
www.astesj.com 618

Modeling and Transformation from Temporal Object Relational Database into Mongodb: Rules

Soumiya Ain El Hayat* , Mohamed Bahaj

Department of Mathematics & Computer, Faculty of Science and Technologies, Settat, 26000, Morocco

A R T I C L E I N F O A B S T R A C T
Article history:
Received: .13 June, 2020
Accepted: 22 July, 2020
Online: 25 August, 2020

 With such a big volume of data growing tremendously every day, and the storage of
important volume of data becoming increasingly more flexible, NoSQL(Not only SQL or
Non-Relational) database are designed to store a large amount of information and are
growing for big data systems in web analytics. It an approach does not require any specific
schema and avoid the use of the joins to store or retrieve the information. To ensure the
availability and scalability many industries are now replacing their object relational
database in many systems by adopting NoSQL database technology for e-business
applications. It is document-oriented databases which help in grouping data more
logically. This paper describes a disciplined approach of migration and proposes a model
transformation from temporal Object relational database (TORDB) Into Mongo db. Also,
this paper approach deals with a novel data integration methodology in order to manipulate
and the store the varying time data in Json (Java Script Object Notation) documents.

Keywords:
Temporal database
Mongodb
Nosql
Temporal object relational
database
Migration

1. Introduction

In the recent years, a varying Time management database is one
of the most interest systems of the information technology to
support temporal features associated with data. It models the
information in the real world. The time is an important property
to characterize a data on the web. The temporal database has
appeared since the 1980s, there were a several authors produced
articles and books about varying-time, but the commercial
adoption has been slow [1]. During a long time, developers and
researchers developed several applications that support new data
type concepts bases on the time. The temporal data processing is
very important in dynamically evolving systems, industry,
communication systems and also in systems processing sensitive
data, which incorrect change would cause a great harm [2]. The
literature on varying time management offers three Periods type
for temporal data support: valid time period, transaction time
period and Bitemporal data which combine both to make a
complete description of data. Hence, the need to retain trace and
audit the change made to a data and the ability to plan based on
the past or future assumptions are important uses cases for
temporal [3].

Today, we notice the advent of big data. There is a revolution
going on in databases system management. With the development
of data acquisition technologies, the information to be stored
expands strikingly in volume and velocity. NoSQL database have
evolved intensely in the last years due to their flexible structure,
less constrained than relational ones and offering faster access to
information. Nosql is now used in many fields of industries and
companies to support applications and systems not well served by
relational and object relational database. NOSQL is released and
widely used in many domains. Nosql database provides a
mechanism for storage and retrieval of instructed data other than
tabular or object relation used in relational and object relational
database respectively [4]. The Nosql model fulfils the scalability
problems. Nosql databases are mostly open source , non-
relational , distributed and designed for large volumes of data
across many clusters supporting replication and partitioning ,
parallel processing and what is usually called horizontal scaling
[5].

One of the post popular and leading Nosql system management is
Mongodb. Mongo db is an open source database based on
distributed document released in 2009. It stores data as JSON-
Like document with dynamic schemas (The format is called
BSON) [6]. Mongodb is a document-oriented database which

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Soumiya Ain El Hayat ,FST , Settat, Morocco
,+212658521182, soumya.ainelhayat@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 618-625 (2020)

www.astesj.com

https://dx.doi.org/10.25046/aj050473

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050473

S.A.E. Hayat & M. Bahaj / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 618-625 (2020)

www.astesj.com 619

holds a set of collection that are similar to relational database
Tables where each collection contains a set of documents. One
collection can hold different document with number of fields,
content and size are not similar. It is a schema less that means
the mongodb can be a distributed database and does not have a
predefined schema so that allows providing additional data type
and inserting new fields. Mongodb document is a set of key value
pairs. Key values databases provide a hash table where the unique
key and a pointer to a specific set of values are stored and data can
be retrieved using the key. Mongodb is suitable solution for
distributing data and managing balance between instances while
using replication to increase the level of availability [7].

With the information industry dependent on the time, developing
rapidly in recent years, the dataset using in different system are
becoming extremely large in volume with a high variety of data.
For this reason, Mongodb has been invented to overcome the
limitation of relational and Object Relational Database, and
provides new mechanisms for managing huge amount of data that
are different from the typical relational and object relational
Model. In addition, the mongodb is adopted to handle the huge
evolution of temporal data in distributed environments in which
continue to rise in complex applications and social network.

The main goal of this approach is to provide a reliable, reasonable
and efficient method to convert the schema and migrate the
temporal data from the implemented temporal object relational
database into Mongodb system. Our proposed approach provides
a new model transformation from object relational tables including
Bitemporal data features towards documents-oriented databases
based on Json files. Several rules are defined to facilitate the
migration process.

