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In this paper, we propose a two steps-based algorithm to solve the 
modular link version of the Capacitated Network Design Problem
(CNDP) which consists to determine the optimal network that 
guarantees the routing of a set of commodities. In our proposition, 
CNDP is divided into two sub-problems: Network Design problem
(NDP) and Network Loading Problem (NLP). In the first step, we 
solved NDP by using the genetic algorithms which select sets of network 
topologies. In the second step, NLP is solved with the use of Linear 
programming to evaluate and validate the best network topologies. 
Simulation results on three real network instances (Atlanta, France 
and Germany) show that the proposed algorithm is better and
more efficient than the Iterative Local Search algorithm.
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1 Introduction

To save resources (routers, optical fibers, etc.) net-
works should be efficiently designed. Diverse net-
works models were then defined and used to repre-
sent a wide range of issues in transportation, telecom-
munications, logistics, production and distribution
networks. All these models consider a graph com-
posed of nodes and edges (optical fibers, cables, etc).
For a better use of these resources, networks design-
ers should solve the modular Capacitated Network
Design Problem (CNDP) which consists of selecting
edges and allocating optimal capacities to route a set
of commodities between source and destination pairs.
Each edge of the graph has a potential set of module
capacities with their associated costs, a fixed cost that
is incurred only if the edge is selected, and a rout-
ing cost which is proportional to the amount of flows
along the edge. Each commodity is defined by ori-
gin and destination nodes, and the amount of flow to
be routed. The objective is to minimize three crite-
ria: edge cost, modules and routing. These capaci-
tated network design problems are NP-hard and very
difficult to solve in practice. The CNDP is a particu-
lar case of the well known Multicommodity Network
Design problem (MNDP), in which we distinguish an
important number of special cases and extensions [1].
The most studied ones are:

• The unsplittable variant where the flow of each
commodity is required to follow one route be-

tween the origin and the destination. This vari-
ant increases the difficulty of the problem [2].

• The expansion variant, where some edges al-
ready have an existing capacity.

• The fixed charge MNDP [3][4] in which the link
capacities are known. Solving MNDP consists to
determine the set of edges that should be opened
in the final topology.

• The capacitated MNDP, where the number of
modules to install on the edges are modeled by
integers [1]

• The Network Loading Problem (NLP), where the
number of module types is limited, each one
with a given unit cost and capacity.

Various heuristics and exact approaches have been de-
veloped for designing capacitated networks. How-
ever, the heuristic approaches are more likely to be
trapped in local optima, while the exact approaches
are applied only to small or medium size problems.
Due to the weaknesses of the two approaches and the
increasing popularity of metaheuristic approaches,
we have witnessed many metaheuristics being applied
to network optimization problems. In this paper, we
propose a novel metaheuristic that combines linear
programming with Genetic Algorithms (GAs) to solve
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the CNDP problem. We recall that the genetic al-
gorithms were extensively used to solve many diffi-
cult combinatorial optimization problems in indus-
trial engineering and operation research. Genetic al-
gorithms are one of the most powerful and broadly
applicable stochastic search and optimization tech-
nique. They have achieved great advancement in
related research fields, such as network optimiza-
tion, combinatorial optimization, multi-objective op-
timization, etc. Our contribution consists in an effi-
cient two steps-based heuristic that extends the ap-
proach in [5] by combining the GAs and Linear Pro-
gramming (LP) to solve CNDP.

The remainder of this paper is structured as fol-
lows: related work is introduced in section 2, nota-
tions and mathematical formulation of the addressed
problem are given in section 3. Section 4 describes
and explains in details our proposed heuristic. Ex-
perimental results are discussed in section 5 where
we compare our proposition against Iterative Local
Search (ILS) algorithm. Finally, section 6 concludes
the paper.

