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 A wormhole attack is one of the most critical and challenging security threats for wireless 
sensor networks because of its nature and ability to perform concealed malicious activities. 
This paper proposes an innovative wormhole detection scheme to detect wormhole attacks 
using computational intelligence and an artificial neural network (ANN). Most wormhole 
detection schemes reported in the literature assume the sensors are uniformly distributed in 
a network, and, furthermore, they use statistical and topological information and special 
hardware for their detection. However, these schemes may perform poorly in non-uniformly 
distributed networks, and, moreover, they may fail to defend against “out of band” and “in 
band” wormhole attacks. The aim of the proposed research is to develop a detection scheme 
that is able to detect all kinds of wormhole attacks in both uniformly and non-uniformly 
distributed sensor networks. Furthermore, the proposed research does not require any 
special hardware and causes no significant network overhead throughout the network. Most 
importantly, the probable location of the malicious nodes can be identified by the proposed 
ANN based detection scheme. We evaluate the efficacy of the proposed detection scheme 
in terms of detection accuracy, false positive rate, and false negative rate. The performance 
of the proposed algorithm is also compared with other machine learning techniques (i.e. 
SVM and regularized nonlinear logistic regression (LR) based detection models). The 
simulation results show that proposed ANN based algorithm outperforms the SVM or LR 
based detection schemes in terms of detection accuracy, false positive rate, and false 
negative rates. 
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1. Introduction 

Wireless sensor networks (WSNs) consist of self-directed devices 
(i.e., sensor nodes), which are used in a collective manner to 
monitor environmental or physical phenomena in a remote and/or 
hostile environment. Spatially distributed autonomous sensor 
nodes are capable of communicating amongst themselves in order 
to transfer sensed data to a base station. The WSN is a type of ad-
hoc network that has gained popularity for its versatile application 
in military and civil domains such as battlefield monitoring, 
tracking objects, healthcare, and home automation[1].  

In WSN, a larger number of sensor nodes perform an assigned 
task in a hostile environment without any human intervention. 

Since sensor nodes use a known in-band radio channel for 
communication and are usually deployed in a hostile or remote 
environment, therefore, WSNs are prone to various security 
threats like a Sinkhole attack, Sybil attack, and wormhole attack. 
WSN has several vulnerabilities that an attacker can exploit to 
obtain access to the network. Implementing security measures like 
data encryption is not practical solution for the most WSNs. 
However, research on security measures has made certain 
progress in secure localization algorithm, lite weight routing 
protocols, and secure data aggregation scheme. However, those 
security mechanisms don’t provide any protection against any 
attack from a legitimate node. If an attacker gains control over a 
few legitimate nodes, full access would be gained to the data 
traveling through these compromised nodes. The attacker may 
achieve the capability to modify the contents of the control 
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packets later by extracting the cryptographic contents from the 
captured data packets.  

Wormhole attack is recognized as one of the most detrimental 
security threats for any routing protocol of WSNs [2-3]. The 
wormhole attack can be easily launched by taking over at least two 
legitimate nodes from the two distant parts of the network or 
deploying two nodes with superior capabilities (e.g. directional 
antenna, larger radio range) in two distant places of the sensor field. 
Wormhole nodes are connected through a virtual tunnel which can 
be implemented in numerous ways (e.g. high-quality channel, 
packet encapsulation or packet relay and high powered 
transmission) [4]. This direct low latency tunnel is known as a 
wormhole link [5]. A wormhole link creates an illusion in the 
network that these two colluding nodes are located within their 
communication range, but, in fact, their physical locations are very 
far apart. 

 

Fig. 1 Depiction of the structure of a wormhole attack. 

By creating this unauthorized link, wormhole nodes gain the 
ability to circulate false route information into the network that 
they are few hops away from the base stations. This illusion drives 
other sensor nodes to transmit data packets to the base station 
through the wormhole nodes. Wormhole attack disrupts the 
existing network data flow in order to monitor and capture the 
data packets passing through it. As shown in Fig. 1, the 𝐸𝐸1 and 𝐸𝐸2 
wormhole nodes, connected by a wormhole link, capture the data 
packets from one terminal of the virtual tunnel and retransmit 
them to another terminal of that link. 

