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This paper focuses on exploring efficient ways to findH2 optimal Structure-Preserving Model
Order Reduction (SPMOR) of the second-order systems via interpolatory projection-based
method Iterative Rational Krylov Algorithm (IRKA). To get the reduced models of the second-
order systems, the classical IRKA deals with the equivalent first-order converted forms and
estimates the first-order reduced models. The drawbacks of that of the technique are failure
of structure preservation and abolishing the properties of the original models, which are
the key factors for some of the physical applications. To surpass those issues, we introduce
IRKA based techniques that enable us to approximate the second-order systems through the
reduced models implicitly without forming the first-order forms. On the other hand, there are
very challenging tasks to the Model Order Reduction (MOR) of the large-scale second-order
systems with the optimalH2 error norm and attain the rapid rate of convergence. For the
convenient computations, we discuss competent techniques to determine the optimal H2
error norms efficiently for the second-order systems. The applicability and efficiency of the
proposed techniques are validated by applying them to some large-scale systems extracted
form engineering applications. The computations are done numerically using MATLAB
simulation and the achieved results are discussed in both tabular and graphical approaches.

1 Introduction
A Linear Time-Invariant (LTI) continuous-time second-order system
can be formed as

Mξ̈(t) + Dξ̇(t) + Kξ(t) = Hu(t),
y(t) = Lξ(t),

(1)

where the matrices M,D,K ∈ Rn×n are time-invariant, the input ma-
trix H ∈ Rn×p describing the external access to the system and the
output matrix L ∈ Rm×n represents the output of the measurement
of the system. For M is an identity or invertible matrix, the sys-
tem (1) is called a standard state-space system or can be converted
into the standard state-space system. The system is n-dimensional,
that contains the state vectors ξ(t) ∈ Rn, input (control) vectors
u(t) ∈ Rp, and output vectors y(t) ∈ Rm. It is said to be continuous-
time system as the input-output relations are established in the
continuous-time interval [0,∞). The system (1) is specified as the
Single-Input Single-Output (SISO) system for p = m = 1, and oth-

erwise specified as the Multi-Input Multi-Output (MIMO) system,
where p,m << n, i.e., the number of input and output of the system
is much less than the number of states. If all the finite-eigenvalues
of the matrix pencil of the system (1) lie in the left half-plane (C−),
it is called asymptotically stable. This kind of dynamical systems
emerge in several engineering disciplines such as automation &
control systems, structural mechanics or multi-body dynamics, and
electrical networks [1, 2, 3]. Applying the Laplace-transformation
in the system (1), the transfer function that defines input-output
mappings can be express as

G(s) = L(s2M + sD + K)−1H; s ∈ C. (2)

Because of the arrangement of a large number of disparate de-
vices and their complex structures, in the engineering applications
most of the systems turn into very large-scale. The large-scale
systems are infeasible for the simulation, controller design, and
optimization within the computing tools for reasonable computa-
tional time and the memory allocation. To avoid the adversities,
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Model Order Reduction (MOR) can be applied to well-approximate
the original models. So that, the aim of the automation & control
systems can be fulfilled by reducing the work-load, feasible time-
management and efficient use of system components. That is the
system (1) needs to be replaced by the r-dimensional Reduced-Order
Model (ROM) as

M̂ ¨̂ξ(t) + D̂ ˙̂ξ(t) + K̂ξ̂(t) = Ĥu(t),

ŷ(t) = L̂ξ̂(t).
(3)

where M̂, D̂, K̂ ∈ Rr×r, Ĥ ∈ Rr×p, L̂ ∈ Rm×r and r � n. The target
is to minimize the value of r by the trial and error basis such that
system (3) approximates the system (1) keeping the system proper-
ties invariant. The transfer-function corresponding to the ROM (3)
is denoted by Ĝ and defined as

Ĝ(s) = L̂(s2M̂ + sD̂ + K̂)−1Ĥ; s ∈ C. (4)

Some system oriented approximation requirements need to be
fulfilled for the ROM (3), for instance the error norm ‖y(t)− ŷ(t)‖ or
equivalently ‖G(.) − Ĝ(.)‖ needs to be optimized under appropriate
norm estimation, for exampleH2,H∞ norms (see [4] and references
therein).

