
Advances in Science, Technology and Engineering Systems Journal
Vol. 5, No. 4, 700-709 (2020)

www.astesj.com
Special Issue on Multidisciplinary Sciences and Engineering

ASTES Journal
ISSN: 2415-6698

Deep Learning Approach for Automatic Topic Classification in an Online
Submission System
Tran Thanh Dien, Nguyen Thanh-Hai, Nguyen Thai-Nghe*

College of Information and Communication Technology, Can Tho University, Can Tho city, 900000, Vietnam

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 8 July, 2020
Accepted: 11 August, 2020
Online: 28 August, 2020

Keywords:
Article classification
Deep learning
Knowledge search
Online submission system

Topic classification is a crucial task where knowledge categories exist within hierarchical
information systems designed to facilitate knowledge search and discovery. An application
of topic classification is article (e.g., journal/conference paper) classification which is
very useful for online submission systems. In fact, numerous online journals/magazine
submission systems usually receive thousands of article submissions or even more for each
month. This leads to a huge amount of time-consumption of editors to process and categorize
the submissions aiming to look for and assign appropriate reviewers to the submitted articles.
In this study, we propose an approach based on natural language processing techniques
and machine learning algorithms (both classic machine learning and deep learning) to
automatic classify the topics of articles in an online submission system. We show by
promising performance collected from prediction tasks to present that the proposed method
is a potential approach for applying to the real system.

1 Introduction

With the rapid development of data sources and computational al-
gorithms, the classification tasks, especially in text classification,
have revealed an important role in numerous fields [1]. Text classifi-
cation is a supervised learning technique that has been deploying
popularly in practical cases [2]. More specific, text classification
tasks are classical text processing problems attempting to categorize
a unseen text into a group of known texts based on its similarities
to the considered group [3]. The authors in [4] stated that text clas-
sification tasks are the assignment or categorization of labels on
a new text based on the similarities of the considered text to the
labeled texts in the training set. The framework using text classifica-
tion automatically allows information to be processed and searched
easier. Furthermore, sorting each of them takes a lot of time and
effort with a large number of texts, not to mention the possibility
of inaccurate categorization due to the subjectivity of the people.
From the proposed studies, there are numerous real applications of
text classification tasks including news classification by topics in
online newspapers, knowledge management, spam email filtering,
and supportable tools for search engines on the Internet, etc. [1].

The text classification tasks are attracting numerous scientists
with a vast of the studies proposed with different algorithms includ-
ing machine learning as well as mathematical-statistical model. In
recent years, machine learning has been widely implemented and in-

vestigated with numerous advancements. Many learning algorithms
include k-nearest neighbors (kNN), Naïve Bayes, support vector
machines (SVM), decision tree, and artificial neural network, etc.
which are leveraged to solve text classification problem with the
published studies in [5–12].

An important application of text classification is article/journal
classification where not only the authors but also the editorial boards
of the magazines/journals would like to know how to classify a doc-
ument into a relevant topic of those magazine/journal to search
or/and submit. More specifically, the submission system enables us
to disseminate texts and extract relevant information automatically
when a manuscript is submitted to the system. From the predicted
category, editors can find appropriate reviewers for the submission
faster and help to speed up the review process.

This paper is an extension of work originally presented in the In-
ternational Conference on Advanced COMPuting and Applications
(ACOMP) 2019 in Nha Trang, Vietnam [13]. We present an ap-
proach using machine learning algorithms to classify automatically
the articles which were submitted via an online submission system.
More specifically, when we submit an article (the extension can be
doc(x) or pdf, etc.) to the online submission system, the system not
only extract automatically the information on the author, title, and
abstract but stratify and assign the topic to the submission. For this
procedure, we can use the natural language processing techniques
to pre-process the data before fetching them into a machine learning

*Corresponding Author: Nguyen Thai-Nghe, Can Tho city, Vietnam, Contact: +84918028402 & email: ntnghe@cit.ctu.edu.vn

www.astesj.com
https://dx.doi.org/10.25046/aj050483

700

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj050483


T.T. Dien et al./ Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 700-709 (2020)

algorithm to do the classification tasks. Comparing to the work
in [13], this study provides contributions as follows:

• After pre-processing the data, we proposed to use Deep Learn-
ing (MLP) for the classification tasks. Experimental results
show that by using this approach, the results even get better
than using the SVM in our previous work.

• For experiments, we have collected 5 data sets (instead of 2
Vietnamese data sets as in [13]). These data sets represent
for 3 languages (English, Turkey, and Vietnamese) and have
multi-classes (2, 4, 6, 9, and 10 classes as presented in Table
1)

• In this work, since the topic classes are imbalanced, we have
used AUC (Area Under the ROC Curve) as a metric for com-
parison. Previous works show that when the data sets are
imbalanced, the AUC metric is a better measurement for
evaluation [14, 15]. We will analyze this point in the result
section.

