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 The integration of renewable energy distributed generation (REDG) into the energized 
distribution power grid has become more popular in recent years. This has been escalated 
by the general global energy shortages. The REDG has proven to be effective for energy 
sustainability and reliability. However, there are technical challenges which arise from 
integrating REDG into the energized power grid. These challenges include the effectiveness 
of power grid protection against faults. In this paper, a fault diagnostic algorithm is 
proposed to detect faults in a power system integrated with REDGs. The algorithm utilizes 
wavelet packet transform (WPT) for signal filtering, support vector machine (SVM) for fault 
classification and detection. The proposed algorithm is validated using the Eskom 90 bus 
electrical system and the results obtained show that faults can be detected with a high 
accuracy of 99%. The Eskom 90 bus system is modelled using DigSilent platform and the 
algorithm is tested on the WEKA software.   
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1. Introduction 

The reliable and sustainable source of energy plays a critical 
role for the potential growth in a state [1]. The global energy sector 
has been faced with many challenges over the years, such as energy 
shortages, high levels of air pollution from burning fossil fuel to 
generate electricity, and the high cost of coal. These problems have 
led to finding an alternative source of electricity supply to meet the 
required demands.  Renewable energy distribution generators 
(REDG) for instance, photovoltaic (PV), wind turbine (WT), 
hydropower, biomass, etc.…, have been effective for energy 
supply with minimum environmental impact. The flexible 
introduction of REDGs enables their application to be necessary 
for formulating a power mix framework for energy sustainability.  

The integration of REDGs into the existing distribution power 
grid has numerous practical aids such as voltage improvement, 
dependability increase, network performance increase, and power 
loss minimization [2, 3]. However, integrating REDGs into the 
power distribution grid changes the traditional trajectory of the 
energy supply. These changes in the power flow may influence the 
power balance of the entire power grid [4]. Furthermore, the 
meteorological and geological dependency of REDGs affects the 

expansion planning of the power grid, which results in escalated 
operational costs [5]. Coupled with these problems are there 
technical effects that arise from integrating REDGs into the power 
grid such as frequency variation [6], voltage fluctuations [7], 
reliable and secure power flow [8, 9]. Generally, the performance 
of the power grid with or without REDGs highly depends on the 
reliability of the protection system. The high penetration level of 
REDGs into the grid affects the traditional topology of the 
protection system. This may result in a catastrophic incident if a 
fault is not cleared timeously and with great effect. Integrating 
REDGs into the existing power grid has operational challenges that 
may affect the technical performance of the system. These 
challenges include voltage variations, power supply forecasting, 
frequency fluctuation and load demand management.  

A power system grid is prone to faults, whether internally or 
externally. Electrical protection schemes are essential to timeously 
eradicate the presence of a fault in the power system  [10, 11]. In 
recent years, numerous methods for power system fault diagnostic 
have been proposed. In [12], a method base on voltage imbalances 
and third harmonic distortion (THD) was used to determine the 
faulty section for an integrated power system network. The passive 
methods including frequency variations [13, 14], degree of 
alteration of power frequency [15], power and voltage variation 

ASTESJ 

ISSN: 2415-6698 

*Corresponding Author: Katleho Moloi, moloikt023@gmail.com 
 

 

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 577-588 (2020) 

www.astesj.com   

https://dx.10.25046/aj050468 

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050468


K. Moloi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 577-588 (2020) 

www.astesj.com     578 

[16], energy mismatch and harmonic content recognition [17] and 
the degree of variation of reactive power [18], these techniques 
were applied in power grid integrated network for fault diagnostic. 
Moreover, undetected faults have an undesirable effect on the 
overall performance of the power grid, the active algorithms used 
for fault diagnostic includes frequency signal injection [19], 
singular and dual harmonic current injection [20, 21], output power 
variation [22], reactive power control [23, 24], and the impedance 
measurement method [25, 26], these methods were used to detect 
faults in power grid integrated network with REDGs.  