Initially, the concept of interpolatory projection technique for
MOR was developed in [5], and later updated in [6]. A modified
approach was introduced in [7], in which the rational Krylov ap-
proach was implemented. In the MOR techniques for large-scale
dynamical systems, Krylov based approaches can implicitly satisfy
moment matching conditions avoiding the explicit computations to
ignore the ill-conditioned simulations [8, 9]. A number of strategies
have been flourished over the years for selecting the interpolation
points and the tangential directions, which are the leading ingre-
dients for finding the ROMs to get the best approximation of full
models [10]. Nowadays selecting the suitable set of interpolation
points is associated with the seeking of H2 optimality for MOR
techniques [11]. The Iterative Rational Krylov Algorithm (IRKA)
was developed that guarantees theH2 optimality of the investigation
of interpolation points for MOR [12].

Definition-1: For the system (1), theH2 norm can be defined as

‖G(s)‖2
H2

=
1

2π

∫ ∞
−∞

trace(G( jω)HG( jω))dω, (5)

where G( jω)H is the harmonic conjugate of the frequency response
G( jω) of the system and ω ∈ R is the frequency on the imaginary
axis of the transfer function G(s) defined in (2). H2 norm is the
most appropriate way to investigate the performance of the ROMs
achieved by IRKA. Estimating theH2 norm by the improper integral
(5) is impossible in practice.

Definition-2: The ROM (3) is said to be H2 optimal if Ĝ(s) is
stable and minimize the error system under certain norm as

‖Gerr‖
2
H2

= ‖G(s) − Ĝ(s)‖2
H2

; s ∈ C. (6)

The details of the H2 norm of the error system defined in (6)
will be discussed later in Section 4.

Usually in the present MOR approaches for the second-order
systems (1) includes the conversion of second-order systems into
equivalent first-order forms and imply some suitable MOR tech-
niques to get the first-order ROMs, which is one of the most eye-
catching drawbacks of the MOR technique as they are structure
destroyer. Here we propose the MOR techniques for the second-
order system by applying the interpolatory techniques via IRKA,
where the systems need not convert into the first-order form, that’s
why the structure of the system remains invariant. Also, we estimate
the minimized H2 error norm of the ROMs under a certain level
of tolerance, by simulating the matrix equations governed from the
error system.

2 IRKA for Model Order Reduction of
First-Order Systems

To find the ROM of second-order systems through equivalent first-
order forms, there are a handful number of MOR techniques avail-
able implementing IRKA [13]. The interpolation-based techniques
for the first-order generalized system has been reviewed in this
section in brief. Let us consider the following first-order form

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Dau(t),

(7)

where the system matrices E, A ∈ Rk×k, B ∈ Rk×p,C ∈ Rm×k, and
Da ∈ R

m×p with E is non-singular. Assuming above conditions, the
corresponding ROM can be formed as

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉ x̂(t) + D̂au(t),
(8)

To find the ROM (8), there needs to generate two projection
matrices W and V . Then the reduced matrices are formed as

Ê : = WT EV, Â := WT AV,

B̂ : = WT B, Ĉ := CV, D̂a := Da.
(9)

For the MIMO systems, interpolatory projection technique
IRKA has been developed in [14], where the authors discussed
that the interpolation points and the tangential directions need to
be essentially updated until attain the H2 optimality. The distinct
interpolation points, {αi}

r
i=1 ⊂ C and {βi}

r
i=1 ⊂ C are required to

form right and left projector matrices W and V with the tangential
directions bi ∈ C

m and ci ∈ C
p, respectively. Then these projector

matrices need to be formed as

Range(V) = span{(α1E − A)−1Bb1, · · · , (αrE − A)−1Bbr},

Range(W) = span{(β1ET − AT )−1CT c1, · · · , (βrET − AT )−1CT cr},
(10)