• For faster experiments, the pre-processing data steps are com-
bined to a single procedure as presented in Algorithm 1.

• We have reviewed more and up-to-date related works.

In the next sections of the paper, we present a literature review
on robust machine learning algorithms used in text classification
tasks in Section 2. In Section 3, we introduce the proposed frame-
work including classification models and steps for pre-processing.
Section 4 describes the empirical results and Section 5 provides
insightful remarks of the study.

2 Related works
In the context of the enormous development of digital information
in recent years, text mining techniques hold a crucial role in in-
formation and knowledge management and mining, attracting the
attention of scientists [1]. Text classification through modern tech-
niques is the division of a dataset including documents into two or
more topics. The text classification purposes to assign a predefined
label or category to a document. For example, a new article pub-
lished on an online newswire system can be assigned to one of the
given topics while each submission sent to an online journal system
can be automatically stratified into its topics, etc.

2.1 Related works on text classification

Numerous papers have proposed methods and learning architectures
on text classification to enhance performance and apply in practical
cases. For example, authors in [16] employed the Chi-square feature
selection (referred to, hereafter, as ImpCHI) to enhance the classifi-
cation performance for Arabic documents classification. They also
compared this improved chi-square with three traditional features
selection metrics namely mutual information, information gain and
Chi-square. Another study in [17] introduced a new firefly algorithm
based feature selection method which achieved a precision value
equals to 0.994 on an Open Source Arabic Corpora (OSAC) dataset.

Some techniques for data pre-processing phase have been intro-
duced in numerous studies. Authors in [18] presented the maximum
matching segmentation (MMSEG) algorithm to segment words.
When the segmentation completed, the text was fetched into a vec-
tor form, with the vectorized TF*IDF. Next, data were classified
using decision trees and Support Vector Machines with the Weka
package. The experimental results of [18] were evaluated on the
dataset with 7,842 texts categorized in 10 different topics. About
500 texts of each topic were selected randomly for training phase
and the remaining were used to verify independence. As reported
in the paper, the performance with Support Vector Machines al-
gorithm was greater than the algorithm of decision tree. Besides,
the authors deployed singular value decomposition to analyze and
reduce the characteristic space dimension and hence, it can improve
classification performance of Support Vector Machines algorithm.

Another work [19] studied the semantic relation extraction and
classification in scientific paper abstracts. The authors presented the
steps of setup procedures and experimental results of semantic rela-
tion extraction and classification on scientific papers datasets. The
task included three sub-tasks: the first classification was performed
on the clean data while the second one was on noisy data, and the
final task combined extraction and classification scenario. Some
datasets which were used in the challenges such as a subset of ab-
stracts of published papers in the ACL Anthology Reference Corpus,
annotated for domain specificentities and semantic relations were
introduced in this study. Root Cause Analysis of Incidents using
Text Clustering was proposed in [20]. The authors studied the use of
two machine learning (ML) algorithms, namely random forest (RF),
and support vector machine (SVM) and found that SVM performed
best in classifying the accident narratives. Multinomial Naive Bayes
(MNB), Logistic Regression (LR), Support Vector Machines were
also deployed in [21] to prediction task on Twitter Data.

Approaches based on deep learning techniques are also carried
out in numerous studies. The authors in [22] presented A Compre-
hensive Review on deep learning techniques for text classification.
The authors in [23] proposed three fundamental architectures of
deep learning models for the tasks of text classification: Deep Be-
lief Neural (DBN), “Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN). The work also introduced basic
guidance about the deep learning models that which models is best
for the task of text classification. The authors [24] presented a novel
angle to further improve this representation learning, i.e., feature
projection, and projected existing features into the orthogonal space
of the common features. Another paper is [25] which illustrated
a model of statistics like TF-IDF, to exploit pre-trained SOTA DL
models (such as the Universal Sentence Encoder) without any need
for traditional transfer learning or any other expensive training pro-
cedure on Text Classification tasks of UNGA Resolutions. The
authors in [26] introduced a model with Gated recurrent unit (GRU)
and support vector machine. The method implemented a linear
support vector machine (SVM) as the replacement of Softmax in the
final output layer of a GRU model to obtain comparative, remark-
able results. The work in [27] introduced a new improved algorithm
of the original Sine Cosine Algorithm for feature selection with the
software written in Matlab2013 to achieve high performance on the
datasets of Reuters-21578 collection 1. Some studies [28, 29] have

1D.D., 2004. Reuters-21578. Retrieved November 6, 2013, http://www.daviddlewis.com/0Aresources/testcollections/reuters21578/

www.astesj.com 701

http://www.astesj.com


T.T. Dien et al./ Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 700-709 (2020)

Figure 1: The proposed architecture for pre-processing and classification of articles

attempted to use Reinforcement Learning for text classification.