2 Related work

Capacitated Network Design Problem is one of the
major research area in network optimization. It is re-
lated to two issues: Network Design Problem (NDP)
and Network Loading Problem (NLP). In the NDP,
the goal is to identify the network topology by select-
ing routers and links that interconnect them. Thus,
the objective function aims to minimize the total con-
structive cost under some topological constraints. In
this class of problems, the flow is not modeled and
considered as uncapacitated. In the NLP, it is assumed
that the topology is already established. Thus, solving
NLP consists to search for the set of resources to allo-
cate for the network components. These problems are
complementary. Generally, NDP and NLP are solved
separately though they should be combined together
to optimize the resources.

One can say that most of network optimization
problems can be seen as a kind of (1) NDP, (2) NLP or
(3) a combination of both where the objective and the
constraints may differ from one problem to another:
connectivity [6] [7], limited budget [8], hop limit [2]
[9], delay [10] [11], reliability [9] [10], and survivabil-
ity [11]. The NLP in capacitated or uncapacitated case
and with both single or multiple facilities is a special
case of the well known Multicommodity Network De-
sign Problem (MCND). Previous works on this prob-
lem can be classified as:

• Uncapacitated network design problems where
on each network link, it is only possible either
to open the link with an infinite capacity and a
given fixed cost, or the capacity and cost are nil
[12].

• Single facility capacitated network loading
problem where, the capacity can be done by in-

stalling on each link an integer unit of a given
basic facility [13].

• Two facilities capacitated network loading prob-
lems where the capacity can be achieved by
means of two types of modules, each capacity
has a specific cost [14].

• Multi-type facility capacitated network loading
problems where various types of capacities can
be installed on each link, each facility has a spe-
cific cost [8].

The early works on capacitated modular network
problems were focused on the approximation meth-
ods. These methods define residual capacity and cut-
set inequalities for single commodity and multicom-
modity cases on directed, undirected and bidirected
link models [15][16]. Since these works consider that
the underling network is established, they focus only
on the determination of the facilities allowing the ac-
commodations of flow demand. Their effectiveness
depends on the size of the problem instance.
With the appearance of metaheuristics, both the NLP
and the NDP have attracted some attention. The au-
thors benefit from their efficiency to deal with more
complex variants with real size instances. In [17], the
author compared several neighborhood structures to
solve the uncapacitated facility location problem. In
[11], the authors proposed an evolutionary approach
for capacitated network design considering cost, per-
formances and survivability. The objective is to mini-
mize network cost and packet delay. Kleeman et al.
[10] used an evolutionary algorithm to solve multi-
commodity capacitated network design problem with
an objective function optimizing costs, delay, robust-
ness, invulnerability and reliability. A tabu search
heuristic algorithm with real costs on facilities is de-
veloped in [18]. A firefly algorithm is proposed by
Ragheb et al [8], they combined facility location and
network design problem with multi-type of capaci-
tated link and limited budget on facilities. Contreras
et al. [19] presented a unified framework of general
network design problems which combine location de-
cision and network design decision.

3 Mathematical Formulation

Let G = (V ,E) be an undirected network where V is
the set of vertices and E is the set of undirected edges.
Let K be the set of commodities. Each one k ∈ K is as-
sociated with a flow demand dk and has a source de-
noted by the function s(k) and a target t(k). Let fij be
the fixed cost of including edge (i, j) in the network,
rij the unit variable flow cost on (i, j), and pij the pre-
installed capacity on the edge (i, j).
The formulation of CNDP is shown below:
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Min z(x,y,n) =
∑

(i,j)∈E
rij

∑
k∈K

∑
(i, j)∈E

xkij

+
∑

(i,j)∈E
fijyij +

∑
(i,j)∈E

∑
l∈L

clijn
l
ij

∑
(i, j)∈E

xkij −
∑

(j, i)∈E
xkji ==


1, i = s(k)
−1, i = t(k)
0, otherwise

,∀k ∈ K (1a)

∑
k∈K

(xkij + xkji) d
k ≤ pij +Rij , ∀(i, j) ∈ E (1b)