Here Ĝ(s) approximately interpolates G(s) satisfying the condi-
tions of MOR, such that

G(αi)bi = Ĝ(αi)bi, cT
i G(βi) = cT

i Ĝ(βi), and

cT
i G(αi)bi = cT

i Ĝ(αi)bi when αi = βi, for i = 1, · · · , r.
(11)
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For a non-negative finite integer j, the following condition will
be satisfied

cT
i G( j)(αi)bi = cT

i Ĝ
( j)

(αi)bi,

cT
i C[(αiE − A)−1E] j(αiE − A)−1Bbi = cT

i Ĉ[(αiÊ − Â)−1Ê] j(αiÊ − Â)−1B̂bi,
(12)

where the j-th moment of G(.) is defined as C[(αiE−A)−1E] j(αiE−A)−1B,
which evaluated at αi and represents the j-th derivative of G(.).

For the SISO systems, there need to consider the interpolation points
but not the tangential directions. The complete procedures of IRKA for the
SISO systems has been provided in [15].

The basis for the Krylov based MOR techniques require a adjustable in-
terpolation points accomplishing the Petrov-Galerkin conditions [16]. The
summary of the first-order IRKA procedures are provided in Algorithm 1
and Algorithm 2.

Algorithm 1: IRKA for First-Order MIMO Systems.
Input :E, A, B,C,Da.
Output : Ê, Â, B̂, Ĉ, D̂a := Da.

1 Consider the initial assumptions for the the interpolation points
{αi}

r
i=1 and the tangential directions {bi}

r
i=1 & {ci}

r
i=1.

2 Construct V =
[
(α1E − A)−1Bb1, · · · , (αrE − A)−1Bbr

]
,

W =
[
(α1ET − AT )−1CT c1, · · · , (αrET − AT )−1CT cr

]
.

3 while (not converged) do
4 Find Ê = WT EV , Â = WT AV , B̂ = WT B, Ĉ = CV .
5 for i = 1, · · · , r. do
6 Evaluate Âzi = λiÊzi and y∗i Â = λiy∗i Ê to find αi ← −λi,

b∗i ← −y∗i B̂ and c∗i ← Ĉz∗i .
7 end for
8 Repeat Step-2.
9 i = i + 1;

10 end while
11 Find the reduced-order matrices by repeating Step-4.

Algorithm 2: IRKA for First-Order SISO Systems.
Input :E, A, B,C,Da.
Output : Ê, Â, B̂, Ĉ, D̂a := Da.

1 Consider the initial assumptions for the the interpolation points
{αi}

r
i=1.

2 Construct V =
[
(α1E − A)−1B, · · · , (αrE − A)−1B

]
,

W =
[
(α1ET − AT )−1CT , · · · , (αrET − AT )−1CT

]
.

3 while (not converged) do
4 Find Ê = WT EV , Â = WT AV , B̂ = WT B, Ĉ = CV .
5 for i = 1, · · · , r. do
6 Evaluate Âzi = λiÊzi and y∗i Â = λiy∗i Ê to find αi ← −λi.
7 end for
8 Repeat Step-2.
9 i = i + 1;

10 end while
11 Find the reduced-order matrices by repeating Step-4.

3 IRKA for Structure-Preserving Model
Order Reduction of Second-Order Sys-
tems

This section contributes the Structure-Preserving Model Order Reduction
(SPMOR) of second-order system (1) via IRKA. One of the conversions of

second-order system (1) into first-order form (7) is as follows

x(t) =

[
ξ(t)
ξ̇(t)

]
, E =

[
I 0
0 M

]
, A =

[
0 I
−K −D

]
,

B =

[
0
H

]
, C =

[
L 0

]
, and Da = 0.

(13)

In the conventional techniques, to obtain an efficient ROMs of the
second-order systems, at first, it is to convert into (13) essentially [17].
Then converted first-order form (7) can be implemented substantially and
by applying Algorithm 1 or Algorithm 2 the equivalent first-order reduced
order model (8) can be achieved.