2.2 Text vectorization

In real word, some text representation models have been proposed
including vector space model, bag of words model, and graph-
based model. The vector space model [30] is deployed in this work
because it can represent unformatted documents as simple and for-
mulaic notation. Due to its advantages, many researches based on
vector space model are implemented [31]. According to the details
of this method, each document or article is represented as a vector
while each component of such vector is a separated term that is
assigned to a value namely “weight" of that term.

TF measures the frequency of a word in a document. It depends
on the document length and the generality of word. For measuring
the weight of a word, the number of occurrences of the word is
divided by the length of the document (the number of words) as
equation 1:

T F(t,d) =
number of occurrences of term t in d

Total number of terms in d
(1)

There is difference between TF and IDF. TF counts frequency
of a term t in document d, where as DF counts occurrences of term
t in the document set N. For calculating the TF, all the terms reveal
the same importance. However, it is found that not all terms in a
dataset are important, for instance, connecting terms, determiners;
and prepositions. It is necessary to reduce the importance of such
terms with computing IDF by the formula as Equation 2:

IDF(t,D) = log
Total document in D

Number of document including t
(2)

We compute TF*IDF which integrate between TF and IDF. The
method calculates the TF*IDF value of a term via its importance in
a document belonging to a document set. Using such method, we
are able to filter out common words and retain high value words as

equation 3.

T F ∗ IDF(t,d,D) = T F(t,d)× IDF(t,D) (3)

In this study, we propose an approach of automated classifica-
tion of articles submitted via an online submission system. When
the submission (with extension such as *.doc(x), *.pdf, etc.) is
uploaded, the system, then, extracts the author’s information and
abstract to stratify the submission.

3 Proposed method
The proposed overall system including extracting information, pre-
processing data methods and categorizing articles is exhibited in
Fig. 1.

In proposed model, when a new article under formatting of
.docx, .pdf, etc. is submitted to the system, its information con-
sisting of abstract, author(s), title can be automatically extracted,
and especially categorized into an appropriate topic based on the
previous data trained by machine learning models. Due to article’s
pre-formatted template, article’s information extraction is easy to
get. Therefore, this work only focuses on how to classify article’s
topics when it is submitted to the system.

In the following sections, we will present how to pre-process
the data and setting up the classification models.

3.1 Data pre-processing

Data pre-processing described as Algorithm 1. This algorithm re-
ceives a document as input, then the document is converted and
normalized with techniques such as changing to lower cases, remov-
ing blanks, etc. The algorithm also separates documents into words
and eliminate noises then transform to the vector. The details are in
Algorithm 1.

File format conversion and word standardization: If the doc-
uments of datasets have the extension of .doc(x), they will be con-
verted to plain text (.txt) for easy use in most of classification mod-

www.astesj.com 702

http://www.astesj.com


T.T. Dien et al./ Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 700-709 (2020)

els. After converting file format, word standardization performs
to convert all text characters into lowercase while spaces are also
eliminated.

Figure 2: Process of word segmentation

Algorithm 1: Pre-processing for documents
Data: InputDocument d
Result: Vectorized-Documents D

1 Convertion(d): convert the input document (word/pdf) to text
2 WordNormalization(d): changed to lower cases, removing

blanks
3 WordSegmention(d): separate document to words
4 RemovingStopWords(d): remove noise words
5 Vectorization(d): convert documents to respectively vectors
6 Return sets of Vectorized-Documents D

Word segmentation: In some languages including Vietnamese,
spaces do not segment words but separate syllables so the segmen-
tation is an important phase in NLP. There are a lot of tools that
have been successfully developed to segment words with relatively
high accuracy. For instance, the VnTokenizer segmentation tool 2

was used for Vietnamese word segmentation. It was based on the
integrated methods of maximum matching, weighted finite-state
transducer and regular expression parsing, running on the dataset of
Vietnamese syllabary and Vietnamese vocabulary dictionary. This
tool segments Vietnamese documents into vocabulary units (words,
names, numbers, dates and other regular expressions) with over 95%
accuracy described in Fig. 2

Removing stop words: As mentioned in [32] that stop words
are the words that widely appear in all documents of the considered
dataset , or the words that appear only in one and several documents.
Therefore, they do not contain useful information or make sense.
For tasks of text classification, the appearance of such types of
words not only do not help examine the classification but also cause
noises leading to a decrease in performance of the classification
process.

Text vectorization In this study, we use TF-IDF (term
frequency-inverse document frequency) as a statistical measure
that evaluates how relevant a term is to a document in a collection
of documents.

Text classification algorithms From a set of documents {d1 ...
dn} called a training set, in which document di is labeled under cj
belonging to set of categories C = {c1 ... cm}, classification model
is determined for classifying any document dk into an appropriate
category of set C.