Rij ≤
∑
k∈K

dk yij , ∀(i, j) ∈ E (1c)

Rij ≤
∑
l∈L

ml n
l
ij , ∀(i, j) ∈ E (1d)

xkij ≥ 0, ∀(i, j) ∈ E,k ∈ K (1e)

Rij ≥ 0, ∀(i, j) ∈ E (1f)

yij ∈ {0,1}, ∀(i, j) ∈ E (1g)

nlij ∈ Z
+, ∀l ∈ L, ∀(i, j) ∈ E (1h)

This formulation is a mixed integer linear program
which uses four types of variables: the first type is a
binary design variable yij which is defined as yij = 1
if (i, j) is included in the network and yij = 0 other-
wise. The second type is a continuous path flow vari-
able xkij , which represents the amount of flow of com-
modity k routed on link (i, j). The third type is an in-
teger allocation module variable nlij which represents
the number of module type l ∈ L (L is the set of poten-
tial modules) that should be allocated on edge (i, j).
Each module l is characterized by a capacity ml and
an installation cost clij . The fourth type is a contin-
uous variable Rij representing the required flow ca-
pacity on link (i, j). A positive capacity pij + Rij on
edge (i, j) implies that it is used to route demands in
the two directions: from i to j or from j to i. This
formulation corresponds to a general model that can
deal with several variants of capacitated network de-
sign problems.

The objective function corresponds to the sum of
the flow costs, the fixed costs of edges and the allo-
cated module costs. These costs are relative to the
problem that we deal with and are not all aggregated
in some cases. For instance, the fixed charge problem
MNDP includes only the edge costs. The modules and
routing costs on edges are nil. Constraints (1a) consist
of flow conservation equations, for each commodity
k. Constraints (1b) specifies that the required capac-
ity Rij on each link (i, j) should be greater than the
cumulated flows traversing the link minus the pre-
installed capacity. Constraints (1c) forces the instal-
lation of link (i, j) (i.e, yij = 1) if the required capacity
Rij is positive (otherwise, yij = 0). Constraints (1d)

specify that the total capacity of the allocated mod-
ules should be greater or equal to the required capac-
ity on each link. (1e) and (1f) state out non-negativity
constraints for the decision variables X and R. Con-
straints (1g) express the binary nature of the variables
Y whereas constraints (1h) show that the module fa-
cility are allocated in discrete amounts.

If we assume that the edge and module vectors
(y,n) are fixed and known, the main task in the above
formulation becomes the search of a feasible flow that
satisfies all the demands with the use of limited and
fixed link capacities. Hence, the NP-hard CNDP prob-
lem can be reduced to the Capacitated Multicommod-
ity Flow Problem (CMFP) which is solvable in polyno-
mial time and formulated as follows:

Min z(x(ȳ, n̄)) =
∑

(i,j)∈E(ȳ)

rij
∑
k∈K

∑
(i,j)∈E(ȳ)

xkij

∑
(i, j)∈E(ȳ)

xkij −
∑

(j, i)∈E(ȳ)

xkji ==


1, i = s(k)
−1, i = t(k)
0, otherwise

,∀k ∈ K

(2a)

∑
k∈K

(xkij + xkji) d
k ≤ pij +Rij , ∀(i, j) ∈ E(ȳ) (2b)

Rij ≤
∑
k∈K

dk ȳij , ∀(i, j) ∈ E(ȳ) (2c)

Rij ≤
∑
l∈L

ml n̄
l
ij , ∀(i, j) ∈ E(ȳ) (2d)

xkij ≥ 0, ∀(i, j) ∈ E(ȳ), k ∈ K (2e)

Rij ≥ 0, ∀(i, j) ∈ E(ȳ) (2f)

