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The present article explains obtaining of the Bayesian prediction bounds at the maximum
and minimum rate taking into account the results of future observation from a new version
of a bathtub-shape failure rate distribution of life time type in the presence of outliers.
The Type-II censored sample serves as a basis for the intervals of the prediction with the
numerical examples as illustrations of the studied procedure.

1 Introduction
Researchers study numerous statistical problems with the require-
ment to apply the same distribution on the basis of the previously
obtained data to predict the future data. Previous analysis of various
practical applications required to satisfy the mentioned needs have
been conducted in the studies of [1]-[3] with the most prominent
suggestions and analysis done in the study of [4]. The latter is
devoted to analysis of the bathtub-shaped distribution of life-time
type, taking into account the function of increasing failure rate or
two parameters. Provided that the distribution is shown with λ and
β as the available two parameters by Chen, it is possible to present
the functions of probability density and cumulative distribution in
the equations as follows:

f (x; λ, β) = λ β xβ−1exβ − λ (exβ−1), x > 0, λ > 0, β > 0, (1)

F(x; λ, β) = 1 − e− λ (exβ−1). (2)

The calculations of [5] presented Bayesian estimations on the
basis of bathtub-shaped life time distribution of two parameters
with the use of record values. The study of [6] is devoted to ob-
taining bounds of Bayesian prediction for a life time distribution
with the function of bathtub-shaped failure rate on the basis of two
parameters. Based on censored data, [7] suggested a two-parameter

Lifetime Distribution with Bathtub Shaped Hazard. Consequently,
derivation of Bayesian prediction bounds was done by [8] for a new
version of bathtub shape failure rate life time model of doubly type-
II censored samples. Their research was of crucial importance, tak-
ing into consideration the functions of life time distribution founded
upon the Bayesian intervals for prediction [9]. E-Bayesian estima-
tion of Chen distribution based on type-I censoring scheme has also
investigated [10].

Application of prediction techniques with two samples was
done with the use of the parameters obtained previously for a single
problem of statistical significance. The key problem of the out-
lier presence was identified with several approximation approaches
combined, and it produces an impact on the estimations of previous
density with implementation of unknown parameters. Illustration of
the significance of the presented problem from a statistical perspec-
tive is done with numerical estimation and gamma conjugate joint
prior and prior cases. The present research studies Bayesian predic-
tion intervals from the Chen (λ, β) model (1) for future observations
under two plans of sampling: x(1), x(2), · · · , x(n) is an ordered ran-
dom sample from model (2) (size n) where x(r), x(r+1), · · · , x(n), the
(n− r) are the sample ordered observations of the largest size. Statis-
tical analysis applies the ordered observations which remained, i.e.,
x = (x(1), · · · , x(r)). It is evident that the sampling has its special
cases like a complete ordered sample (r = n).

In the first case, the observed sample is presented as follows:
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x(1) < · · · < x(r) is Type II censored sample with r < n. An un-
observed sample is presented with x(r+1) < x(r+2) < · · · x(n) as
remaining values. The observed sample is used for the study of the
remaining n − r values.

In the second case, the previously mentioned Type II of sample
is represented in the same way as x(1) < · · · < x(r). The future
unobserved sample is shown as z1 < z2 < · · · < zm from the same
population. The key aim for the selected configurations of sampling
is identification of the prediction intervals with the applied previous
observations for specification of the future observations.

Derivation of a random sample x(1) < x(2) < · · · < x(n) is done
with the probabilities specified in (1) and (2) from the a population.
In addition, the life test uses the assigned x1, x2, · · · , xn Recording
of the failure times is done from the timeframe of rth failure with
r < n. The following likelihood function estimate is used for the
Type-II censored data with the mentioned observations, taking into
account:

L(λ, β; x) ∝ [1 − FX(x(r); λ, β)]n−r
r∏

i=1

[ fX(x(i); λ, β)