In our experiments, some text classification algorithms which
are implemented for comparison include SVM algorithms, tree

decision and deep learning techniques.

3.2 Deep learning model

The proposed model is presented in Fig. 1 where the input attributes
are selected from Table 1 and the output (prediction) of the model
including classes depending the selected dataset. The proposed Mul-
tiLayer Perceptron (MLP) architecture includes one hidden layer
with 16 neurons (see an illustration in Figure 3) which is conducted
from fine-tune hyperparameters experiments (see Section 4.2) run-
ning n hidden layer(s) with various (m) numbers of neurons.

In order to investigate the difference in the performance, starting
at one hidden layer, we increase the number of neurons from 2 to
128. Each multiplies two times the preceding one (2n with n = 1..7).
When we obtain the best number of neurons, let say k, for exam-
ple, we begin to increase the number of hidden layers from 2 to 5
with k neurons for each hidden layer to observe the changes in the
prediction results. The experiments for hyperparameters search are
done on Scientific_Articles dataset. As exhibited from Figure 3,
the network receives 3431 attributes of Scientific_Articles dataset
as the input following by a hidden layer including 16 neurons and
produces 9 outputs corresponding to the predicted probabilities of 9
topics for the classification. After selecting hyperparameters from
the experiments, we keep the number of neurons and one hidden
layer for prediction tasks on five datasets while the number of nodes
of the input layer and output layer can be vary depending on the
considered dataset.

The MLP models which perform the binary classification are
implemented Sigmoid function to do prediction tasks. The Sigmoid
function [33] usually appears in the output layers of Deep learning
architectures. It transforms the input values which lie in the domain
IR to outputs have the domain in [0,1]. The Sigmoid function is
also called “squashing" because this function squashes any input
in the range of (-inf,-inf) to the range of [0,1]. When we shifted to
gradient-based learning, the Sigmoid was considered as a natural
selection due to its smooth and differentiable approximation to a
thresholding unit. The Sigmoid function is given by the formula:

Sigmoid(x) =
1

1+ e−x (4)

where, x denotes data after being computed by the preceded neural
layer.

For multi-classification problems, we use softmax function
(Equation 5) with k classes. The Softmax function normalizes
an input value into a vector of values that follows a probability
distribution whose total sums up to 1.

So f tmax(xi) =
exi

∑
k
j ex j

(5)

The activation function namely, ReLU [34], is also implemented
in our architecture. ReLU follows the formula:

f (x) = max(0,x) (6)

where, x denotes data after being processed by the preceded neural
layer.

2N. T. M. Huyen, V. X. Luong and L. H. Phuong, “VnTokenizer”, 2010. http://vntokenizer.sourceforge.net/

www.astesj.com 703

http://www.astesj.com


T.T. Dien et al./ Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 700-709 (2020)

Table 1: Five considered datasets descriptions

Data set #Instances #Attributes #Classes Language
Reuters_Corn 2,158 1,503 2 English

School_Text_Books 1,786 2,566 4 English

Turkish_News_Articles 3,600 5,693 6 Turkish

Scientific_Articles 650 3,431 9 Vietnamese

VnExpress_Newsletters 10,000 3,266 10 Vietnamese

Figure 3: The proposed MLP architecture conducted from tune parameters experi-
ments on Scientific_Articles dataset

ReLU is the most widely used activation function for deep learn-
ing architectures with state-of-the-art results to date. ReLU helps
models to produce better performance and generalization in deep
learning compared to the Sigmoid and Tanh activation functions.
It represents a nearly linear function, so this activation function
preserves the properties of linear models that made them easy to
optimize, with the gradient-descent method [35, 36].

ReLu holds a role as an activation function to transform the
output of the preceded hidden neural layer. ReLU helps to improve
neural networks by speeding up training. Gradients of logistic and
hyperbolic tangent models are lower than the positive portion of the

ReLU. That means the positive portion is updated more rapidly as
training progresses.

In order to reduce overfitting issues, we consider implementing
Early Stopping technique with a patience epoch of 5. This means
that the loss cannot be improved after 5 consecutive epochs, the
learning will be stopped. Otherwise, the learning will be continued
to run to 10 epochs. The network is implemented with Adam opti-
mizer function, use a batch size of 100 and a default learning rate of
0.001.

4 Experimental results

4.1 Data Description

This study used five experimental datasets in three various lan-
guages (including English, Turkish, and Vietnamese) as described
in Table 1. The reuters corn is available at UCI repository3 for
binary classification tasks. The School text books of 11th and 12th

grade which is available at Kaggle Website4 with four topics. A
collection of Turkish news and articles dataset can be download-
able at UCI repository 5 including 3600 samples on 6 categories.
The Scientific articles of a university and VnExpress Newsletters in
Vietnam were used in our previous work at ACOMP 2019 [13] in-
clude 650 samples, 3431 features and 10000 samples, 3266 features,
respectively. The considered numbers of classes also vary from
binary classification to 10-class classification. The largest dataset is
VnExpress_Newsletters with 10000 samples on 10 different topics.