To improve the fault detection algorithms, artificial 
intelligence (AI) and machine learning (ML) have been adopted to 
solve the problem. The AI and ML algorithms have the advantage 
of discriminating and classifying different types of faults. Fault 
classification is an important element for reliability improvement 
and network security. The authors in [27], proposed a fault 
classification technique based on the decision tree algorithm. The 
technique was implemented in a PV plant system connected with 
the distribution network. An artificial neural network (ANN) based 
method was implemented for fault diagnostic in a system 
interconnected with WT energy system [28]. Another method 
based on ANN for islanding and fault detection in microgrids 
integrated with the power system was proposed [29]. Other AI and 
ML algorithms used for fault diagnostic in the power system 
includes fuzzy logic [30, 31], adaptive neuro-fuzzy interface 
system (ANFIS) [32], and Bayesian classifier [33]. Signal 
processing plays a major role in improving the fault detection 
algorithms,  signal decomposition techniques which includes 
wavelet transforms (WT) [34], Hilbert-Huang transform (HHT), 
multi-resolution analysis (MRA) and Intrinsic Mode Function 
(IMF) [35] were used for signal tracking to improve the fault 
detection algorithm. Statistical data analysis is a critical aspect of 
the decision-making process. The support vector machine (SVM) 
has been successfully used in power engineering applications for 
fault diagnostics. The authors in [36], applied SVM for fault 
detection in high voltage systems. The quadratic function was 
implemented as an optimal kernel function for effective fault 
diagnostics. A technique based on SVM for fault diagnostic in 
active distribution integrated network with the PV plant was 
proposed [37]. The technique employed SVM for fault 
classification and isolation. A technique based on a modified 
multi-class support vector machine (MMC-SVM) was proposed to 
detect and classify different faults on a power system [38]. A 
maximal overlap discrete wavelet transform (MODWT) based 
technique was proposed for fault detection in a power system [39]. 
In [40], a method based on the multi-agent system (MAS) 
technique was proposed for fault diagnostic and location in a 
power system integrated network with DGs. Probabilistic Boolean 
network (PBN) technique was proposed for fault diagnostic in 
smart power system grid for performance and technical 
improvement [41]. A novel technique based on an unknown input 
observer (UIO) method was proposed for fault detection and 
isolation on microgrids [42]. 

1.1.  Manuscript Organization  

In this work, a hybrid fault diagnostic method based on packet 
wavelet transform (PWT) and support vector machine (SVM) is 
proposed. The PWT is used for signal decomposition and feature 
extraction, this is done to reduce computation burden and improve 

processing time. The particle swarm optimization (PSO) algorithm 
is implemented for determining the ideal parameters of SVM for 
maximum classification and detection. The paper is summarized 
as follow: 

• The SVM method is used for a dual purpose (fault 
detection and classification). 

• Feature extraction and selection technique using WPT is 
used to minimize the data size to effectively reduce the 
computational burden and time. 

The remaining sections are organized as signal processing, 
feature extraction and selection are discussed in section 2, In 
section 3, the SVM method discussed. Section 4. Discussed the 
implementation of the proposed fault diagnostic method. The 
results are discussed in section 5, and lastly, a conclusion is drawn 
in section 6. 

2. Signal Processing 

Signal tracking and spectrum analysis is an essential element 
of signal decomposition and have been utilized for numerous 
signal analysis applications. The application of signal tracking is 
mostly used to distinguish the signal of interest from a range of 
present signals. Most power utilities use spectral analysis to 
analyze the signals recorded from a power system during the fault 
conditions to determine the nature of the fault. In this present work, 
WPT is used to track the signals of interest to enhance the fault 
detection algorithm.  