= (λ β)r exp
{ r∑

i=1

(β ln x(i) + xβ(i)) − λT1(β; x)
}
, x(k) > 0 (3)

where

x = (x(1), · · · , x(r)),

T1(β; x) =

r∑
i=1

(exβ(i) − 1) + (n − r)(exβ(r) − 1). (4)

Assuming that the researcher uses the function of simple prior
density for measuring previous hypotheses for λ and β, the following
estimations can be done:

π(λ, β) = π1(λ) π2(β), (5)

with π1(λ) viewed as a conjugate previously presented as

π1(λ) =
ba1

1

Γ(a1)
λa1−1 e−b1 λ, λ > 0 (a1, b1 > 0), (6)

π2(β) =
ba2

2

Γ(a2)
βa2−1 e−b2 β, β > 0 (a2, b2 > 0). (7)

According to the suggestion of [11], the function presented in
(6) and (7) can be used to identify the bathtub-shaped distribution
with the help of two parameters. Summarization of the function of
joint posterior density that λ and β parameters have can be done as
follows with the help of the joint prior density function presented
correspondingly in (14) and (19) as well as the likelihood function:

π∗2(λ, β, |x) ∝ λr+a1−1βr +a2−1

exp
{ r∑

i=1

(β ln x(i) + xβ(i)) − b2 β − λ [T1(β; x) + b1]
}

(8)

Thus, λ and β can have their posterior density function presented as
follows:

π∗(λ, β|x) ∝ g1(λ|data) g2(β| data) g3(λ, β| data), (9)

with g1(λ|β, data) as a gamma density with the constraints of the
r shape and T1(β; x) scale, while g2(β|data) can be viewed as a
function of proper density estimated as follows:

g2(β|data) ∝
1

[T1(β; x)]r β
r−1 exp

{ r∑
i=1

β(ln x(i) − b2)
}
, (10)

with g3(λ, β| data)) presented as

g3(λ, β|data) = λa1 βa2 e−λb1+xβ . (11)

Hence, the following equation presents the Bayesian estimation
of λ and β in any function, for instance g(λ, β) under the function
of squared error loss:

ĝ(λ, β) =∫ ∞
0

∫ ∞
0 g(λ, β)g1(λ|data) g2(β|λ, data)g3(λ, β|data)dλdβ∫ ∞
0

∫ ∞
0 g1(λ|data) g2(β|λ, data) g3(λ, β|data)dλdβ

(12)

As for the equation (21), conversion is evidently impossible with
the output of a simple closed form; that implies that estimations of
the Bayesian predications for the inputs of λ and β specified before
are impossible in this form as well. Consequently, it can be sug-
gested to follow the recommendation in [12] and use the approach
of importance sampling technique for approximation of (21) with
reference to the restriction of a simple closed form.

1.1 Importance sampling technique

The methodology of an importance sampling technique is applied
for computing and validating the Bayes estimates on λ and β as
well as g(λ, β) and other constructed relevant functions. Algorithm
presents the function of posterior density with the peculiar features
of the process of approximation.

Algorithm 1: Sampling Technique Algorithm
Step 1: Estimation of β on the basis of g1(β|data).
Step 2: Estimation of λ on the basis g2(λ|β, data).
Step 3: Repetition of the described stages following the

principle of consecutiveness aimed at generating
(λ1, β1), (λ2, β2), · · · , (λM , βM)

The following equation presents the process of approximation
using the restrictions of Bayesian estimates for g(λ, β) and squared
error loss control in the framework of the procedure of importance
sampling:

ĝBS (λ, β) =

M∑
i=1

g(λi, βi) g3(λi, βi|data)∑M
i=M0

g3(λi, βi|data)
. (13)

2 Bayesian prediction under the condition
of the presence of outliers

This part of research is devoted to predicting of future outputs of the
studies in the presence of outliers. All the formal definitions used
in this section are the same as in (1) and x1, x2, · · · , xn is used as
a random sample formed for the given function of the population

www.astesj.com 711

http://www.astesj.com


A.R.A Alanzi / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 710-714 (2020)

density from Chen (λ, β). Furthermore, y1, y2, · · · , ym is referred
to as independent unobserved sample generated from the same data
points, further denoted as a future sample. Furthermore, we probe
the limits of Bayesian prediction for sth in the framework of the
future estimates that ys, s = 1, 2, · · · , m has under the conditions
of using single outliers. The following equation presents the ys

density function under the mentioned conditions for θ:

h1(ys| θ) = D(s) [(s − 1)F s−2(1 − F)m−sF? f + F s−1(1 − F)m−s f ?