2. Related Works

A research work in [8] proposed a generic standard-based
architecture that allows Nosql systems focusing on mongo db to
be manipulated using SQL query and seamlessly interact with any
software supporting JDBC. Ajit Singh demonstrated data
conversion to mongo db , in order to make data more interactive
and innovative using the data stored in cloud [9]. The model
transformation and data migration from relational database into
Mongodb taken into consideration the query characteristics of
each model, in addition, an algorithm to automate the migration
are discussed in [10]. Another approach presented Algorithm for
automatic mapping of relational database to mongodb using entity
relationship (ER) Model to provide the conceptual schema and
modelling relationship between the different entities [11]. A
framework for mapping MySQL database to mongodb by
developing an algorithm that uses the metadata stored in relational
system as input is discussed in [12]. The work in [13] described a
migration process from Object relational database to Nosql
document database end provided a review of different proposed
approach. An overview of Nosql to evaluate the scalability and
efficiency in storage of data in oriented document database case
study in order to show the representational format and querying
management process of Mongodb [14]. The work in
[15]introduced a disciplined approach called Jschema(Temporal

Json Schema) for the temporal management Json documents by
creating a temporal json documents from conventional document
that can vary over time, the generated document uses such
features of temporal management data. The mapping Process of
spatio temporal disaster data into Mongodb database using the
data represented by the aspects of space and time is shown in
[16].Boicea, Radulesu and agapin discussed the difference
between oracle and Mongodb this comparison dealt with several
criteria including theorical , Concept , restrictions and query
processing of SQL database get a document oriented database
Management [17].
During our criticized analysis, we noticed that many studies are
devoted to the analysis and the migration from relational database
into Mongodb. Most of the previous approaches don’t deal with
the use of temporal data in order to make a complete description
and efficient correctness to historical data. The temporal
management features in Mongodb concepts was overlooked in
many research, which reflects that the purpose for those
researchers was only to provide methods to manipulate the data
rather than on gain from the offered features of schema less of
Nosql to handle a huge amount of historical data. In addition,
works about the conversion from temporal database based on
object relational into MongoDB are not as frequent.
From the all overhead works, we covered the transformation and
the evaluation of mongodb to relational database. We conclude
that mongodb has overcome many limitations of the conventional
Relational and object relational database. The contribution of our
work focuses on temporal aspect in emerging of temporal
oriented-documents database. Our approach is based on semantic
enriched mechanism which simplify the development of schema
translation which enhanced by additional varying time data
features. And formalize the rules to simplify the transformation
process from temporal Object relational database into Mongodb
which is based on temporal json file enriched with bitemporal data
dimension. Our study examines the possibility to maintain and
understand the structure of varying time attributes defining in
TORDB tables and also to promote the storage of data into json
documents using some semantics concepts.
3. Modelling and transformation Rules from TORDB into

Mongodb: Phases
In this section, we present the most necessary phases for
translation process. We are going to propose several rules that
allow developing the determined schema. In the first, we present
a comparison between temporal object relational database and
Mongodb. After that we will explain the different elements
composed TORDB design, and then we will define the mongodb
schema including bitemporal data. In this paper, we will not
explain the rules for translation of TORDB model into their
equivalent in the TJson_schema.

3.1. Comparison between Object relational database and Mongo
db features:

Oracle Database is an Object-relational database management
system produced and marketed by oracle Corporation [18], which

http://www.astesj.com/

S.A.E. Hayat & M. Bahaj / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 618-625 (2020)

www.astesj.com 620

combine the relational database concept and object-oriented
database capabilities. In object relational database, the user has
the ability to create his own predefined type called UDT or User
Defined Type, which is used to specify the structure and the
behaviour of the data, based on Object mechanism in order to
define and create complex data type. Therefore, ORDBs with
time-varying features has addressed to enhance ORDB efficiency
and makes a complete description of recorded data. For this
reason, we create User-defined time approach. It is a time
representation created by object relational techniques to satisfy
specific needs of users. The User-defined time uses a bitempral
data dimension which support both valid time and transaction
time. The bitemporal data presents the changing knowledge of the
changing world, hence, links data values with facts and also
determines when the facts were valid, in order to provide history
of data values and their changes over time. The following
statement show the Bitemporal period Object to store valid and
transaction Time attribute:

Query 1: Bitemporal Object
Create type Bit_period as object
(vt_Start date,
vt_end date,TT_start date,
TT_End date) /
CREATE TYPE bitemporal_period IS TABLE OF
bit_period;

