phase are in this process. Supervised regression 

methods are also generally used to approximate and guess the 

mapping between the directions of movement and the micro-

Doppler  signatures of the targets, among which we find the 

support vector regression (SVR) and the multilayer perceptron 

(MLP) used in [7]. 

 
Figure 12: Recognition rate comparison adapted from [35] 

 
Figure 13: Regression Model [7] 

The regression training data set is useful to approximate the 

correspondence between the vectors and the direction of motion. 

The regression model is a function map described in figure 13. 

Micro-Doppler signatures of complex surface targets with moving 

sections are used to target the approximation of the direction of 

movement. Then supervised regression algorithms are applied as 

a solution to the problem of estimating the direction of movement 

[119]-[131]. 

The next section presents a comparison between the methods 

used and presents the advantages of one method compared to the 

others. It highlights the usefulness of the algorithms according to 

the desired application. The challenge here is to choose the 

method to be used according to the constraints presented by the 

studied system. The section also discusses the prospects for      

proposing a new procedure combining the advantages of the 

methods presented previously and adaptable to several uses.  

5. Open Issues and Challenges 

Learning approaches can be categorized into supervised 

learning and unsupervised learning. On the first one, the classifier 

will be designed by exploiting information already known 

because the training data set is previously available. This is not 

the case on the second one because the training information 

known as class labels, do not exist. We then use a group of 

characteristic vectors that we devise into another group of subsets 

called clusters. The information with similar features are 

portioned between subsets equally.   

Table 2: Comparison between methods [8] 

2sd signal SVM  

Pedestrian 

SVM 

Bicyclist 

ELM 

Pedestrian 

ELM 

Bicyclist 

RPCA Mean : 

2.57 

Max : 

94.67 

Min : 

80.14 

2.21 

95.71 

81.55 

2.51 

95.34 

81.55 

2.73 

96.14 

83.43 

SVD Mean : 

2.17 

Max : 

96.15 

Min : 

85.13 

2.11 

97.33 

89.85 

2.44 

96.75 

86.66 

 2.01 

97.15 

896.08 

Sparse 

coding 

Mean : 

1.85 

Max : 

99.97 

Min : 

85 .13 

1.79 

100 

91.31 

1.99 

100 

91.55 

 2.26 

100 

91.11 

Reduced 

sparse 

coding 

Mean : 

2.34 

Max : 

99.89 

Min : 

91.35 

2.23 

100 

90.02 

1.92 

99.84 

91.35 

 2.18 

99.94 

89.66 

There is an increasing convergence towards the use of 

unsupervised ML using non-structured input information in 

several areas such as traffic engineering, definition of network 

anomalies, categorization of objects and optimization of road 

traffic and many others.  Table 2 and Table 3 shows a comparison 

between methods. On one hand, the results in [7] [8] show that 

classification with characteristics based on sparse coding makes it 

possible to obtain the highest precision (> 96%) and that the SVD 

and RPCA methods are very efficient. On the other hand, the 

computation time for the procedure using the sparse coding 

functionality extractor and the support vector machine classifier 

is too long despite that it offers the best classification 
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performance. 

Table 3: Method’s performances comparison [8] 

Extractor and 

classifiers 

SVM ELM 

SVD 0.26s 0.22s 

RPCA 0.13 0.11 

Sparse Coding 1.12 0.98 

Reduced sparse 

coding                                           

0.87 0.86 

In addition, when the parameters dimensions are minor, the 

total time for SVM and ELM is alike. As the size of the 

functionality increases, identification via ELM is faster than 

SVM. 

We can also add that a good motion direction estimate (with 

an error beneath 5◦) can be obtained based on the SVR-based 

method. The approximation conduct improves for the directions 

of movement towards the radar and reduce for the angles of 

movement at right angles to the radar sight (for a radar targets 

detection example). 

This allows us to deduce that certain methods can be 

effective for certain applications and not for others. The choice of 

which method to use will then depend heavily on the application 

itself. It also prompts us to question the possibility of having a 

high- performance method at all levels and for all possible 

applications, including road safety [132-136]. The current trend is 

converging towards the development of new methods combining 

the properties of old algorithms and the expectations of new 

applications and adaptable to different uses. 

6. Conclusion 

The main goal of classification approach is to group the 

information into the adequate category based on common 

features. The classification makes it possible to determine the data 

including the unknown affiliate type or group. Classification 

methods can be known as approaches generating non-identical 

outcome. Artificial intelligence and its various techniques and 

algorithms help solving those issues. They are the subject of 

several research studies, including in the field of road safety. This 

paper is a state of the art of targets classification and the 

contribution of machine learning technologies in it. The study and 

comparison of the different extraction methods and classification 

algorithms allowed us to deduce that efficient algorithms may not 

be as efficient for some applications. It strongly depends on the 

desired application and its functionalities. The different 

deductions open up perspectives on the development of new 

approaches, adaptable to any kind of application with optimal 

algorithms in terms of calculation time and processing 

effectiveness. 
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