+(m − s)F s−1(1 − F)m−s−1(1 − F?) f ], (14)

with

D(s) =

(
m − 1
s − 1

)
. (15)

The functions of density and cumulative distribution are pre-
sented as f = f (y| θ) and F = F(y|θ) for any ys provided that they
cannot be referred as outliers with outliers as f ∗ = f ∗(y|θ) and
F∗ = F∗(y|θ) [13]. The change of λ parameter by λλo or λ depend-
ing on the classification of the outliers allows obtaining the f ∗ and
F∗ functions for the Chen (λ, β) model.

3 Predicting the minimum
It is possible to present distribution in the minimum in m-sized
future sample with the single outlier of type λλo given by using s as
1 in (14) as follows:

h1(y1| θ) = (1 − F)m−1 f ? + (m − 1)(1 − F)m−2(1 − F?) f . (16)

It is possible to obtain the density function of Y1 in the case of
Chen (λ, β) in the presence of a single type λλ0 outlier via substi-
tution of (1) for f and (2) for F correspondingly in (16). f ∗ and
F∗ have values given by (1) and (2) further after λ is replaced by
λ λ0. Simplification of this density function is done in the following
form:

h1(y1| λ, β) = f (y1; λ(m + λ0 − 1), β), (17)

where f (·, ·) is given by (1). The cdf of h1(y1| λ, β) can be presented
as

H1(y1| λ, β) = F(y1; λ(m + λ0 − 1), β). (18)

The predictive density of y1, with x, λ and β is given by

h∗1(y|x) =

∫ ∞

0

∫ ∞

0
h1(y1| λ, β) π∗(λ, β| x) dλ dβ. (19)

The predictive distribution function of y1, with x, λ and β is

H∗1(y |x) =

∫ ∞

0

∫ ∞

0
H1(y1|x, λ, β) π∗(λ, β| x) dλ dβ. (20)

It can be assumed that {(λi, βi); i = 1, 2, · · · ,M} should be
viewed as MCMC samples obtained from π∗(λ, β| x). The equa-
tion for corresponding estimation parameters that consistency of
h∗1(y1|x, λ, β) and H∗(y1|x, λ, β) has is as follows:

ĥ∗1(y |x) =

M∑
i=1

h1(y1| λi, βi) hi, (21)

Ĥ∗1(y |x) =

M∑
i=1

H1(y1| λi, βi) hi, (22)

with

hi =
g3(λi, βi| data)

M∑
i=1

g3(λi, βi| data)
; i = 1, 2, · · · , M. (23)

All the mentioned equations serve as the basis for the a
(1 − τ) 100 % Bayesian estimation for Y1 , which implies having
P[L(x) ≤ Y1 ≤ U(x)] = 1 − τ, with L(x) as the highest and limit
for y1 and U(x) as the lowest limit for y1. On the basis of the prior
estimates for (22), 1 − τ

2 and τ
2 , we can claim that

P[Y ≥ L(x)| x] = 1 −
τ

2
⇒ Ĥ∗1(L(x)| x) =

τ

2
, (24)

and

P[Y ≤ U(x)| x] =
τ

2
⇒ Ĥ∗1(U(x)| x) = 1 −

τ

2
. (25)

Computing of the prediction bounds of y1 is done on the basis of
the (24) and (25) equations.