Mongodb is an open source Nosql database based on oriented
document structure. It was developed during 2007 by software
called 10gen Company. Mongodb documents are stored in binary
form that are similar to Json document model called BSON format,
that supports such primitives data type (String, integer, date,
Boolean, float and binary).the main features in mongodb are
collections and documents. Mongodb documents have a flexible
schema in which the collection dos not impose the necessary
document schema. However, the temporal object relational
databases require a table schema to be declared and created before
inserting the data. Any temporal object table has a certain design
that shows the relationships between them. Although mongodb
does not support join operations as SQL databases, the
relationship between documents can be represented using either
the referenced or embedded concepts. The relationship in
mongodb define how various documents logically dependant to
each other. The relationship in mongodb can be expressed via
embedded or referenced concepts. Where, embedded documents
maintain all the related data in one document. These renormalized
data representations allow applications handle and retrieve data
from a single document.

In the following subsection, we focus on comparing mongodb to
Temporal Object relational database. The table presents the main
techniques of TORDB methodology and Mongodb.

On the other hand, the referenced document stores the
relationships separately between document by adding id-Field
that references or links from one document to another. This
approach designs the normalized relationship. Actually, the

difficult part of transformation process is how we can convert the
relationships of the existing temporal object relational database
into Mongodb document.

Table 1 the Differences between TORDB and Mongodb features

TORDB Mongodb
Database Database

Temporal Object\Temporal Table Temporal Collection

Row Document

Column Field
Data Type Data Type

Primary Key Id_Field

Simple UDT| REF | Nested table |
Array | nested table (REF)

Referenced Document \
Embedded Document

In our work, each User Defined Time or UDT is converted to a
MongoDB collection, in this example the collection name is
customer contains Bitemporal period object. The customer_table
holds data rows of customer_type objects. Also, the customer
collection will store customer objects with the same attribute as
documents in BSON (Binary encoded JSON) format including
varying time attributes. Then statements below shows the creation
of customer collection and how we can generate documents with
bitemporal Object in mongodb :

Document1: Example of Json file with bitemporal data
db.createCollection(“Customer”) \\ Creation of Customer
Collection
db.Customer.insert(
{
“Customer_Id”:23
“Name”: “Soumiya”
“Bitemporal_data”:
{
“Vt_start”: “2020-02-03” \\ Valid time start
“Vt_End”: “2028-02-28” \\ Valid Time End
“TT_start”: new Date() \\ Transaction Time Start takes
the sysdate as Default value .
“TT_End”: “9999-12-31” }} \\ Transaction Time End sets
the value of insertion of transaction time to the highest
value (“31/12/9999”)

3.1 Definition of the data Model

3.1.1 Temporal Object Relational Database Model
(TORDB_Model):

Our approach in [19] consists in structuring a generic model of
semantic enrichment. We defined the component of a TORDB
Model, which constructs a comprehensive schema of the temporal
object-relational model. The TORDB model is expressed as a set
of temporal typed table based on structured type ST and temporal
structured type TST which include the user defined Time
(Bitemporal Period) for specifying temporal period interval. Each

http://www.astesj.com/

S.A.E. Hayat & M. Bahaj / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 618-625 (2020)

www.astesj.com 621

TST is declared as a set of simple attributes and varying time
attributes. In this obtained Model, the temporal attributes are
based on a bitemporal object that actually defined in a nested table
as a collection type.

Generally, The TORDB model is denoted as three-tuples:

TORDBModel = {TT|TT=(TTs,STs,Tm)} (1)

where:

• TT s is set of temporal and non temporal typed table, STs is a
set of temporal structured type or simple structured type , and Tm
is a time-varying Period.

The sets TTs, STs and Tm are defined as follows:

 STs ={Sn , S, AT} (2)

where Sn is the name of a structured type , S is the super type of
ST, and AT is a set of structured type’s attributes:

 AT={A|A:={N,T,D,NL,BitT,M}}, (3)

where

N: is the name of attribute, T: data type and can be primitive, UDT
or reference. NL: if the attribute allows Null value or not. D:
default value. M: means if the AT is a single valued or collection
valued.

BitT: denotes if the attribute contains a bitemporal object is
defined:

BitT={(VT_Start,VT_End,TT_start,TT_End)} (4)

•TTs={typedtable|Ttable={TTn,STn,PK,Tp}} (5)

where: TTn is the name of typed table, STn is the name of the
structured type based upon which TT is

defined, PK : primary key, TP: means if the TT is temporal or
not.

Association: For each relationship Rel where RelType=
“associate with” is translated into:

TT_Association = {TT|TT=(TTn, STn, AT ⋃ (Ref (ST’)) ,PK,
Bit_P)}

 (6)

In association relationship, we define a method for storing the
reference type of the structured type ST’ (REF(ST’)) referencing
to the class which is related as a Nested Table collection with
Bitemporal data dimension.