The multicommodity flow problem formulation
presented in the linear programming (2) is obtained
by replacing the vectors (y,n) in the original CNDP
formulation (1) by their fixed values (ȳ, n̄). In this
reformulation, the objective function aims to min-
imise the routing of flows. Constraints (2a) are
flow conservation equations. For simplicity and effi-
ciency, we delete the variables R by replacing the con-
straints (2b), (2c), (2d) and (2f) by the following con-
straints (3a):∑
k∈K

(xkij +xkji) d
k ≤ pij +

∑
l∈L

ml n̄
l
ij ȳij ∀(i, j) ∈ E(ȳ) (3a)

The previous constraints (3a) force the use of lim-
ited capacities by guaranteeing that the flows do
not exceed the installed capacity (i.e, sum of the
pre-installed capacity and module capacities). Con-
straints (2e) state out continuity and non-negativity
of the decision variables X.

A solution to the CNDP can be viewed as (1) a bi-
nary assignment (ȳ) to each design variable, (2) an in-
teger vector assignment (n̄) to the allocation module
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design variables and (3) an optimal solution for the
multicommodity minimum cost flow problem x∗(ȳ, n̄).
In this way, the CNDP objective function value associ-
ated to a solution (ȳ, n̄,x∗(ȳ, n̄)) is the sum of the fixed
cost of the open edges in (ȳ), the cost of the modules
allocated (n̄) and the objective function value of the
CMFP associated to x(ȳ, n̄)∗. Thus, to solve the CNDP
problem, we propose here to separate it into two sub-
problems:
(1) link and resource selection which consists to
choose the links, modules and their numbers by mak-
ing decision on the vectors y and n,
(2) solve the CMFP problem (formulated in (2)) with
respect of decisions made in (1) to determine the op-
timal routing that flows all the demands.

Note that sub-problem (2) can be solved in poly-
nomial time. Thus, the challenge consists to solve
the sub-problem (1) by identifying the best decision
vectors (y) and (n) which allow to solve the flow sub-
problem in (1). In other words, the decision vectors
(y) and (n) should be selected so that the overall rout-
ing, link and module costs are optimal.

In the next section, we show how to solve jointly
and efficiently sub-problems (1) and (2). In the first
step of our proposition, we used the genetic algo-
rithms to explore different potential solution areas for
the decision vectors (y,n). Each solution (ȳ, n̄) is then
evaluated in the second step by solving CMFP prob-
lem.

4 Genetic Algorithm for CNDP

Genetic algorithms introduced by Goldberg et al. [20],
are based on the mechanics of natural selection and
genetic. They start with an initial set of random so-
lutions, called a population. Each individual in the
population, called a chromosome, represents a solu-
tion to the problem. The initial population evolves
through successive iterations, called generations. A
measure of fitness defines the quality of an individual
chromosome. In each generation, chromosomes are
evaluated by a fitness function, also called an evalua-
tion function. After a number of generations, highly
fit individuals, which are analogous to good solutions
to a given problem, will emerge. Genetic algorithms
consist of five components:

1. A method for encoding potential solutions into
chromosomes;

2. A means of creating the initial population;

3. An evaluation function that can measure the fit-
ness of chromosomes;

4. Genetic operators that can create the next gener-
ation population;

5. A way to set up control parameters; e.g., popu-
lation size, the probability of applying a genetic
operator, etc.

4.1 Individual representation

In the design of genetic algorithms, the encoding is
the most important task. There are some methods to
encode each individual in a population, such as bi-
nary encoding, integer encoding, etc. In this paper,
we define a new encoding method called IME (Im-
plicit Modular Encoding) that is relative to our mod-
ular case. An individual built by IME is shown in Fig-
ure 1. Each individual I is a matrix In,m, where n and
m corresponds to the number of modules and to the
number of edges respectively. Hence, I[li][ej ] gives the
number of module types li allocated on edge ej .