2.1. Wavelet Packet Transform 

The WPT technique is a mathematical tool used for tracking 
and analyzing signals. The WPT may be observed as the 
simplification of discrete wavelet transform (DWT) that produces 
more efficient signal analysis results [43]. The WPT can be utilized 
for numerous expansions of a signal at different levels. The DWT 
has generally been used for many power systems applications and 
has proven to be effective. However, DWT doesn’t produce good 
results for small values. This has led to the implementation of WPT 
in the present work. When using the WPT, the signal (𝑆𝑆) is passed 
through numerous filters containing both the low and high pass 
filtering process. The low frequency is represented by the 
approximation (𝑎𝑎) coefficient and the high frequency is 
represented by the detail (𝑑𝑑) coefficient. The (𝑎𝑎) and (𝑑𝑑) 
coefficients are supplementary decomposed repetitively to a 
particular point 𝐾𝐾. The main advantage of WPT over DWT is that 
more features are obtained and the frequency resolution of WPT is 
greater than that of DWT.  

In the present work, 30 kHz is used as the sampling frequency, 
and level 4 the decomposition is considered. Shannon’s entropy 
criterion is selected. The criterion is used to calculate the entropy 
at each decomposition level [44]. The best decomposition results 
are obtained when the parent entropy is greater than the total 
entropy of the decomposed level. The WPT decomposition tree of 
the present work is presented in Figure 1.  

2.2. Extraction of features 

The extraction of certain features from a signal is a process of 
minimizing huge data matrix by selecting significant feature which 
represents a specific pattern to improve computational processing  
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Figure 1: WPT decomposition tree

time. The data matrix is then converted to a feature matrix with 
fewer data points. The entropy and the energy features are 
extracted from the fault current signal. Energy is mathematically 
defined as [45, 46]: 

𝐸𝐸 (𝑡𝑡1, 𝑡𝑡2) = � (|𝑥𝑥|)2
𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑡𝑡                                                                  (1) 

where,  𝐸𝐸 is the energy signal between the time range of (𝑡𝑡1, 𝑡𝑡2) 
and 𝑥𝑥(𝑡𝑡) is the signal. The value of the energy signal is greater than 
the value of the normal signal. The entropy feature is used to 
measure the signal information content [45]. The measured 
information includes the cost function of the signal 𝑥𝑥(𝑡𝑡) defined 
by the entropy ′𝐸𝐸𝐸𝐸′ such that the energy signal at zero  𝐸𝐸(0) = 0, 
the entropy is mathematically defined in eq. (2).  

𝐸𝐸𝐸𝐸(𝑥𝑥) =  �𝐸𝐸𝐸𝐸(𝑥𝑥𝑖𝑖)                                                                        (2)
𝑖𝑖

 

where,  (𝑥𝑥𝑖𝑖) is the decomposed coefficient of the signal 𝑥𝑥(𝑡𝑡). 
The value of the entropy ′𝐸𝐸𝐸𝐸′ is larger for transient signals and 
small for normal signals.  

2.3. Feature Selection 

Feature selection is a process of selecting the best features 
from the developed data matrix. The best features are ranked 
based on the correlation with the target output, the redundant 
features are then rejected. The feature selection process is 
imperative as large redundant data increases computational 
processing time and gives erroneous results which affect the 
efficiency of the classification algorithm [47]. The general 
concept of the feature selection technique is to select the feature 
which best represents the target. The forward feature selection 
technique is employed for selecting the best features. The 
technique is used to calculate the best features at each step 
iterative and a sub-input features matrix is developed, thus 
removing the redundant features [47]. The mean square error 
(MSE) function is used to evaluate the ranking of features 

determined by the K-nearest neighbor (KNN) technique [48]. The 
features are ranked from high to low depending on the margin of 
error.  

3. Pattern Recognition and Classification 

Pattern recognition and classification have been a subject of 
interest for many researches in the past decades. The interest has 
arisen because of the many application ranging from speech 
recognition, image identification, power system fault, and optical 
character recognition. It is therefore important to build intelligent 
machines that can reliably and accurately be used to solve 
classification problems. Generally, classification is defined as a 
process of categorization, in which data, objects, and ideas are 
recognized and understood to produce an accurate response.  