Aggregation: each relationship Rel where RelType=
“Aggregation” is expressed as a collection of UDT (User Defined
Type) representing the C’ class that interacts with class C.

TT_Aggregation= { TT|TT=(TTn, STn, AT ⋃ (7)
(NT(UDT(ST’)),PK, Bit_P)}

Composition: each relationship rel where RelType =
“composition” is mapped into an attribute typed as a nested table
maintains the attributes of the ST’ corresponding to a class part
C’.

TT_Composition = { TT|TT=(TTn, STn, AT ⋃ NT(ST’) ,PK,
Bit_P) }

 (8)

Inheritance: each relationship rel where RelType = “inheritance”,
the class C’ inherits all the properties of its super class that are
matching to ST’. For the defining the inheritance relationship in
Object relational model, we add the keyword UNDER during the
creation of ST that represents the child or sub class C.

TT_ihneritance= {TT|TT=(STn, ST.AT⋃Super_T.AT, PK,
Bit_P)}

 (9)

3.1.2. Temporal Json schema (Tjson-schema):

Tjson-schema is a representation of Json document with historical
data that is enhanced with additional semantic data to offer a new
description of mongodb document. We have chosen the most
commonly used in the oriented documents that able to identify the
relevant collections, their documents and their relationships. The
model constructs a data reference design in order to facilitate the
understandability of metadata stored in Json document integrating
Bitemporal Data. Also, it overcomes the complications that occur
during the transformation process.

Tjson-schema can be defined as follows:

 Tjson-schema ={TJ|TJ={ Col_name , Tdoc , RELCol}} (11)

where:

• Col_name : each collection has a name , where the collection
can be defined as a set of temporal and simple documents.

• Tdoc: denotes temporal Json documents including varying
Time fields. Generally, the document in mongo db is a set of
a key value pairs:

TDOC= {doc_ID, Fields, Bitemporal_Period, Primary Key}

• The Json document uses Object Id as a default id which is
generated during the creation of mongodb document.

• Fields = means a set of fields and can be identified by the
following elements:

 Field={ Field_Name , Field_Name} (12)

where:

 Field_Name= is the name of the field.

 Field_Type= means data type (integer, string, date)

http://www.astesj.com/

S.A.E. Hayat & M. Bahaj / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 618-625 (2020)

www.astesj.com 622

• Bitemporal_Period= means the embedded document in
Json document which composed by:

Bitemporal_Period ={VT_start,VT_end,TT_start,TT_end} (13)

• Relcol=Relations Tjson-schema. Each collection has a set
of relationship between documents and can be identified as
follow:

 Relcol ={RelType,RelName,Dircol} (14)

where:

 Reltype= each collection or Document has a relationship Type
with other documents. The Reltype offers 2 types of relations:
Embedded document of referencing document.

Dircol= is name of doc’ that is related to the document Doc.

Document 2: Account_Document extraction with Mongodb
{
 "_id":1345672
 "Num_Accout": 1
 "Type_Account": “Saving_Account”
 "account_h":
 {
 "VT_start": ISODATE(“2010-01-01”)
 "VT_End": ISODATE(“2012-11-30”)
"TT_Start": ISODATE (“2010-01-03”)
 "TT_End": ISODATE(“2012-12-04”)
 }
"Customer":{

 "_id": “145673” }}

3.2. Transformation Rules from TORDB into mongodb:
3.2.1. Association

R1: For the two UDTs Namely Customer_Type and
Account_Type contain Bitemporal data and are related with
association (1...N) relationship, using reference mechanism which
allow retrieving data rapidly without using join between tables.
The transformation of association in Mongodb consists on
generating a new document where the Customer_Type will be
referenced in Account_type document and the object type will be
embedded in the both document.

Col1={NameCol1,NameDoc,Doc(Fields),Embedded(Bitemporal
_Period)} (14)

Col2={NameCol2,NameDoc,Doc(Fields),Object_ID(Doc),Embe
dded(Bitemporal_Period)} (15)

The example below shows the structure of customer and account
document, also the TORDB query Statement:

The creation will proceed according to the following syntax:

Col1={Customer,Customer_Json Document , (_id, Id_Cust,
Name), Customer_h (VT_start, VT_End,TT_Start, TT_End)}

Figure1. An example of Association 1 to N relationship between Customer and
Account

Col2={ Account, Account _Json Document , (_id, Num_Accout,
Type_Account), Customer (_id),account_h (VT_start,
VT_End,TT_Start, TT_End)}

The defined TORDB Query for the corresponding example:

Query2: creation statement for account table
CREATE TYPE account_t AS OBJECT
(acc_no NUMBER,
acc_type varchar(20),
Customer REF customer_T,
account_h bitemporal_period);