Our encoding represents the decision vector n
and implicitly the decision vector y. For example,
T [l1][e4] = 2 (see Figure 1) means that we should allo-
cate two modules on the edge e4. Thus, we implicitly
deduce that edge e4 exists in the final topology.
When multiple types of modules are allowed, the edge
exists if at least one module is allocated on it, i.e:{

xe = 1 if
∑n

li=1
T [li][e] > 0

xe = 0 otherwise

In our example in Figure 1, edge e1 will not be opened
in the final network since ∀i : T [li][e1] = 0.

4.2 Initial population

The choice of the initial population is a very impor-
tant aspect of the whole search procedure. If it is too
specific, then the search will be limited to a small re-
gion of the solution space leading to a local optimum.
On the other hand, if the initial population is very
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Figure 1: Individual with Implicit Modular Encoding
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InitialPopulation

Inputs: S0 , K

Local variables: P0

P0←∅
Generate initial individual I0 throughout encoding ILS

solution with IME encoding

P ← I0
foreach module {ln ∈ L} do

foreach link {em ∈ E} do
if I0[ln][em] > 0 then

Generate new individual I ← I0
I[ln][em]← I0[ln][em]− 1

if (CplexSolver(I,K) == T rue) then
Add individual I to P0

end

end

end

end
Return P0

Figure 2: S0 is the ILS solution, K is the set of flow demands. P0 is the initial population. L is the set of capacity modules. E is the set
of links. I0 is the initial individual. I is the new individual. CplexSolver(), that returns T rue if it finds a feasible flow, is a procedure that
solves the CMFP on the individual (network) transmitted as a parameter.

diverse then the algorithm will spend valuable com-
putational resources exploring a variety of promising
areas of the search space.

There are two ways to generate an initial popu-
lation: random initialization and heuristic initializa-
tion. Here, we applied the Iterative Local Search (ILS)
heuristic [21] that provides one approximated solu-
tion for the CNDP problem.

To create a diverse initial population (c.f. algo-
rithm depicted in Figure 2), we applied various per-
turbations on the individuals. After encoding the so-
lution given by ILS heuristic according to IME, we ob-
tain the first individual I0. To form the rest of the
initial population, we apply some perturbations on
I0. This results in the creation of new individuals,

wherein there are some ones corresponding to un-
feasible solutions. Obviously, only individuals corre-
sponding to feasible solutions are added to the initial
population. We recall that an individual corresponds
to a feasible solution to CNDP problem if its decision
vectors n̄ and ȳ allow the flowing of all the demands.
Thus, an individual corresponds to a feasible solution
(n̄, ȳ) if the linear program in (2) has solutions. Other-
wise, the individual corresponds to an unfeasible so-
lution.

Creation of the initial population’s individuals

We recall that our individual representation is based
on edges and modules (see Figure (1)), where the

I1 I2 

Inew 

x1  

 

x2  

 

Figure 3: Crossover operator
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Figure 4: Mutation operator

columns represent the edges, and the rows represent
the module types allocated on edges.

At initial stage, our population contains only one in-
dividual I0. The other Individuals in the initial popu-
lation are determined by applying some perturbations

on the individual I0.
A perturbation consists to delete one module from the
I0’s edges. The complete procedure of generating the
initial population is described in the following steps:

• for each module type ln ∈ L,

• for each edge e from the set E

Genetic Algorithm

Inputs: S0, K

Local variables: i, P , Gbest

P ← InitialP opulation(S0,K)

Gbest← best individual in the population P

T ermination← f alse

while ! Termination do
i ← size of population P

while i < Max-Size do
(I1, I2)← RandomSelection(P)

Inew← Crossover(I1, I2)

Inew←Mutation(Inew)

if (CplexSolver(Inew,K) == T rue) then
Add individual Inew to population P

Update Gbest

i← i+1
end

end
P← CleanPop (P)

Update(Termination)

end
Return Gbest

Figure 5: S0 is the initial solution, K is the set of flow demands. Gbest is the best value . P is the current population. MaxSize is the
fixed size of the population. I1, I2 and Inew are individuals. CplexSolver(), that returns T rue if it finds a feasible flow, is a procedure that
solves the CMFP on the individual (network) transmitted as a parameter.
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Problem Instance |V | |E| |K | Nbr L MCost pij rij

Atlanta 15 22 210 TF 1000, 4000 variant yes yes
France 25 45 300 SF 2500 fixed no no
Germany50 50 88 662 SF 40 variant no no

Table 1: The Instance Setting Parameters

• create a new individual I that corresponds to a
copy of I0,

• decrement the number of modules ln on the edge
e of individual I

• add the new individual to the population if it
allows a feasible flow of demands.