We also face imbalanced datasets issues where the number of
samples of some classes is much more than other classes. For exam-
ple, a class of Reuters_corn dataset occupies to 97% while only 3%
is for the other.

The performances of classifiers are examined by average AUC
on 3-fold cross-validation. The folds are the same for all classifiers,
i.e. training and test sets were identical for each classifier. AUC is
a reliable metric for evaluating classifiers where data are not bal-
anced. AUC is widely used in numerous studies to examine the
performance of prediction tasks and it is reliable metric to measure
the performance of prediction.

4.2 Hyper-parameter turning

In order to select appropriate parameters for the MLP models, we
run the experiments with various configurations of MLP architec-

3 https://storm.cis.fordham.edu/ gweiss/data-mining/datasets.html
4 https://www.kaggle.com/deepak711/4-subject-data-text-classification
5https://archive.ics.uci.edu/ml/datasets/TTC-3600:%20Benchmark%20dataset%20for%20Turkish %20text%20categorization

www.astesj.com 704

http://www.astesj.com


T.T. Dien et al./ Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 700-709 (2020)

Figure 4: Hyper-parameter search for the Number of Hidden Layers

Figure 5: Hyper-parameter search for the Number of Neurons

tures.
In Figure 4 and Figure 5, we reveal the performance of different

configurations of MLP on Scientific_Articles dataset. The results
show the performance is rising according to the width of the MLP.
However, the performances reach peaks which are vary depending
on the number of hidden layers used. After reaching the peak, the
performance tends to go down when we keep increasing the number
of neurons. As seen from Figure 4, with one hidden layer, we obtain
the best with 16 neurons while using two or three hidden layers
achieve the highest performance with 32 neurons per hidden layer.
We noted that the performance decreases when we add more layers
due to overfitting, but these differences are trivial when the number
of neurons per hidden layer is high.

In most of the cases, the architectures of MLP with one neural
layer obtain greater performance than the architectures with more
hidden layers (see details performance of the number of neurons
with one hidden layer in Figure 5). However, with a large number of
neurons, we can see the performance of various numbers of neural

layers are nearly the same. Our results exhibit that the shallow
architecture of MLP including one hidden layer with 16 neurons
reaches the best performance. The number of hidden layers and the
number of neurons conducted from the experiments in hyperparam-
eter tuning, we implement an MLP architecture with one hidden
layer including 16 neurons to run the learning and validation on the
other 4 datasets.

The experiments of five considered datasets are presented and
compared with various machine learning methods in Section 4.3.

4.3 Topic classification Results of various machine
learning algorithms on five considered datasets

Previous work [13] we showed that SVM works very well for auto-
matic topic classification in an online submission system, however,
in this work we have continued to improve and showed that using
Deep Learning approach the results even better. Since the data sets
are imbalanced, we report the AUC instead of the accuracy metric as

www.astesj.com 705

http://www.astesj.com


T.T. Dien et al./ Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 700-709 (2020)

Table 2: Performance Comparison in AUC (Area under the ROC Curve) of various machine learning approaches on five considered datasets

Data set Classifier AUC
Reuters_Corn MLP 0.991

SVM 0.811

Decision Tree 0.813

School_Text_Books MLP 0.999
SVM 0.991

Decision Tree 0.928

Turkish_News_Articles MLP 0.962
SVM 0.949

Decision Tree 0.871

Scientific_Articles MLP 0.977
SVM 0.965

Decision Tree 0.819

VnExpress_Newsletters MLP 0.990
SVM 0.985

Decision Tree 0.876

reported in Table 2. We have also used Decision Tree as a baseline
for comparison.

Table 2 reveals the topic classification performances in AUC
of three different machine learning algorithms on five considered
datasets. It is easy to see that MLP outperforms other algorithms.
In most cases, Decision Tree algorithm gives the worst result while
SVM holds the second place. The classification performances of
MLP are promising results which all achieve over 0.960 in AUC.
Three datasets of them reach over 0.990 while the article classifi-
cation in Turkish reveals the lowest performance but this result is
still high with an AUC of 0.962. An example of visualization for
the AUC and precision-recall are presented in Figures 6 and 7, other
datasets are quite similar.

We also present the results in confusion matrices of
School_Text_Books dataset to observe how different in the per-
formances between MLP and SVM are in Table 3.