CREATE TABLE account_table of account_t NESTED
TABLE account_h STORE AS accounth_tab ;

On the other hand, in the case of association many to many (N,N) ,
the both document representing account and Branch_bank(see the
example below), will be mapped in composition between the both
document where each document integrates referenced document
of another. The transformation result is:

Col1={NameCol1,NameDoc,Doc(Fields),Object_ID(Doc),Embe
dded(Bitemporal_Period)} (16)

Col2={NameCol2,NameDoc,Doc(Fields),Object_ID(Doc),Embe
dded(Bitemporal_Period)} (17)

The example shows the structure of branch_bank and customer
Json document representing N to N Relationship:

Document 3: Extraction of branch_bank Json file
Banch_bank document:

{
 "_id":45679
 "branch_pk":1
 "city": “Casablanca”
 "phone": 06453278
 "Bitemporal_Period":
 {
 "VT_start": DATE(“2013-03-01”)
 "VT_End": DATE(“9999-12-31”)
 "TT_Start": DATE (“2013-03-03”)
 "TT_End":DATE(“9999-12-31”)
 }
"Customer":{
 "Customer_id": “ 2334” }}
Customer_Json Document :
{
 "_id":2334

http://www.astesj.com/

S.A.E. Hayat & M. Bahaj / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 618-625 (2020)

www.astesj.com 623

 "Num_Cust":
 "Name_cust":
 "Bitemporal_Period":
 {
 "VT_start": DATE(“2010-01-01”)
 "VT_End": DATE(“2012-11-30”)
 "TT_Start": DATE (“2010-01-03”)
 "TT_End": DATE(“2012-12-04”)}
"Branch_bank":{
 " _id": “45679” }}

3.2.2. Composition:

In ORDB, the composition relationship is represented by
declaring Nested table in the whole class which stores all
attributes of the whole part. This relationship will be converted in
a strong composition in mongo db between the account and
balance documents. The transformation model generates one
document account contains embedded collection of balance
documents. The result of composition relationship:

Col={NameCol, NameDoc, Doc (Fields), Embedded
(Bitemporal_Data), Embedded(Collection (Part_ Fields))} (18)

Figure2. An example of Composition Class diagram

The corresponding TJson document of the example above:

Col={ Account, Account _Json Document , (_id, Num_Accout,
Type_Account), account_h (VT_start, VT_End,TT_Start,
TT_End),Balance{Value,Balance_h(VT_start,VT_End,TT_Start,
TT_End)})

Account document embedded the balance document:

Document4: Extraction of balance Json File
{
 "_id":65789
 "Num_Accout": 2
 "Type_Account": “saving_account”
 "Bitemporal_Period":
 {
 "VT_start": “2015-01-01”
 "VT_End": “9999-12-31”
 "TT_Start": “2015-01-01”
 "TT_End": “9999-12-31”
 }
"Balance":[{
 " value":324561.098

 "Blance_h":

 "VT_start": “2015-01-01”
 "VT_End": “9999-12-31”

 "TT_Start": “2015-01-01”
 "TT_End": “9999-12-31” }
{
 " value": 4356.098

 " Blance_h ":
{
 "VT_start": “2019-07-24”
 "VT_End": “2019-09-23”
 "TT_Start": “2019-07-25”
 "TT_End": “2019-09-27”
 }]}

3.2.3. Aggregation:

An aggregation represents a binary relationship. It is a weak form
of composition where the part is shareable and independent from
the whole, and its properties can be linked with more than one
whole class component. For example, if all the composites (whole)
are deleted, the sheared part can be existed.

For the aggregation Relationship, the relation is identified a
collection of (UDT) in addition of bitemporal data. Then, the
branch bank can be composed by one or more than one shareable
and existence independent collection. In mongodb, the
Aggregation relationship will be considered as a referencing
collection of _ID document represented the account document:

Col1={NameCol1,NameDoc,doc(Fields),Embedded(Bitempor
al_Period)}} (19)

Col2={NameCol2,NameDoc2,Doc(Fields),Referencing(collectio
n(Doc1)+BitemporalPeriod),Embedded(Bitemporal_Period)}}

(20)

Figure3. Aggregation relationship Class

The transformation will be defined as follow:

Col1={ Account, Account _Json Document , (_id, Num_Accout,
Type_Account), account_h (VT_start, VT_End,TT_Start,
TT_End))

Col2={Branch_Bank, Banch_bankdocument, {_id, branch_id,
city,phone},Account(collection(_ID , account_h (VT_start,
VT_End,TT_Start, TT_End)} , Banch_bank_h(VT_start,
VT_End,TT_Start, TT_End)}

The following TJson document presents the example above:

Document5: Temporal Json File for Balance_Bank
{
 "_id": 678
 "branch_id": 9
 "city": “Casablanca”

http://www.astesj.com/

S.A.E. Hayat & M. Bahaj / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 618-625 (2020)

www.astesj.com 624

 "phone":074467543

 Accounts :[{
 "Account":56432
 "Account_h":
 {
 "VT_start": “2019-08-22”
 "VT_End": “9999-12-31”
 "TT_Start": “2019-08-25”
 "TT_End": “9999-12-31” }}
 {
 "Account":980654
 " Account_h ":
 {
 "VT_start": “2018-07-24”
 "VT_End": “2019-09-23”
 "TT_Start": “2018-07-25”
 "TT_End": “2019-09-27” }
}]}

The example below presents the TORDB Query Creation for Branch
Bank and Account Tables:

Query 3: creation statement of the aggregation relationship
Create type Account_NT as object
(Account Account_T,
Account_h bitemporal_period) /

CREATE TYPE Account IS TABLE OF Account_NT ;
Create type branch_bank_type as object (
Branch_Num number,
Address varchar(40),
City varchar(20),
Accounts Account,
Branch_h bit_period)

CREATE TABLE branch_bank_table of
branch_bank_type NESTED TABLE accouns STORE
AS accounth_tab, NESTED TABLE branch_h STORE
AS branch_tab ;

3.2.4. Inheritance:

Is called also a generalization is a relationship between two
classes or more , where one entity represent a parent or super class
and the other one is considered as a child or sub class . The child
inherits the behavior and all the properties of the parent.

The inheritance is a very important In ORDB. For the creation
statement of UDT that represents the inheritance, we add the
keyword under for the sub class. This model will be transformed
in Mongo db by generating two documents separately modeling
transaction and transfers Types. The transfer document maintains
the same structure of transaction type with Additional properties
of subtype is defined in the usual way with time varying features.

 Col1={NameCol1,NameDoc,Doc(Fields), (21)
Embedded(Bitemporal_Period)}}

Col2={NameCol2,NameDoc,doc(Fields+doc1(Fields)), (22)
Embedded(Bitemporal_Period)}}

The details are illustrated in the following example:

Figure4. Inheritance Relationship Example

Col1={Transaction, Transaction_Json Document doc(_id,
trans_ID, Type_Trans, Amount), Transaction_h h (VT_start,
VT_End,TT_Start, TT_End)}
Col2={Transfer, Transfer_Json Document ,(_id, trans_ID,
Type_Trans, Amount, target_source), Transaction_h h (VT_start,
VT_End,TT_Start, TT_End)}
The following TJson document presents inheritance relationship:

Document6: Temporal Json File for Transfer class
{
 "_id":87654
 " trans_ID ": 34
 " Type_Trans": “transfer”
 “Account”:9876
 “Amount”: 23450
 "Transaction_h":
 {
 "VT_start": “2018-04-02”
 "VT_End": “2018-04-05”
 "TT_Start": “2018-04-02”
 "TT_End": “2018-04-04” }}
“target_source “: “soumiya}

Ihneritace Creation Query in TORB using Under Keyword:

Query 4: creation statement for inheritance relationship

Create or Replace type Transaction_Type as object
(trans_ID number,
Type_Trans varchar(20),
Amount number,
Account REF account_type,
Transaction_h bitemporal_period) NOT FINAL ;
Create table transaction_table of Transaction_type
NESTED TABLE Transaction_h STORE AS
transactionh_tab;

Create or Replace type Transfer_T UNDER
Transaction_Type (target_source varchar(20)) ;

http://www.astesj.com/

S.A.E. Hayat & M. Bahaj / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 618-625 (2020)

www.astesj.com 625

4. Conclusion

This work provides a new approach to the problem of
transforming and migrating of massive data based on temporal
object Relational database into Temporal Json Documents using
Mongodb. We presented the basics phases of modeling and
converting Temporal Object relational including User defined
time with Bitemporal data into oriented document database. To do
that, we formalized the rules by specifying the basics steps
involved in the temporal object-relational database design, in
order to capture the relationship’s type between objects. This
solution is done by providing a TORDB Model from an Object
relational database that contains user defined Time, and we use it
as an input enriched with additional semantic data, which is
translatable into any of the target database schemas. Furthermore,
Temporal Json document design has defined including the
varying time data by exploiting the range of powerful concepts
provided by Nosql database. Currently, any paper deals with the
transformation process and its functionalities from TORDB into
Mongodb. However, this article proposes an analyst part for our
future work, where we will implement a complete framework for
automating the migration mechanism of the schema, structure and
the data into MongoDb without any human interference.

Conflict of Interest

The authors declare no conflict of interests regarding the
publication of this paper.