Sometimes, that explicit formulation of (13) is prohibitive as the orig-
inal model structure is destroyed and we cant return back to the original
system. The structure preservation is essential for the large-scale second-
order systems to controller design, execute the computation, and optimiza-
tion. SPMOR allows meaningful interpretation of the physical system and
provides a more accurate approximation to the full model.

In the MIMO systems, to avoid the explicit conversion and derive the
SPMOR approach, the i-th column of V and W utilizing the shifted linear
systems need to be computed as

(αiE − A)v(i) = Bbi, and

(αiET − AT )w(i) = CT ci, i = 1, · · · , r.
(14)

Inserting the assumptions defined in (13) and applying matrix algebra,
the system of linear equations in (14) lead to the followings[

αiI −I
K αi M + D

] [
v(i)

1
v(i)

2

]
=

[
0

Hbi

]
, and[

αiI KT

−I αi MT + DT

] [
w(i)

1
w(i)

2

]
=

[
LT ci

0

]
.

(15)

Albeit the matrices in (15) has higher dimension 2n, they are sparse and
can be efficiently simulated by suitable direct or iterative solvers [18, 19].
After the elimination and simplification of the system of linear equations
governed from (15) for v(i)

1 , v(i)
2 , w(i)

1 and w(i)
2 , we have the followings

v(i)
1 = (α2

i M + αiD + K)−1Hbi,

v(i)
2 = αiv

(i)
1 ,

w(i)
2 = (α2

i MT + αiDT + KT )−1LT ci,

w(i)
1 = (αi MT + DT )w(i)

2 .

(16)

The concept of the formation (13) can be utilized in the system (7) and
then by converting this to an equivalent sparse linear system, which ensures
the structure preservation and rapid rate of convergence.

According to the techniques developed in [20], at each iteration, the
first-order representation (13) will be considered and the Algorithm 1 will
be applied to find desired set of interpolation points {αi}

r
i=1 efficiently. Also,

Algorithm 1 updates the tangential directions {bi}
r
i=1 & {ci}

r
i=1 accordingly.

Due to the structure of system, we can split the desired projectors V
and W as position and velocity levels [21]. We can partition the projectors
V and W as

V =

[
Vp

Vv

]
& W =

[
Wp

Wv

]
, (17)

where Vp, & Wp are the position levels and Vv & Wv are the velocity levels
of V & W respectively. Partitioning V & W according to (17) and applying
equation (16), we can write

Vp = [v(1)
1 , v(2)

1 , · · · , v(r)
1 ]; & Vv = [v(1)

2 , v(2)
2 , · · · , v(r)

2 ];

Wp = [w(1)
1 ,w(2)

1 , · · · ,w(r)
1 ]; & Wv = [w(1)

2 ,w(2)
2 , · · · ,w(r)

2 ].
(18)
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Again, for the SISO systems, to find the projectors V and W we need
to consider the first-order representation (13) and apply the Algorithm 2
to find desired set of interpolation points {αi}

r
i=1 only. Then for the SISO

systems, (16) turns into the followings

v(i)
1 = (α2

i M + αiD + K)−1H,

v(i)
2 = αiv

(i)
1 ,

w(i)
2 = (α2

i MT + αiDT + KT )−1LT ,

w(i)
1 = (αi MT + DT )w(i)

2 .

(19)

Since there are two sets of projectors as in (18), we will get two types
of SPMOR for the system (1), position level and velocity level, respectively.
We summarize the above ideas for computing SPMOR (3) in Algorithm 3
and Algorithm 4 for the second-order system (1).

Algorithm 3: IRKA for Second-Order MIMO Systems.
Input : M,D,K,H, L.
Output : M̂p, D̂p, K̂p, Ĥp, L̂p, M̂v, D̂v, K̂v, Ĥv, L̂v.

1 Consider the initial assumptions for the the interpolation points
{αi}

r
i=1 and the tangential directions {bi}

r
i=1 & {ci}

r
i=1.