3.1. Support Vector Machine  

Support vector machine (SVM) was originally established to 
resolve statistical problems in empirical data modelling. When 
using SVM, the input data is plotted into a high dimensional space 
to determine the separating margin between two classes of data. 
The hyperplane is the separating index between the two classes of 
data [49]. The hyperplane is optimal when the distance between 
the class of data sets is maximized. The hyperplane can be 
calculated using the quadratic programming method defined 
mathematically as: 

𝑚𝑚𝑚𝑚𝑚𝑚
1
2

|𝑤𝑤|2 + 𝐶𝐶 ��𝜁𝜁𝑖𝑖

𝑙𝑙

𝑖𝑖=1

� ,                                                                 (3) 

subject to 𝑦𝑦𝑖𝑖(𝑤𝑤 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1 − 𝜁𝜁𝑖𝑖 ,    𝜁𝜁𝑖𝑖 ≥ 0∀𝑚𝑚 

where 𝑥𝑥𝑖𝑖 is the ith example and the class label which is either 
+1 or -1 is represented by 𝑦𝑦𝑖𝑖. The problem is solved using its dual 
form 

 

𝑚𝑚𝑎𝑎𝑥𝑥 𝐿𝐿𝐷𝐷 =  �𝛼𝛼𝑖𝑖 −  
1
2
�𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗�𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗�                                 (4)
𝑖𝑖,𝑗𝑗𝑖𝑖
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subject to 0 ≤  𝛼𝛼𝑖𝑖  ≤ 𝐶𝐶    ∀𝑚𝑚,      ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖 = 0𝑖𝑖 . 
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Figure 2: SVM parameter selection process using PSO 

Kernel function can be used to solve the problem of non-
linearity in statistical analysis. The linear, quadratic, radial bias 
function (RBF) and sigmoid are the most commonly used kernel 
functions. The advantage of SVM is that it gives a global solution, 
it is inclined to overfitting and it converges to local minima. The 
selection of SVM parameters is a significant and critical task for 
accurate fault diagnostic in a power distribution system [50]. To 
improve the performance of SVM, a particle swarm optimization 
(PSO) scheme is used to select the best parameters of the SVM.  

The PSO technique was initially developed by Eberthart and 
Kennedy to solve optimization in 1995 [51]. The PSO technique 
is founded on the ordinary conduct of birds during a flight in 
space. The PSO relies on updating the initial position and velocity 
of each particle at every iterative until an optimal solution is 
determined. The process of using the PSO method begins with 
generating the random particles given by 𝐸𝐸. The best optimization 
solution is determined by calculating the fitness value of each 

particle. and finally, the velocity of each particle (𝑣𝑣𝑖𝑖) is 
modernized by the mathematical representation defined as: 

 
𝑣𝑣𝑖𝑖  (𝑡𝑡 + 1) = 𝑤𝑤 × 𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝐶𝐶1 × 𝑟𝑟𝑎𝑎𝑚𝑚𝑑𝑑 �𝑋𝑋𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − 𝑋𝑋𝑖𝑖(𝑡𝑡)�

+ 𝐶𝐶2 × 𝑟𝑟𝑎𝑎𝑚𝑚𝑑𝑑�𝑋𝑋𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − 𝑋𝑋𝑖𝑖(𝑡𝑡)�                        (5) 

where, 𝑋𝑋𝑔𝑔𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡  is the best global solution, 𝑋𝑋𝑖𝑖𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 is the solution at 
the current position, 𝐶𝐶1 and 𝐶𝐶2 are the non-negative constants 
representing the best local and global position weight 
respectively, and 𝑤𝑤 is the inertia coefficient. The position of the 
particle 𝑋𝑋𝑖𝑖 will be updated using the following expression: 

 
𝑋𝑋𝑖𝑖 (𝑡𝑡 + 1) = 𝑋𝑋𝑖𝑖(𝑡𝑡) +  𝑣𝑣𝑖𝑖  ×  (𝑡𝑡 + 1)                                              (6) 

 
To estimate the fitness value of the SVM by utilizing the PSO 

technique the fitness function is represented as: 
 