4 Predicting the maximum

Obtaining of distribution of the maximum in a m-sized sample with
the presence of a single outlier is done via using s = m in (14). The
equation for Ym density function for a provided θ in the presence of
a single outlier is as follows:

h(ym| θ) = (m − 1)[F]m−2[F?] f + [F]m−1 f ?. (26)

It is possible to obtain the density function of Ym in the case of
Chen(λ, λ) in the presence of a single type λ λ0 outlier via substi-
tution of (1)for f and (2) for F correspondingly in (26). f ∗ and F∗

have values given by (1) and (2) further after λ is replaced by λ λ0.
Simplification of this density function is done in the following form:

h1(ys| λ, β) = λ0

m−1∑
j=0

A1 j(ym) + (m − 1)
m−2∑
j=0

A2 j(ym)], ym > 0, (27)

with

A1 j(ym) = a1 j(m) f (ym; λ(λ0 + j), β),
A2 j(ym) = a2 j(m)[ f (ym; λ( j + 1), β) − f (ym; λ(λ0 + j + 1), β)],

(28)

and for ` = 1, 2,

a` j(m) = (−1) j
(
m − `

j

)
. (29)

The cdf of ym is presented with

H1(y(s)| λ, β) = λ0

m−1∑
j=0

A∗1 j(ym) + (m − 1)
m−2∑
j=0

A∗2 j(ys), ys > 0, (30)

www.astesj.com 712

http://www.astesj.com


A.R.A Alanzi / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 710-714 (2020)

with

A∗1 j(ym) =
a1 j(m)

(λ0 + j)
F(ym; λ(λ0 + j), β),

A∗2 j(ym) =
a2 j(m)
( j + 1)

F(ym; λ( j + 1), β)

−
a2 j(m)

(λ0 + j + 1)
F(ym; λ(λ0 + j + 1), β). (31)

Table 1: Bayesian prediction intervals (95%) for y1 and y10 in the presence of type
λ λ0 single outlier, r = 20, n = 30. Note: PP is Point Predictor, L is Lower bound, U
is Upper bound, and CP is Coverage Percentage

λ0 Observations y1 y10

1 PP 0.219311 1.03915
L 0.037503 0.773876
U 0.470244 1.30324

Length 0.432741 0.529363
C P 95.45 % 94.85 %

2 PP 0.209173 1.02768
L 0.035691 0.757975
U 0.449826 1.29739

Length 0.414135 0.539419
CP 94.6 % 95.16 %

3 PP 0.200296 1.02638
L 0.034113 0.085392
U 0.431811 1.19415

Length 0.397698 1.10876
CP 93.77% 88.02%

4 PP 0.192439 1.02614
L 0.032723 0.751878
U 0.415762 1.29738

Length 0.383039 0.545498
CP 92.59% 95.36%

5 PP 0.185422 1.02609
L 0.031487 0.751374
U 0.401347 1.29738

Length 0.36986 0.546003
CP 91.54% 95.4%

Y = ym has predictive density of presented x, λ and β as follows:

h∗1(y|x) =

∫ ∞

0

∫ ∞

0
h1(y(m)| λ, β) π∗(λ, β| x) dλ dβ, (32)

Y = ym has the function of predictive distribution of presented x, λ
and β as follows:

H∗1(y |x) =

∫ ∞

0

∫ ∞

0
H1(y(m)|x, λ, β) π∗(λ, β| x) dλ dβ. (33)

Obtaining the h∗1(y(m)|x, λ, β) and H∗(y(m)|x, λ, β) as simulation
consistent estimators can be done in the following manner assum-
ing that (λi, βi); i = 1, 2, · · · ,M can be viewed as MCMC samples
generated from π∗(λ, β| x):

ĥ∗1(y |x) =

M∑
i=1

h1(y(m)| λi, βi) hi, (34)

and

Ĥ∗1(y |x) =

M∑
i=1

H1(y(m)| λi, βi) hi. (35)

with

hi =
g3(λi, βi| data)

M∑
i=1

g3(λi, βi| data)
; i = 1, 2, · · · , M. (36)

Table 2: Bayesian prediction intervals (95%) for y1 and y10 in the presence of type
λ λ0 single outlier, r = 25, n = 30. Note: PP is Point Predictor, L is Lower bound, U
is Upper bound, and CP is Coverage Percentage