2 Consider v(i)
1 , v

(i)
2 ,w

(i)
1 and w(i)

2 are defined in (16) and construct
Vp = [v(1)

1 , v(2)
1 , · · · , v(r)

1 ] & Vv = [v(1)
2 , v(2)

2 , · · · , v(r)
2 ],

Wp = [w(1)
1 ,w(2)

1 , · · · ,w(r)
1 ] & Wv = [w(1)

2 ,w(2)
2 , · · · ,w(r)

2 ].
3 while (not converged) do
4 Find M̂p = WT

p MVp, D̂p = WT
p DVp,

K̂p = WT
p KVp, Ĥp = WT

p H, L̂p = LVp.
5 and M̂v = WT

v MVv, D̂v = WT
v DVv,

K̂v = WT
v KVv, Ĥv = WT

v H, L̂v = LVv.
6 Use the first-order representation (13) in Algorithm (1) to get

Ê, Â, B̂ and Ĉ.
7 Evaluate Âzi = λiÊzi and y∗i Â = λiy∗i Ê to find αi ← −λi,

b∗i ← −y∗i B̂ and c∗i ← Ĉz∗i for all i = 1, · · · , r.
8 Repeat Step-2.
9 i = i + 1;

10 end while
11 Find the reduced matrices by repeating Step-4 and Step-5.

Algorithm 4: IRKA for Second-Order SISO Systems.
Input : M,D,K,H, L.
Output : M̂p, D̂p, K̂p, Ĥp, L̂p, M̂v, D̂v, K̂v, Ĥv, L̂v.

1 Consider the initial assumptions for the the interpolation points
{αi}

r
i=1.

2 Consider v(i)
1 , v

(i)
2 ,w

(i)
1 and w(i)

2 are defined in (19) and construct
Vp = [v(1)

1 , v(2)
1 , · · · , v(r)

1 ] & Vv = [v(1)
2 , v(2)

2 , · · · , v(r)
2 ],

Wp = [w(1)
1 ,w(2)

1 , · · · ,w(r)
1 ] & Wv = [w(1)

2 ,w(2)
2 , · · · ,w(r)

2 ].
3 while (not converged) do
4 Find M̂p = WT

p MVp, D̂p = WT
p DVp,

K̂p = WT
p KVp, Ĥp = WT

p H, L̂p = LVp.
5 and M̂v = WT

v MVv, D̂v = WT
v DVv,

K̂v = WT
v KVv, Ĥv = WT

v H, L̂v = LVv.
6 Use the first-order representation (13) in Algorithm (2) to get

Ê, Â, B̂ and Ĉ.
7 Evaluate Âzi = λiÊzi and y∗i Â = λiy∗i Ê to find αi ← −λi for all

i = 1, · · · , r.
8 Repeat Step-2.
9 i = i + 1;

10 end while
11 Find the reduced matrices by repeating Step-4 and Step-5.

4 Estimation of H2 error norm of the Re-
duced Order Model

The error system of the ROM (3) of the system (1) using the first-order
representation (13) has the form

Gerr = G(s) − Ĝ(s) = Cerr(sEerr − Aerr)−1Berr, (20)

where G(s) and Ĝ(s) are mentioned in (2) and (4), respectively. In the error
system (20), we have considered

Eerr =

[
E 0
0 Ê

]
, Aerr =

[
A 0
0 Â

]
, Berr =

[
B
B̂

]
, and Cerr =

[
C −Ĉ

]
.

(21)
Here E, A, B and C are provided in the first-order representation (13)

of the second-order system (1). Also, Ê, Â, B̂ and Ĉ are the reduced-order
form of the first-order representation containing the reduced-order matri-
ces defined in (3), which can be achieved by the Algorithm 3 for MIMO
systems or Algorithm 4 for SISO systems.

Let us assume the controllability Gramian and observability Gramian
for the error system (20) are Perr and Qerr, respectively, and they can be
partitioned as

Perr =

[
P11 P12

PT
12 P22

]
, Qerr =

[
Q11 Q12

QT
12 Q22

]
(22)

where P11,Q11 ∈ R
n×n, P22,Q22 ∈ R

r×r and P12,Q12 ∈ R
n×r. In terms of

a Galerkin approach Ĝ(s) can be defined by considering the projectors
V = P12P−1

22 and W = −Q12Q−1
22 , and the achieved ROM satisfies the desired

first-order conditions of the optimalH2 norm condition with the property
WT V = I [22].