𝑓𝑓 =  �
1
𝐸𝐸
�[𝑦𝑦𝑘𝑘 − 𝑦𝑦(𝑘𝑘)]2
𝑁𝑁

𝑘𝑘=1

                                                                            (7) 

 
where, 𝐸𝐸 denotes the discrete sample number, 𝑦𝑦(𝑘𝑘) is the discrete 

signal, and 𝑦𝑦𝑘𝑘 is the SVM output. The process of obtaining optimal 
parameters for SVM application is presented by a flow chart in Figure 
2. 
4. Proposed Fault Detection Technique 

Section 4, discussed the proposed fault diagnostic technique 
which is applied in a power grid network. The fault detection 
taxonomy proposed in this work is presented in Figure 3. The fault 
current signal with one cycle is analyzed to detect the fault type 
that occurred in the power grid network. The fault current signal 
is decomposed into large frequency sub-bands using WPT. From 
the disintegrated fault current signal, the statistical signal features 
(energy and entropy) are extracted. The total set of features to 
build a matrix is 32 (16 coefficients × 2 statistical features). The 
fault current signal data is then generated considering simulation 
conditions. The generated data is then divided into the training 
and testing data.  

From the total extracted features using WPT, other features do 
not forecast the desired results accurately and thus reducing the 
efficiency of the scheme. A feature selection technique is 
employed to eliminate features that do not present desired results. 
The selection technique uses a ranking algorithm to eliminate the 
features which are redundant and compromises the accuracy of 
the proposed technique. The best selected features are then fed 
into a classifier for fault identification. The PSO method is 
utilized to determine the optimal parameters of the SVM 
classifier. The fault classification scheme using the SVM 
technique is presented in Figure 4. From the presented scheme, 
each phase of the power system has a classification scheme to 
identify faults occurring in each phase, another SVM scheme is 
placed to detect ground faults. To accurately classify different 
fault conditions, the SVM output is either ‘+1’ or ‘0’, where ‘+1’  
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shows that there is a fault and ‘0’ shows that there is no fault in 
the power system. In practice the line to line fault is usually 
misclassified as a line to line to ground, this problem may affect 
the restoration time. To solve this problem, a separate SVM 
scheme is positioned between the phase and ground where a zero-
phase sequence current pointer is utilized as a directory value as 
presented in Figure 4. The index threshold value is determined 
using a trial and error method, in the present work, the value is set 
at 0.03. The ground fault detection is detected if the directory 
value is bigger than the set minimum value. The current index can 
be defined mathematically as: 

𝐼𝐼𝑚𝑚𝑑𝑑𝐼𝐼𝑥𝑥 =
|𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑏𝑏 + 𝐼𝐼𝑐𝑐|
𝑚𝑚𝐼𝐼𝑎𝑎𝑚𝑚(𝐼𝐼𝑎𝑎 , 𝐼𝐼𝑏𝑏 , 𝐼𝐼𝑐𝑐)

                                                                (8) 

where, 𝐼𝐼𝑎𝑎 , 𝐼𝐼𝑏𝑏 ,and 𝐼𝐼𝑐𝑐 are the instantaneous current values. The 
classification accuracy (𝐶𝐶𝐶𝐶) is determined by: 

𝐶𝐶𝐶𝐶 =  
𝐶𝐶𝐴𝐴𝐶𝐶

𝐸𝐸𝑁𝑁. 𝑁𝑁𝑓𝑓 𝑡𝑡𝐼𝐼𝑡𝑡𝑡𝑡𝐼𝐼𝑑𝑑 𝑡𝑡𝑎𝑎𝑚𝑚𝑠𝑠𝑠𝑠𝐼𝐼𝑡𝑡
 × 100                                         (9) 

where, 𝐶𝐶𝐴𝐴𝐶𝐶 represents the accurate fault classification.  

5. Power System Case-Study 

In this work, an Eskom 90 bus 22 kV system is considered. The 
power system network is modelled using Digsilent Power Factory 
platform. The PV and WT sources are connected into the network 
at the location optimally determined to satisfy technical 
consideration (power loss, voltage stability, fault levels, and power 
quality, etc.…). The proposed Eskom network is presented in 
Figure 5. The base voltage of the network is 22 kV and the base 
apparent power is 100 MVA. The total load connected to the 
system is 115.5MVA. the maximum fault level at the substation is 
15 kA. The PV connected into the system is rated at 50kW and the 
WT is rated at 120 kVA. 