As shown from the results above, MLP outperforms SVM and
we might like to know how different between them. We can see
the difference is that SVM performs worse than MLP on the class
where owns the minimum number of samples among the considered
classes (these numbers are formatted with blue and bold, revealed
in Table 3). With 98 samples for the class of “geography", this
number is compared to other classes to see that we face imbalanced
issues in data. However, MLP achieves a promising classification
result comparing to SVM on the class with much fewer samples.
Similar results are also revealed in other datasets. This is expected
to bring to a reliable result in practical cases where we usually meet
imbalanced dataset issues.

Binary classification tasks on Reuters_Corn dataset reveal the
same results where Deep learning approach also reaches a better per-
formance on the class with fewer samples (see the results in Table
4). The Class indicates whether the entry is related to corn (b = 1)
or not (a = 0). As observed from the results, we collected fewer

samples which related to “corn" so we also face imbalanced issue in
the dataset. In this case, the class of 1 only occupies 3% compared
to 97% samples belonging to the class of 0. The same result with
multi-classes classification tasks, we obtain better performance for
the binary classification tasks with MLP on the class with fewer
samples (these numbers are formatted with blue and bold, revealed
in Table 4) when we compare to SVM algorithm.

Experimental results in this work showed that the MLP is more
suitable than the SVM in case of imbalanced data where the minority
class is more interesting to predict. This is also the reason why we
have selected the AUC as a measure instead of the Accuracy [14,15].

For the training times, the MLP was completed the training
stage in a couple of minutes for the datasets using in this study, so it
does not a matter for an online system where we can automatically
set-up a training schedule after a time interval (e.g., the model can
be automatically updated after one day or other intervals depending
on the real number of submissions).

5 Conclusion
Leveraging techniques of natural language processing and machine
learning algorithms, we presented a solution to the automated clas-
sification of articles to support authors/editors saving their efforts
and time for processing articles on the system. Data pre-processing
techniques with steps introduced in this work are significantly im-
proved to make the dataset in a standardized format for learning with
the three considered algorithms of Multilayer Perceptron, Support
Vector Machines and Decision Tree. The experiments are done on
five various datasets. The data used vary in the number of features,
attributes as well as the number of classes. All datasets reach the
performance of over 0.960 in AUC with deep learning models.

As shown from experimental results, deep learning algorithm

www.astesj.com 706

http://www.astesj.com


T.T. Dien et al./ Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 700-709 (2020)

Figure 6: The Area under the ROC (AUC) for Turkish_News_Articles dataset

Figure 7: The Precision-Recall for Turkish_News_Articles dataset

Table 3: Confusion matrix comparison of predictions between Multilayer Perceptron and Support Vector Machines on School_Text_Books dataset

Deep learning SVM
Predicted classes Predicted classes

Actual classes

a b c d a b c d

283 0 0 1 a = accounts 281 1 0 2

0 626 7 2 b = biology 0 632 3 0

0 8 87 3 c = geography 0 16 78 4

0 4 3 762 d = physics 0 4 1 764

with Multilayer perceptron exhibits better classification performance than the classic machine learning such as Support Vector Machines.

www.astesj.com 707

http://www.astesj.com


T.T. Dien et al./ Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 700-709 (2020)

Table 4: Confusion matrix comparison of predictions between Multilayer Perceptron and Support Vector Machines on Reuters_Corn dataset with binary classification

Deep learning SVM
Predicted classes Predicted classes

Actual classes
a b a b

2064 25 a = 0 2088 1

13 56 b = 1 26 43

Some parameters are also evaluated to reach promising results in
classification tasks. The results show that the proposed model is
feasible to extract information and stratify articles automatically
whenever a document is submitted to the system. We continue to
find a solution for larger datasets in further research.

The proposed architecture of Multilayer perceptron is rather
shallow with one neural layer. A vast of hyper-parameters of MLP
are evaluated and we see that the performance tends to be saturated
when we increase both the number of hidden layers as well as the
number of neurons. Further studies should take into sophisticated
architectures to improve performance in document categorization
tasks.

Conflict of Interest The authors declare no conflict of interest.

References
[1] K. Thaoroijam, “A Study on Document Classification using Machine Learning

Techniques,” International Journal of Computer Science Issues, 11(1), 217–222,
2014.

[2] Y. Li, L. Zhang, Y. Xu, Y. Yao, R. Y. K. Lau, Y. Wu, “Enhancing Binary Clas-
sification by Modeling Uncertain Boundary in Three-Way Decisions,” IEEE
Transactions on Knowledge and Data Engineering, 29(7), 1438–1451, 2017,
doi:https://doi.org/10.1109/TKDE.2017.2681671.

[3] F. Sebastiani, “Machine Learning in Automated Text Categorization,” 34(1),
1–47, 2002, doi:https://doi.org/10.1145/505282.505283.

[4] Y. Yang, J. O. Pedersen, “A Comparative Study on Feature Selection in Text Cat-
egorization,” in Proceedings of the Fourteenth International Conference on Ma-
chine Learning, ICML ’97, 412–420, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997, doi:https://dl.acm.org/doi/10.5555/645526.657137.