The Gramians Perr and Qerr can be attained by simulating the following
Lyapunov equations

AerrPerrET
err + EerrPerrAT

err + Berr BT
err = 0,

AT
errQerrEerr + ET

errQerrAerr + +CT
errCerr = 0.

(23)

Inserting (21) and (22) in (23), after simplification we have the follow-
ing system of matrix equations

AP11ET + EP11AT + BBT = 0,

AP12ÊT + EP12ÂT + BB̂T = 0,

ÂP22ÊT + ÊP22ÂT + B̂B̂T = 0,

(24)

and
AT Q11E + ET Q11A + CT C = 0,

AT Q12Ê + ET Q12Â −CT Ĉ = 0,

ÂT Q22Ê + ÊT Q22Â + ĈT Ĉ = 0.

(25)

The efficient approaches to estimate theH2 norm of the error system
(20) suitably can be written as

‖Gerr‖
2
H2

= trace(CerrPerrCT
err)

= trace(CP11CT ) + trace(ĈP22ĈT ) + 2trace(CP12ĈT )

= ‖G(s)‖2
H2

+ ‖Ĝ(s)‖2
H2

+ 2trace(CP12ĈT ),

(26)

and

‖Gerr‖
2
H2

= trace(BT
errQerr Berr)

= trace(BT Q11B) + trace(B̂T Q22B̂) + 2trace(BT Q12B̂)

= ‖G(s)‖2
H2

+ ‖Ĝ(s)‖2
H2

+ 2trace(BT Q12B̂).

(27)

The H2 norm of the full model needs to be estimated once using the
corresponding Gramians, and that is infeasible for a large-scale system by
solving corresponding Lyapunov equations using the direct solvers. In this
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case, we can use the low-rank ADI based technique provided in Algorithm 1
of [23] or rational Krylov subspace method provided in Algorithm 2 of
[24] to find the low-rank factors Zp and Zq of the Gramians P11 = ZpZT

p
and Q11 = ZqZT

q defined in the first equations of (24) and (25), respectively.
These approaches provide us feasible ways to find theH2 norm of the full
model. Then, instead using the Gramians of the full model, we can use the
low-rank Gramian factors in the first part of (26) and (27) as given below.

‖G(s)‖2
H2

= trace(CP11CT ) = trace{(CZp)(CZp)T } (28)

‖G(s)‖2
H2

= trace(BT Q11B) = trace{(BT Zq)(BT Zq)T } (29)

Since the Lyapunov equations defined by third equations in (24) and
(25) corresponding to the ROMs are very small in size, they can be solved
by any direct solver or MATLAB lyap command in every iterations to find
the second part of (26) and (27), respectively. Moreover to find the third part
of (26) and (27), we can solve the generalized Sylvester equations given in
the second equations in (24) and (25), respectively, using the sparse-dense
Sylvestor equation approach provided in Algorithm-4 of [25].

5 Numerical Results
The proposed techniques will be validated by applying them to the data
generated from the real-world models given below. The computations will
be carried out with the MATLAB R© R2015a (8.5.0.197613) on a board with
Intel R©CoreTMi5 6200U CPU with 2.30 GHz clock speed and 16 GB RAM.

Example-1: [International Space Station Model (ISSM)] Interna-
tional Space Station Model is a part of modern aeronautics satisfying the
second-order system defined in (1). This model is essential to control the
system and maintain the varieties of operational modes at the international
space station. The control of the system ensures the dynamic interaction
within the components including adjustable structure alignments and clari-
fication of the technical legitimacy of the flight.