6. Results and Discussion 

An integrated power mix energy distribution system is 
considered in this work. The simulated fault current signals are 
presented in (a) 

.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6: (a) Line-to-ground fault signal, (b) Line-to-line fault current signal, (c) 
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The sampling frequency considered in the present work is 
taken to be 30 kHz. The WPT scheme is used to decompose the 
signal at level 4, and the entropy and energy features are extracted. 
The choice of a mother wavelet is vital for analyzing the signals. 
In the present work, Daubechies 4 is selected as the best for 
transient signal analysis. Some of the WPT decomposed features 
are presented in (d) 

Figure 6. Furthermore, the best features are obtained from the 
extracted features. The best features using WPT to accurately 
predict the target is presented in Table 1. After the acquisition of 
best features, the features are subdivided into training and testing 
data sets. The training and testing parameters with various 
conditions are presented in Table 2.  

Different fault current cases are simulated and the data is 
subsequently fed into the SVM for classification. A fault training 
matrix using SVM is detailed in Table 3. In the present work, SVM 
output is either a ‘+1 or 0’, where +1 shows that there is a fault and 
0 is the output of a non-faulty section in the corresponding phase.  

Table 1: Best Features  

Signal type Features Coefficients 
Current Entropy 

Energy 
ADAD4 
DDDD4 

Table 2: Training and testing parameters 

Data set Fault resistance (Ω) Incipient Angle (𝜃𝜃) 

Test and 
Training 

0, 1, 5, 15, 35, 80, 105, 150 
2, 16, 28, 55, 68, 140, 190 

00, 300, 400, 600, 700 

150,480, 760, 880, 100 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6: (a) Level 1 Detail Wavelet coefficients, (b) Level 2 Detail Wavelet 
coefficients, (c) Level 3 Detail Wavelet coefficients, (d) Level 4 Detail Wavelet 

coefficients 

Table 3: SVM classification matrix 

Fault 
Type 

SVMA SVMB SVMC SVMG 

A-G +1 0 0 +1 

B-G 0 +1  0 +1 

C-G 0  0 +1 +1 

A-B +1 +1 0 0 

A-C +1 0 +1 0 

B-C 0 +1 +1 0 

A-B-G +1 +1 0 +1 

A-C-G +1 0 +1 +1 

B-C-G 0 +1 +1 +1 

A-B-C +1 +1 +1 0 
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An evaluation fault classification process of selecting the 
optimal mother wavelet is determined and the results are shown in 
Table 4. In this present work, we further investigated other signal 
tracking analysis techniques such as the wavelet transform (WT) 
and the Fourier transform (FT). Based on the analysis done, the 
WPT signal analysis technique performed better than both the FT 
and WT. this is because when using the WPT, both the low and the 
high frequencies are measured and this improves the data analysis 
of a signal. From the results, dB4 has the highest accuracy level 
and thus it is selected for the scheme application. The PSO 
technique is used to obtain optimal parameters of the SVM. In 
Table 5, the best SVM parameters are presented. The PSO 
parameters are presented in Table 6.  

Table 4: Mother wavelet performance evaluation 

Mother 
wavelet 

WPT fault 
diagnostic 
accuracy (%) 

WT fault 
diagnostic 
accuracy (%) 