References

[1] K. Kulkarni., J.E. Michels, “Temporal features in SQL: 2011”, ACM
SIGMOD Record, 41(3), 34--43, 2012. ,
https://doi.org/10.1145/2206869.2206883

[2] M. Kvet, K. Matiasko, “Transaction management inthefully temporal
system” , in 20114 16th International Conference on Computer Modelling
and Simulation (UKSim), Cambridge, UK, 2014. https://doi.org/
10.1109/UKSim.2014.26

[3] M. Kaufmann, P. M. Fischer, N. May, D. Kossmann, “Benchmarking
Bitemporal Database Systems: Ready for the Future or Stuck in the Past?”
EDBT, 738-749, 2014. DOI: 10.5441/002/edbt.2014.80

[4] Z.Gansen, L.Qiaoying, L.Libo, L.Zijing. “Schema Conversion Model of
SQL Database to NoSQL”. In 2014 Ninth International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing. Guangdong, China, 2014.
DOI: 10.1109/3PGCIC.2014.137

[5] Byrne, B, Nelson, David and Jayakumar, “Big Data Technology - Can We
Abandon the Teaching of Normalisation?”, in 2017 I9th annual International
Conference on Education and New Learning Technologies, Barcelona, Spain,
2017. DOI: 10.21125/edulearn.2017.1113

[6] A. Boicea, F. Radulescu and L. I. Agapin, “MongoDB vs Oracle -- Database
Comparison”, In 2012 Third International Conference on Emerging
Intelligent Data and Web Technologies, Bucharest, 2012.
DOI: 10.1109/EIDWT.2012.32

[7] T. Fouad, M. Bahaj. “Model Transformation From Object Relational
Database to NoSQL Document database”. In 2019 International Conference
on Networking, Information Systems & Security, Rabat, Morocco , 2019 .
https://doi.org/10.1145/3320326.3320381

[8] R. Lawrence, “Integration and Virtualization of Relational SQL and NoSQL
Systems Including MySQL and MongoDB”, in 2014 The International
Conference on Computational Science and Computational Intelligence , Las
Vegas, NV, USA, 2014 , DOI: 10.1109/CSCI.2014.56

[9] A. Singh, “Data Migration from Relational Database to MongoDB”.Global
Journal of Computer Science and Technology:C Software & Data
Engineering ,Vol 19,Issue 2 ,2019.http://dx.doi.org/10.2139/ssrn.3372802

[10] T. Jia, X. Zhao, Z. Wang, D. Gong and G. Ding, , “Model Transformation
and Data Migration from Relational Database to MongoDB”, in 2016 IEEE
International Congress on Big Data (BigData Congress), San Francisco, CA,
2016. DOI: 10.1109/BigDataCongress.2016.16

[11] L. Stanescu, M. Brezovan, D.D. Burdescu , “An Algorithm for Mapping the
Relational Databases To MongoDB--A Case Study”, International Journal
of Computer Science & Applications, 14(1), 2017.

[12] L.Stanescu, M.Brezovan , CS. Spahui, DD. Burdescu ,“A framework for
mapping the mysql Databases to Mongodb– Algorithm, Implementation and
experiments. International Journal of Computer Science and Applications,
15(1), 65 – 82, 2018

[13] D. Chauhan, K.L. Bansal, “Using the Advantages of NoSQL: A case study
on MongoDB”, International Journal on Recent and Innovation Trends in
Computing and Communication, 5(2), ISSN 232/-8169.2017

[14] S. Brahmia, Z. Brahmia, F. Grandi, R. Bouaziz, “A Disciplined Approach
to Temporal Evolution and Versioning Support in JSON Data Stores,” In
Emerging Technologies and Applications in Data Processing and
Management”, IGI Global, 114-133, 2019. DOI: 10.4018/978-1-5225-8446-
9.ch006

[15] Y. Widyani, H. Laksmiwati and E. D. Bangun, “Mapping spatio-temporal
disaster data into MongoDB”,In 2016 International Conference on Data and
Software Engineering (ICoDSE), Denpasa, Indonesia, 2016.
DOI: 10.1109/ICODSE.2016.7936157