[5] C. C. Aggarwal, C. Zhai, A Survey of Text Classification Algorithms, 163–222,
Springer US, Boston, MA, 2012, doi:10.1007/978-1-4614-3223-4_6.

[6] M. A. Bijaksana, Y. Li, A. Algarni, “A Pattern Based Two-Stage Text Clas-
sifier,” in P. Perner, editor, Machine Learning and Data Mining in Pattern
Recognition, 169–182, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,
doi:https://doi.org/10.1007/978-3-642-39712-7_13.

[7] J. Chen, H. Huang, S. Tian, Y. Qu, “Feature selection for text classification
with Naïve Bayes,” Expert Systems with Applications, 36(3, Part 1), 5432 –
5435, 2009, doi:https://doi.org/10.1016/j.eswa.2008.06.054.

[8] M. Haddoud, A. Mokhtari, T. Lecroq, S. Abdeddaïm, “Combining super-
vised term-weighting metrics for SVM text classification with extended term
representation,” Knowledge and Information Systems, 49, 909–931, 2016,
doi:https://doi.org/10.1007/s10115-016-0924-1.

[9] A. Chouchoulas, Q. Shen, “A Rough Set-Based Approach to Text Classifi-
cation,” in N. Zhong, A. Skowron, S. Ohsuga, editors, New Directions in
Rough Sets, Data Mining, and Granular-Soft Computing, 118–127, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1999, doi:https://doi.org/10.1007/
978-3-540-48061-7_16.

[10] A. P. Gopi, R. N. S. Jyothi, V. L. Narayana, K. S. Sandeep, “Classification of
tweets data based on polarity using improved RBF kernel of SVM,” Interna-
tional Journal of Information Technology, 2020, doi:https://doi.org/10.1007/
s41870-019-00409-4.

[11] N. Thai-Nghe, Q. D. Truong, “An Approach for Building a Semi-automatic
Online Consultancy System,” in 2015 International Conference on Advanced
Computing and Applications (ACOMP), 51–58, 2015, doi:https://doi.org/10.
1109/ACOMP.2015.11.

[12] B. E. Boser, I. M. Guyon, V. N. Vapnik, “A Training Algorithm for Op-
timal Margin Classifiers,” in Proceedings of the 5th Annual ACM Work-
shop on Computational Learning Theory, 144–152, ACM Press, 1992, doi:
https://doi.org/10.1145/130385.130401.

[13] T. T. Dien, B. H. Loc, N. Thai-Nghe, “Article Classification using Natural
Language Processing and Machine Learning,” in 2019 International Confer-
ence on Advanced Computing and Applications (ACOMP), 78–84, 2019,
doi:https://doi.org/10.1109/ACOMP.2019.00019.

[14] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, G. Bing, “Learning
from class-imbalanced data: Review of methods and applications,” Expert
Systems with Applications, 73, 220 – 239, 2017, doi:https://doi.org/10.1016/j.
eswa.2016.12.035.

[15] N. Thai-Nghe, Z. Gantner, L. Schmidt-Thieme, “A new evaluation measure for
learning from imbalanced data,” in The 2011 International Joint Conference
on Neural Networks, 537–542, 2011, doi:https://doi.org/10.1109/IJCNN.2011.
6033267.

[16] S. Bahassine, A. Madani, M. Al-Sarem, M. Kissi, “Feature selection using
an improved Chi-square for Arabic text classification,” Journal of King Saud
University - Computer and Information Sciences, 32(2), 225 – 231, 2020,
doi:https://doi.org/10.1016/j.jksuci.2018.05.010.

[17] S. Larabi Marie-Sainte, N. Alalyani, “Firefly Algorithm based Feature Se-
lection for Arabic Text Classification,” Journal of King Saud University -
Computer and Information Sciences, 32(3), 320–328, 2020, doi:https://doi.org/
10.1016/j.jksuci.2018.06.004.

[18] C.-H. Tsai, “MMSEG: A word identification system for Mandarin Chinese
text based on two variants of the maximum matching algorithm,” Avaible on
internet at http://www. geocities. com/hao510/mmseg, 2000.

[19] K. Gábor, D. Buscaldi, A.-K. Schumann, B. QasemiZadeh, H. Zargayouna,
T. Charnois, “SemEval-2018 Task 7: Semantic Relation Extraction and Classifi-
cation in Scientific Papers,” in Proceedings of The 12th International Workshop
on Semantic Evaluation, 679–688, Association for Computational Linguistics,
New Orleans, Louisiana, 2018, doi:http://dx.doi.org/10.18653/v1/S18-1111.