4.3 Fitness function

The fitness function corresponds to the objective func-
tion of CNDP. It is computed as the sum of the allo-
cated module costs, the fixed edge costs and the rout-
ing costs. Note that the first two costs are deduced
from the individual representation whereas the rout-
ing costs are given by solving the CMFP linear pro-
gram (2).

4.4 Genetic operators

The next populations are generated by applying the
crossover and mutation operators described below.

4.4.1 Crossover

The crossover operator is responsible for combining
two chromosomes so that a new offspring chromo-
some can be generated. In our proposition, we used
a two point crossover: we randomly chose two inte-
gers in the individual length interval (0 < x1 ≤ x2 ≤m)

and two individuals (I1 and I2) in the current popula-
tion, then we apply the two-point crossover operator
to generate a new individual as shown in Figure 3.
Typically, a new individual Inew is generated by select-
ing the modules of edges in (e1, ex1

]∪ [ex2
, em) from I1

and (ex1
, ex2

) from I2.

4.4.2 Mutation

An edge (that corresponds to a gene) and two mod-
ules types are randomly chosen in the chromosome.
Then, the numbers of modules relating to the selected
types of modules are exchanged on the chosen edge
(see Figure 4).

4.5 The genetic algorithm

After explaining and detailing the basic components
of our proposed genetic algorithm, we describe below
its operation (see Figure 5 for instructions). In our
algorithm, we first initialize the population through
InitialP opulation() procedure (see Figure 2). Then
N successive populations are generated by apply-
ing the two-point crossover and mutation operators
(Crossover() and Mutation()).

As said previously, only individuals allowing a fea-
sible multicommodity flow solution are added to the
current population. This is verified by the running
of CplexSolver() procedure that solves the linear pro-
gram in (2). The best solution Gbest is updated at each
generation and returned when the termination condi-

Instance BS ILS Gap% GA Gap%
Atlanta 86492550 92904547 7.41 87959303 1.69
France 20200 21400 5.94 20600 1.98
Germany50 645520 719060 11.39 667840 3.45

Table 2: The ILS and GA solutions

Demand model Undirected demand (U)
Link model Undirected links (U)
Link capacity model Modular link capacities(M)
Fixed-charge model No fixed-charge cost (N)
Routing model Continuous (C)
Admissible path model All paths (A)
Hop limit model No hop-limits (N)
Survivability model No survivability (N)

Table 3: The model filter
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Atlanta France Germany50
Instance BS ILS GA BS ILS GA BS ILS GA

Total installed 294000 307000 300000 252500 270000 257500 7200 8000 7440
link capacities
Total working flow 282338.5 281188 284503 246938 237952 240351 7140 7024 7265.83
Total Unused flow 11661.5 25812 15497 5562 32048 17149 60 976 174.17

Table 4: Working and unused capacities

tion is satisfied.
CleanP op() procedure allows to switch from one pop-
ulation to another by selecting individuals from the
first population. It is based on elitist strategy, i.e., bet-
ter is the fitness of the individual, greater is the prob-
ability of keeping that individual in the next popula-

tion.

The algorithm stops its running after a fixed num-
ber of generations or when the result is not improved
after a certain number of generations.