[16] S .Ain El Hayat,F. Toufik,M. Bahaj, “UML/OCL based design and the
transition towards temporal object relational database with bitemporal data”.
Journal of King Saud University - Computer and Information Sciences,
2019. https://doi.org/10.1016/j.jksuci.2019.08.012

http://www.astesj.com/
https://doi.org/10.1145/2206869.2206883
https://doi.org/10.1109/UKSim.2014.26
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.5441%2F002%2Fedbt.2014.80?_sg%5B0%5D=-Q4Sr9mNDgEwfcXpS86pvU-ADzKcRzR-EZRsG3evqJAXDb98dx4OGdNsR43maoeksDEdJS8f8C43Q6UHIjoorTW0jg.GZ_3fa8_mbd4jVnDORd6_TmkPZmtJOCIEfHFwa3rBUhi1ifN2nlVVMwxay5Tw95s10PZr86ouhzfW8pnQ9nmLQ
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2F3PGCIC.2014.137?_sg%5B0%5D=tksNE-2DPkuHNjJPtkXuLpukSpQYIYnmjxOyukw9ByNh_MIvUAadD0YVM8455i_aSIvDI3HN2I8ZUvTfPQ8cs8z66A.HhTs5eX5-SI8wbMaTHytHMRtdquJsJf1JvfywyxndoxybCXwrTj-20hTAq8sSWi9i3s4tbqud2B86pAq4caRaQ
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.21125%2Fedulearn.2017.1113?_sg%5B0%5D=Gh8NEKH9p0GS7n8wd4hSFH30d5vpXhPa1ky9bWetfTLqtsHuHker_E1WY6ryjKUm35kzL1GLTJtmgXYGkSq92U_VQA.aNXMZ_CEDnBfJ7VW5mgD0h0tMHcNVATe_TpoZs1NvsrF253iw4Q7ocPrmESg-7F-zGkSOrTwFguWPnZS-CQAFw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FEIDWT.2012.32?_sg%5B0%5D=xkqndSqhspEbAGp9usw2CNqZrtA-9Weq0IZBHGtDHUFUlNyVa2Z8k3O_W9DupWsAi5D-h56KLW6IqPoAeliaJQSlUQ.B4fU8XAMllsFq5mWNazLVdlfsK1J4VsCdhhUGCKgf3vLDFdLP6-U7tiswKfGKcgWCFyxLim236siUN-qhAM3gw
https://dl.acm.org/doi/proceedings/10.1145/3320326
https://dl.acm.org/doi/proceedings/10.1145/3320326
https://doi.org/10.1145/3320326.3320381
https://www.researchgate.net/profile/Ramon_Lawrence
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1109%2FCSCI.2014.56?_sg%5B0%5D=kB-Lxz0lhvaWytN69EeAbJ9RlnjF_JwR40R-lTjCqej0IP80s1s1UYfrXHP-fNmISa4pTbt8qGUC1W0fhB9qDXMECw.Y5Vqp6zDbAk4qdufB6g0b9ehzV8Zl6yb-Eu__V4V4CHX721Hrhlr3UHQkhmu4iWHSTxx9zmGnsDs0QA2qEzlFQ
https://dx.doi.org/10.2139/ssrn.3372802
https://doi.org/10.1109/BigDataCongress.2016.16
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.4018%2F978-1-5225-8446-9.ch006?_sg%5B0%5D=ftB_ESVbeuTAkzdZGAsATpS2vZixlva2UAmTIHew-A7VPKahu1H5_dpJAL4-o--XhBCzaxRslG9dWZPFvL3m1rnxuA.fRCPVrGOWX2L3-IX4VNbuu6CBD6EVFAtBKbwIDNUsPsCy6fNTD5JCP_g1jqLsmmsO4AyFN4nZq7uDB7CzxQyBw
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.4018%2F978-1-5225-8446-9.ch006?_sg%5B0%5D=ftB_ESVbeuTAkzdZGAsATpS2vZixlva2UAmTIHew-A7VPKahu1H5_dpJAL4-o--XhBCzaxRslG9dWZPFvL3m1rnxuA.fRCPVrGOWX2L3-IX4VNbuu6CBD6EVFAtBKbwIDNUsPsCy6fNTD5JCP_g1jqLsmmsO4AyFN4nZq7uDB7CzxQyBw
https://doi.org/10.1109/ICODSE.2016.7936157
https://www.sciencedirect.com/science/article/pii/S1319157818311844#!
https://www.sciencedirect.com/science/article/pii/S1319157818311844#!
https://www.sciencedirect.com/science/article/pii/S1319157818311844#!
https://www.sciencedirect.com/science/journal/13191578
https://doi.org/10.1016/j.jksuci.2019.08.012

	2. Related Works
	3. Modelling and transformation Rules from TORDB into Mongodb: Phases
	3.1. Comparison between Object relational database and Mongo db features:
	3.1 Definition of the data Model
	3.1.1 Temporal Object Relational Database Model (TORDB_Model):

	3.1.2. Temporal Json schema (Tjson-schema):
	3.2. Transformation Rules from TORDB into mongodb:
	3.2.1. Association
	3.2.2. Composition:
	3.2.3. Aggregation:
	3.2.4. Inheritance:

	4. Conclusion
	Conflict of Interest
	References