FT fault 
diagnostic 
accuracy (%) 

dB1 86.3 88.1 86.1 

dB2 72.1 68.2 63.2 

dB3 88.0 90 85.4 

dB4 99.8 86 81.2 

dB7 96.4 89.3 88.6 

dB14 93.7 91.4 90.1 

Table 5: SVM best parameters 

SVM parameters Fault classification  

Kernel function Radial bias function 

Gamma (𝛾𝛾) 0.35 

Cost (𝑐𝑐) Not used 

Nu (𝑚𝑚𝑛𝑛) 0.5 

Table 6: PSO parameters 

PSO parameters Value  

𝑐𝑐1 = 𝑐𝑐2 5 

Particle size 70 

No. of iteration 1000 

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 0.7 

𝑤𝑤𝑚𝑚𝑎𝑎𝑥𝑥 0.8 

In Table 7, the classification results of different fault cases are 
presented. From the presented results it may be seen that the 
accuracy of classification is 1321. In the present work, we tested 
the Naïve Bayes (NB), Neural Network (NN), Decision tree (DT), 
and K-Nearest Neighbor. These techniques are implemented in a 
free machine learning platform Waikato Environment for 
Knowledge Analysis (WEKA). The classification process is 
carried by developing a classifier based on the training and testing 
of different class labels. Subsequently, the test data set is applied 
to the classifier to predict the accuracy of the classification.  

The description of the different classifiers is discussed below: 

• Naïve Bayes (NB): The NB algorithm is recognized as a fast 
learning technique. It is a simplified version of the Bayesian 
classifier and functions and under certain assumptions, (i) 
Attributes are conditionally independent for the class label, 
(ii) The prediction process is not affected by the latent 
attributes [52]. 

• Decision Tree (DT):  The DT is a well-known efficient data 
mining algorithm for solving difficult problems by 
formulating computer graphic illustrations. The DT algorithm 
has been used proficiently to solve real-world problems [53].  

• Neural Network (NN): The NN technique was developed by 
using the biological analysis of a human brain. This algorithm 
performs better with big data analysis and has proven to be 
efficient for classification and prediction purposes [54].  

The performance of the different classifiers is evaluated using 
the confusion matrix. The correlation of the predicted instances 
values of the NB, DT and NN classifiers are presented in  Table 8, 
Table 9 and Table 10 respectively.  

Table 7: SVM accuracy 

Fault type Tested samples Samples correctly classified Samples incorrectly 
classified 

Classification accuracy 
(%) 

L-G (a-g, b-g, c-g) 60 400 60 075 325 99.4 

L-L (a-b, a-c, b-c) 60 400 60 100 300 99.5 

L-L-G (ab-g, ac-g, bc-g) 60 400 59 905 495 99.2 

LLL (abc) 30 200 16 270 530 98.2 

Total 211 400 196 350 1 650 99 
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Table 8: Naive Bayes fault classification performance 

NB classifier  Line-
Ground 

Line-
Line 

Line-
Line-
Ground 

Line-
Line-
Line 

No. of cases 50 400 50 400 50 400 16 800 

Correct classified 50 010 50 000 50 130 16 080 

Incorrectly classified 390 400 270 720 

Correct classified % 99.2 99.2 99.5 95.6 

Mean absolute error 0.0085 0.0811 0.0712 0.0625 

Root mean 0.0862 0.092 0.881 0.755 

Kappa statistic 0.967 0.938 0.935 0.933 

Confidence level (95%) 96.32 95.661 96.225 95.213 

Table 9: Decision Tree fault classification performance 

NB classifier  Line-
Ground 

Line-
Line 

Line-
Line-
Ground 

Line-
Line-
Line 

No. of cases 50 400 50 400 50 400 16 800 

Correct classified 49 820 50 110 48 930 16 580 
Incorrectly classified 580 290 1 470 220 
Correct classified % 98.8 99.4 97.1 98.6 
Mean absolute error 0.0093 0.0098 0.0397 0.0052 

Root mean 0.0185 0.095 0.0891 0.0712 

Kappa statistic 0.889 0.959 0.966 0.9221 

Confidence level (95%) 95.101 96.261 97.181 97.43 

 
Table 10: Neural Network fault classification performance 

NB classifier  Line-
Ground 

Line-
Line 

Line-
Line-
Ground 

Line-
Line-
Line 

No. of cases 50 400 50 400 50 400 16 800 

Correct classified 50 120 50 325 47 635 15 990 

Incorrectly classified 280 75 2 765 810 

Correct classified % 99.4 99.8 94.5 95.2 

Mean absolute error 0.0792 0.0093 0.0235 0.0125 

Root mean 0.0193 0.0822 0.0822 0.0961 

Kappa statistic 0.722 0.823 0.917 0.9882 

Confidence level 
(95%) 