[20] S. Sarkar, N. Ejaz, M. Kumar, J. Maiti, “Root Cause Analysis of Incidents
Using Text Clustering and Classification Algorithms,” in P. K. Singh, B. K.
Panigrahi, N. K. Suryadevara, S. K. Sharma, A. P. Singh, editors, Proceedings
of ICETIT 2019, 707–718, Springer International Publishing, Cham, 2020,
doi:https://doi.org/10.1007/978-3-030-30577-263.

[21] P. Harjule, A. Gurjar, H. Seth, P. Thakur, “Text Classification on Twitter Data,”
in 2020 3rd International Conference on Emerging Technologies in Computer
Engineering: Machine Learning and Internet of Things (ICETCE), 160–164,
2020, doi:https://doi.org/10.1109/ICETCE48199.2020.9091774.

[22] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. A. Chenaghlu, J. Gao,
“Deep Learning Based Text Classification: A Comprehensive Review,” ArXiv,
abs/2004.03705, 2020.

[23] M. Zulqarnain, R. Ghazali, Y. M. M. Hassim, M. Rehan, “A comparative
review on deep learning models for text classification,” Indonesian Journal
of Electrical Engineering and Computer Science, 19(1), 325–335, 2020, doi:
https://doi.org/10.11591/ijeecs.v19.i1.pp325-335.

[24] Q. Qin, W. Hu, B. Liu, “Feature Projection for Improved Text Classification,” in
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, 8161–8171, Association for Computational Linguistics, Online,
2020, doi:http://dx.doi.org/10.18653/v1/2020.acl-main.726.

www.astesj.com 708

http://www.astesj.com


T.T. Dien et al./ Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 700-709 (2020)

[25] F. Sovrano, M. Palmirani, F. Vitali, “Deep Learning Based Multi-Label Text
Classification of UNGA Resolutions,” ArXiv, abs/2004.03455, 2020.

[26] M. Zulqarnain, R. Ghazali, Y. M. M. Hassim, M. Rehan, “Text classification
based on gated recurrent unit combines with support vector machine,” Inter-
national Journal of Electrical and Computer Engineering, 10(4), 3734–3742,
2020, doi:http://doi.org/10.11591/ijece.v10i4.pp3734-3742.

[27] M. Belazzoug, M. Touahria, F. Nouioua, M. Brahimi, “An improved sine
cosine algorithm to select features for text categorization,” Journal of King
Saud University - Computer and Information Sciences, 32(4), 454 – 464, 2020,
doi:https://doi.org/10.1016/j.jksuci.2019.07.003.

[28] E. Lin, Q. Chen, X. Qi, “Deep reinforcement learning for imbalanced
classification,” Applied Intelligence, 50(8), 2488–2502, 2020, doi:10.1007/
s10489-020-01637-z.

[29] D. Chai, W. Wu, Q. Han, F. Wu, J. Li, “Description Based Text Classification
with Reinforcement Learning,” ArXiv, abs/2002.03067, 2020.

[30] C. S. Perone, “Machine learning: Cosine similarity for vector space models
(Part III),” URL:http://blog.christianperone.com, 2019.

[31] J.-Y. Chang, I.-M. Kim, “Analysis and Evaluation of Current Graph-Based Text
Mining Researches,” Advanced Science and Technology Letter, 42, 100–103,
2013, doi:http://dx.doi.org/10.14257/astl.2013.42.2.

[32] H. Saif, M. Fernandez, Y. He, H. Alani, “On Stopwords, Filtering and Data
Sparsity for Sentiment Analysis of Twitter,” in Proceedings of the Ninth In-
ternational Conference on Language Resources and Evaluation (LREC’14),
810–817, European Language Resources Association (ELRA), Reykjavik,
Iceland, 2014.

[33] C. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall, “Activation Functions:
Comparison of trends in Practice and Research for Deep Learning,” ArXiv,
abs/1811.03378, 2018.

[34] V. Nair, G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann
Machines,” in J. Fürnkranz, T. Joachims, editors, Proceedings of the 27th
International Conference on Machine Learning (ICML-10), June 21-24, 2010,
Haifa, Israel, 807–814, Omnipress, 2010.

[35] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen,
A. Senior, V. Vanhoucke, J. Dean, G. E. Hinton, “On rectified linear units
for speech processing,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, 3517–3521, 2013, doi:https://doi.org/10.1109/
ICASSP.2013.6638312.

[36] G. E. Dahl, T. N. Sainath, G. E. Hinton, “Improving deep neural networks for
LVCSR using rectified linear units and dropout,” in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, 8609–8613, 2013,
doi:https://doi.org/10.1109/ICASSP.2013.6639346.

www.astesj.com 709

http://www.astesj.com

	Introduction
	Related works
	Related works on text classification
	Text vectorization 

	Proposed method
	Data pre-processing
	Deep learning model

	Experimental results
	Data Description
	Hyper-parameter turning
	Topic classification Results of various machine learning algorithms on five considered datasets

	Conclusion