The physical model of the international space station being assembled
part by part. The modeling and control of the vibrations of the docking of
an incoming spaceship is the prime concern under system constraints. Two
types of ISSM exist for fulfilling the requirements of the space stations,
namely the Russian service Module (1R) and the Extended Service Module
[26]. In our work, we have taken the Russian service Module (12A) with
state dimension n = 270 and the number of input-output is 3. The target
model provides a sparse system derived from a complicated mechanical
system.

Example-2 [Clamped Beam Model (CBM)] The Clamped Beam
Model is derived from micro-actuators, which is mainly a non-linear electro-
dynamic system satisfying a set of partial differential equations with the
boundary conditions [27]. A usual micro-actuator combines two parallel
conducting electrodes, one of which is movable and the rest is fixed. The
movable electrode is formed as the clamped beam.

By the discretization approach Finite Element Method (FEM), the
Clamped Beam Model has been derived as (1). For the Clamped Beam
Model the state dimension n = 348 with single input-output. The force
applied to the system at the movable end is taken as the input, whereas the
resulting displacement is considered as the output.

Example-3 [Scalable Oscillator Model (SOM)] Scalable Oscillator
Model is derived from a special class of mechanical systems consisting of
three damping chains with all of the chains bonded to constant support by
an extra damper at one end, whereas the other end of them bonded to a

heavy and inflexible mass [28]. There are some amount of spring units that
united the heavy mass. All of the three individual chains composed of n1

number of masses and unit springs with uniform stiffness. The masses m1,
m2, m3 with the stiffness’s k1, k2, k3, respectively, are the model parameters
for the desired model. For the bonding mass m0 is the mass with stiffness k0.
Here ϑ is the viscosity of extra supporting damper and all of the individual
oscillator chains.

The mathematical formulation of the Scalable Oscillator Model can be
written in the form of the system (1) having the state dimension nξ = 3n1 +1.
The matrix M = diag[m1In1 ,m2In1 ,m3In1 ,m0] represents the combination
of the masses of the system with the stiffness K. The damping matrix D
consists the stiffness of the oscillator chains as the elements in the block
diagram form and the bonding terms in the last row and column at n1,
2n1 & 3n1 positions of the diagonals. The model used in the numerical
computation of single input-output with state dimension n = 9001. For
practical purposes, we have considered the following assumptions.

m1 = 1, m2 = 2, m3 = 3, m0 = 10,

k1 = 10, k2 = 20, k3 = 1, k0 = 50, & ϑ = 5.

Example-4 [Butterfly Gyro Model (BGM)] For the applications of
inertial navigation, vibrating micro-mechanical based Butterfly-Gyro is an
essential engineering tool for its theoretical and practical contribution. The
basic Butterfly-Gyro structure consists of a wafer stack of three layers with
the body sensor in the middle. The model is named Butterfly-Gyro because
of the existence of a pair of double wings attached with a common frame in
the layout of the sensor [29].

The mathematical formulation employing the matrix equations has
been governed from the physical model numerically using the multiphysics
simulation software ANSYS7 and can be written as the system (1). The
original derived model is a nξ = 17 361-dimensional second-order system
with single input but 12 outputs. To adjust the structure of our computation
we have taken the transpose of the output matrix as the input matrix. Thus,
in our work, the number of input-output is 12.

Above models discussed here are available in the web-page for the
Oberwolfach Benchmark Collection1 in detail.

Table 1 depicts the dimensions of the full models and their ROMs
via IRKA based SPMOR achieved by the Algorithm 3 and Algorithm 4.
Here the dimensions of the ROMs are taken appropriately such the ROMs
approximate the corresponding full model sufficiently.

Table 1: Model examples and dimensions of full models and ROMs

Model type full model (n) ROM (r)
ISSM MIMO 270 20
CBM SISO 348 30
SOM SISO 9001 50
BGM MIMO 17361 70

The transfer functions of the full models and corresponding ROMs
in the sense of position-level and velocity-level with the desired dimen-
sions are compared in the Figure 1, Figure 2, Figure 3 and Figure 4 for
the models discussed above. In each of the figures, the first sub-figures
display the comparisons of the transfer functions of the full model and its
ROMs considering both of the position-level and velocity-level, whereas
the second and third sub-figures depict their absolute errors and relative
errors, respectively.