λ0 Observations y1 y10

1 PP 0.225826 1.04406
L 0.039754 0.782087
U 0.479422 1.30373

Length 0.439668 0.521645
CP 95.4 % 94.46%

2 PP 0.215545 1.03274
L 0.037862 0.766312
U 0.458946 1.298

Length 0.421084 0.531691
CP 94.75% 94.91%

3 PP 0.206536 1.03146
L 0.036213 0.761754
U 0.440865 1.29799

Length 0.404652 0.536232
CP 94.01 % 95.06 %

4 PP 0.198558 1.03123
L 0.034759 0.760261
U 0.424745 1.29799

Length 0.389986 0.537724
CP 93.18 % 95.1%

5 PP 0.191427 1.03117
L 0.033465 0.759761
U 0.410255 1.29799

Length 0.37679 0.538224
CP 92.12 % 95.11 %

A 100% Bayesian prediction interval (1 − τ) for Ym can be pre-
sented as P[L(x) ≤ Ym ≤ U(x)] = 1 − τ,, with L(x) as the lower
bound for ym and U(x) as the upper bound for ym. Thus equating
(35) 1 − τ

2 and τ
2 , it is possible to get the following equations:

P[Y ≥ L(x)| x] = 1 −
τ

2
⇒ Ĥ∗1(L(x)| x) =

τ

2
(37)

and

P[Y ≤ U(x)| x] =
τ

2
⇒ Ĥ∗1(U(x)| x) = 1 −

τ

2
. (38)

Solutions to (37) and (38) as nonlinear equations are found with
the use of an iterative method aimed at evaluating the Bayesian
prediction and obtaining its lower and upper bounds for the future
sample ym at its maximum point.
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Example. I can use the previous (6) density equation to gener-
ate λ = 1.41617 with the provided previous parameters a1 = 2.2
and b1 = 1.8 and then we use the previous (7) density equation to
generate β = 1.91297 for the previous parameters a2 = 3.2 and
b2 = 1.5. Chen distribution (λ = 1.41617, β =, 1.91297) with r
in its deferent value is used to generate a random sample of size
n = 30. Let us consider a case with one more sample of size m = 10
in the presence of type λ λ0 single outlier. Our aim is to obtain
the percentage of 95% as prediction bounds for Y1 and Y10 for the
provided value of λ0 as minimum and maximum that the future
sample has. Table 1, Table 2, and Table 3 present the mentioned
bounds with λ0 in corresponding values.

Table 3: Bayesian prediction intervals (95%) for y1 and y10 in the presence of type
λ λ0 single outlier, r = n = 30. Note: PP is Point Predictor, L is Lower bound, U is
Upper bound, and CP is Coverage Percentage

λ0 Observations y1 y10

1 PP 0.225842 1.04428
L 0.039745 0.782243
U 0.479499 1.304

Length 0.439754 0.521755
CP 95.4% 94.44%

2 PP 0.21556 1.03295
L 0.037853 0.133706
U 0.459018 1.19737

Length 0.421165 1.06367
CP 94.75% 88.47%

3 PP 0.206549 1.03168
L 0.036204 0.761905
U 0.440932 1.29825

Length 0.404728 0.536345
CP 94.02 % 95.07%

4 PP 0.198569 1.03144
L 0.03475 0.760412
U 0.424807 1.29825

Length 0.390057 0.537837
CP 93.18% 95.1%

5 PP 0.191436 1.03138
L 0.033457 0.035391
U 0.410314 1.09987

Length 0.376857 1.06448
CP 92.12% 68.35%

5 Conclusion
The present study analyzes a single type λ λ0 outlier as the multiple
outliers are more complicated. In case of no outliers in the homo-

geneous case,future observations can obtain Bayesian prediction
bounds at the minimum and maximum level via assigning λ0 = 1
for the (22) and (35) equations. Table 1 demonstrates that future
observations have their limits dependent on λ value.
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