Figure 6: Atlanta network

Figure 7: France network
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Figure 8: Germany50 network

5 Experiments and Results

In our experiments, we used three real world in-
stances of network topologies including Atlanta,
France and Germany50. All can be downloaded from
http : //sndlib.zib.de [22]. We followed the model fil-
ter specified in Table 3. The population size is 50 and
the number of generations is 15.
Each instance is characterized by the number of nodes
|V |, the number of potential links |E| = m and the
number of traffic demands |K |. Table 1 summarizes
the instance specification details. We classify them
into two categories; instances with Single Facility al-
location (SF) and instances with Two Facilities alloca-
tion (TF). The set of capacity modules L differs from
one network instance to another. The allocation cost
MCost is variant on links except in France instance.
Atlanta instance assumes a Pre-installed capacities pij
on their potential links with a unit routing cost rij . See
[22], for more details on the filter model and on the
setting parameters.

In Table 2, ILS and GA correspond to the solutions
obtained by iterative local search algorithm and our
genetic algorithms-based heuristic respectively. We
examine the quality of a given algorithm A (A could
be GA or ILS) by computing its optimality gap (see
equality 10) that is defined as the ratio between the
difference of the A’s cost and the Best Solution (BS)
cost. Note that BS corresponds to the best solutions
published in [22].

GAP (A) = {Cost(A)−Cost(BS)}/Cost(BS) ∗ 100 (4)

As depicted in Table 4, GA is better than ILS since
it determines solutions more close to the best solu-
tions than those of ILS. Concretely, the mean gap
obtained with ILS is 3.5 times higher than the mean
gap obtained with GA. This can be explained by the

exploration of multiple solution areas with GA while
ILS determines only a local optimum.

Figures 6, 7 and 8 show the allocated capacities
and their usage for Atlanta, France and Germany50
networks respectively. We compared the total in-
stalled link capacities, the total working capacities
and the total unused capacities for BS, ILS and GA so-
lutions. We remark that the total installed link capac-
ities in ILS and GA are more larger than the BS ones.
This justifies the cost gap. On the other hand, ILS
uses fewer working capacities than BS because ILS
wastes and over-allocates module resources, leading
to efficient routing. Indeed, instead of splitting flows
and exploring the small unused capacities on links,
ILS routes the majority of demands on shortest paths.
With GA, the CPLEX optimizer tries to exploit the
residual quantities on the allocated modules to route
the flows. This leads to a bifurcation of demands on
multiple paths that could be quite long, though rout-
ing costs slightly limit the path lengths.

6 Conclusion

In this paper, we proposed a two steps-based algo-
rithm to solve the modular version of the Capacitated
Network Design Problem (CNDP). In the first step,
we applied genetic algorithms to select sets of promis-
ing networks (i.e., links with their modules) which are
checked, evaluated and validated in the second step
with the use of linear programming.

To explore the promising areas in the solution
space, the genetic algorithms we used were adapted
to treat and design efficient network topologies by:
(1) defining a flexible and meaningful encoding
scheme IME (Implicit Modular Encoding), (2) two
point crossover and mutation operators and (3) an
elitist population strategy. We generated the initial
population by combining an iterative local search al-

www.astesj.com 299

http://www.astesj.com


M. Khelifi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 291-301 (2017)

gorithm with a heuristic procedure that modifies the
number of modules on the network links. Succes-
sive populations were then generated by applying two
point crossover operator which creates a new network
from two other ones by selecting some edges from the
first network and the rest from the second network.
A mutation operator is possibly applied on links to
exchange the module types. Finally, a probability-
based elitist population strategy chooses promising
network topologies that we combine to determine the
next population. In our proposition, the networks are
associated with probabilities in a way they guarantee
an offspring often coming from the best individuals.

To measure the fitness of a solution, polynomial
time linear program which determines the routes by
searching for feasible flows on the corresponding net-
work is used.

Simulations results confirm that the combination
of genetic algorithms and linear programming in two
steps is satisfactory and efficient. Indeed, the results
show clearly that our proposition outperforms the it-
erative local search heuristic and determines solutions
close to the known best ones.
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