1https://sparse.tamu.edu/Oberwolfach
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Figure 1: Comparison of full model and ROM computed by Algorithm 3 (for MIMO
system) of the ISSM
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Figure 2: Comparison of full model and ROM computed by Algorithm 4 (for SISO
system) of the CBM
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Figure 3: Comparison of full model and ROM computed by Algorithm 4 (for SISO
system) of the SOM
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Figure 4: Comparison of full model and ROM computed by Algorithm 3 (for MIMO
system) of the BGM
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From the figures presented above, we have observed that the transfer
functions of the full models and their ROMs of position-level and velocity-
level are nicely matched. For this reason, the absolute errors and the relative
errors for all cases are sufficiently small. Therefore it can be said that the
proposed IRKA based SPMOR technique for finding ROMs of both of
the levels of the second-order systems is efficient and robust for the target
models.

Speed-up of the frequency-responses of the target models represents
in the Table 2. For the time-convenient comparison, we have measured
the execution time of the frequency-responses for a single cycle of the full
models and corresponding ROMs. The speed-up of the system execution
indicates the feasibility of the time-allocation which is the fundamental
requirement for the system automation and controller design. It has been
noticed that the proposed technique is more efficient based on time for
higher-dimensional models. Noted that the ROMs of position-level and
velocity-level have the same execution time and for this, we have omitted
to show them individually.

Table 2: Speed-up comparisons for ROMs

Model dimension
execution
time (sec) speed-up

ISSM full model 270 5.67 × 10−4
2.78ROM 20 2.04 × 10−4

CBM full model 348 3.19 × 10−3
12.97ROM 30 2.46 × 10−4

SOM full model 9001 1.66 × 10−2
55.54ROM 50 2.98 × 10−4

BGM full model 17361 6.48 × 10−1
609.13ROM 70 1.07 × 10−3

In Table 3 theH2 error norms of the ROMs for the target models for
both position-level and velocity-level have been illustrated. Here, to find
theH2 norm of the full model we have used a low-rank ADI approach. It is
observed that theH2 error norm for CBM is small enough and for ISSM
it is better. For BGM, the H2 error norm is the best, whereas, for SOM,
theH2 error norm is less satisfactory in comparison to other target models
but still not intolerable. Thus, it is evident that the proposed techniques are
capable to estimate theH2 optimal SPMOR for second-order systems with
a few exceptions.

Table 3: H2 error norm of the ROMs

Model ROM ‖G − Ĝ‖H2

ISSM Position 1.2 × 10−6

Velocity 5.1 × 10−6

CBM Position 1.1 × 10−3

Velocity 3.6 × 10−3

SOM Position 1.8 × 101

Velocity 3.6 × 101

BGM Position 6.6 × 10−12

Velocity 7.8 × 10−12

6 Conclusions
We have introduced the Structure-Preserving Model Order Reduction
(SPMOR) techniques for second-order systems through the interpolatory

projection-based method Iterative Rational Krylov Algorithm (IRKA). In
those techniques, the second-order systems need not convert into the first-
order forms explicitly which are essential for preserving some important
features of the systems. The SPMOR techniques enhance the rapid rate
of convergence of the simulations and ensure the feasibility of further ma-
nipulations. We have derived the approaches to find theH2 error norm for
the optimality condition of the Reduced-Order Models (ROM) achieved
from the second-order systems, that confirm the fidelity of the proposed
techniques. We have investigated the applicability and efficiency of the pro-
posed techniques numerically using MATLAB simulation and applied them
to some real-world models derived from engineering applications. From
the numerical investigations, it is evident that the proposed techniques are
efficient to find ROMs of the second-order systems, that can approximate
the full models with reasonable absolute errors and relative errors. The
speed-up of the target systems provided the testimony of the aptness of the
proposed techniques in the automation and control systems. Finally, it can
be concluded that proposed techniques provide ROMs of the second-order
systems with theH2 optimal condition.
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