96.123 98.225 95.921 95.182 

 

The performance comparison of the SVM, NB, DT, and NN 
techniques applied for classification is presented from  

Table 11 to Table 14 respectively. To improve the computational 
time analysis, the fault current data set is subdivided and a quarter 
of the data sample is used for fault identification. From the 
presented results the average precision of SVM, NB, DT, and NN 
is 99.9%, 83%, 99.7%, and 94% respectively. For this application, 
the SVM classifier performed better than other tested classifiers in 
the present work.  

 

Table 11: SVM performance with ¼ data set 

Fault Type Line-Ground Line-Line Line-Line-Ground Line-Line-Line Average 

TP 0.992 0.999 0.997 0.999 0.997 
FP 0.000 0.005 0.008 0.001 0.004 
Precision 1.000 1.000 0.998 1.000 0.999 
Recall 0.998 0.994 0.995 0.991 0.995 
F-Measure 0.999 0.993 0.991 0.998 0.995 
ROC 0.999 0.994 0.989 0.998 0.995 

Table 12: NB Performance with ¼ data set 

Fault Type Line-Ground Line-Line Line-Line-
Ground 

Line-Line-Line Average 

TP 0.931 0.920 0.951 0.972 0.944 
FP 0.024 0.004 0.006 0.001 0.009 
Precision 0.851 0.561 0.945 0.922 0.830 
Recall 0.957 0.883 0.992 0.856 0.922 
F-Measure 0.858 0.864 0.840 0.951 0.878 
ROC 0.967 0.960 0.910 0.951 0.947 
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Table 13: DT Performance with ¼ data set 

Fault Type Line-Ground Line-Line Line-Line-
Ground 

Line-Line-Line Average 

TP 0.989 0.962 0.840 0.856 0.912 
FP 0.032 0.001 0.003 0.001 0.009 
Precision 0.997 0.998 1.000 0.991 0.997 
Recall 0.991 0.999 0.985 0.993 0.992 
F-Measure 0.991 0.980 0.972 0.966 0.977 
ROC 0.918 0.986 0.958 0.980 0.961 

Table 14: NN performance with ¼ data set  

Fault Type Line-Ground Line-Line Line-Line-
Ground 

Line-Line-Line Average 

TP 0.992 0.942 0.966 0.981 0.971 
FP 0.001 0.000 0.000 0.002 0.001 
Precision 0.999 0.957 0.922 0.887 0.941 
Recall 0.965 0.921 0.989 0.968 0.961 
F-Measure 0.965 0.982 0.972 0.951 0.968 
ROC 0.976 0.991 0.987 0.992 0.987 

7. Conclusion 

An increase in electricity demand has enlarged the technical 
variations of the load-demand phenomenon. To solve this 
problem external electricity sources have been considered. The 
environmental attributes of using REDG improves the quality of 
the air and thus contributing positively to the health of the people. 
However, integrating REDGs has technical challenges that must 
be addressed. In the present work, we focus on the fault diagnostic 
mechanism when the REDGs are integrated into the distribution 
system. An Eskom power system is modelled, and various fault 
studies are carried out. In the present work, a fault diagnostic 
technique is proposed. The method consists of the signal 
processing scheme, a feature extraction section, feature selection 
section, and a fault diagnostic section. The WPT is used to 
decompose the signal into frequency sub-bands, subsequently, the 
entropy and energy features are selected from the decomposed 
signal. From the selected features a feature selection scheme is 
used to select the best features to improve the computational time 
and reduce burden. The selected features are then fed into the 
SVM classifier to determine the fault occurrence in the network. 
The PSO algorithm is used to determine the best parameters of the 
SVM. We further investigated the effectiveness of other 
classification algorithms. From the results obtained the SVM 
classifier performed better with the accuracy of 99%. The future 
work will entail a fault location scheme in an integrated system.  
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