Subsequently, this wormhole attack becomes so severe that it 
might destroy the network or hamper the usual operation of the 
network by the selective dropping of packets, manipulation of 
traffic, or modify data packets without revealing their identities. 

Therefore, detection of wormhole nodes is an essential task for 
ensuring the security of wireless sensor networks. It is a very 
simple task to implement wormhole attack, but a very difficult 
task to detect an infected network since wormhole nodes 
retransmit valid packets into the network. Most of the existing 
countermeasures use the distance bounding technique, direction, 
and location abnormality among claimed neighbor nodes as 

detection attributes to fight against wormhole attack. To gain a 
certain level of accuracy, some existing schemes uses complex 
and highly advanced devices such as directional antenna[6], 
GPS[7], or ultrasound for distance measurement [8]. However, 
those special devices are very costly for practical deployment. A 
few statistical wormhole detection schemes based on hop count 
[9], node connectivity [5], or neighborhood count [10-12] are 
proposed that do not need any special hardware. However, they 
usually include a hardware supported scheme as a secondary 
approach. Furthermore, centralized statistical wormhole detection 
[10] may cause significant network and communication overhead 
in contrast to a distributed statistical approach [11]. In the network 
connectivity based wormhole attack detection schemes [5,13-14], 
the positions of neighboring nodes are estimated from the 
received signal strength (RSSI ) by each node, which sends this 
information to the base station. By doing this, the network layout 
is determined by the base station and compared with the given 
network layout. This approach also causes a significant amount of 
control packets flow to the base station. Moreover, it is prone to 
distance estimation errors. Furthermore, neighborhood-based 
wormhole detection schemes [10,12] may not detect wormhole 
attack if the wormhole nodes are located in a sparsely populated 
area and caused the significant flow of packets to the base station. 
In addition, their performance in non-uniform sensor distribution 
is in question. 

In recent years, network anomaly detection schemes have 
been increasingly using artificial intelligence to improve detection 
accuracy. An artificial neural network (ANN) is a very simplified 
information processing model that aims to grossly imitate the 
human brain function. An ANN consists of interconnected 
processing units and works in a parallel fashion to find a solution 
to a particular non-linear problem.  The adaptive and self-learning 
ability of an ANN help to increase the competence of an anomaly 
detection model [15]. Moreover, ANNs have been widely 
deployed to deal with pattern recognition and classification 
problems [16].     

In this paper, we introduce a novel detection scheme based on 
an ANN using ‘neighborhood count’ and ‘average residual 
energy pattern of neighbors (AREPN)’ as detection attributes. The 
proposed detection scheme is able to detect wormhole attacks in 
both uniform and non-uniform sensor distributions and does not 
need any special hardware. Here, we have introduced a mobile 
node, called as detector node (𝐷𝐷𝑁𝑁) that visits randomly chosen 
locations within the region of interest and collects two featured 
data samples, along with coordinate for each site visited. When 
the detector node 𝐷𝐷𝑁𝑁 moves into a wormhole infected zone, this 
paper theorizes that the collected number of neighbors increases 
abnormally (uniform network scenario) or slightly abnormally 
(non-uniform network scenario), compared to a non-infected zone, 
in which the counts change normally. This paper also introduces 
a new detection attribute, named AREPN that significantly 
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decreases at the wormhole infected zone compare to non-infected 
zone. 𝐷𝐷𝑁𝑁  captures these features as evidence of the presence or 
absence of a wormhole attack. The gathered dataset is used for 
training in the proposed ANN based detection scheme. After the 
training phase, the test data samples are fed into the ANN, and the 
scheme decides if there is any wormhole attack in the network or 
not. 

 We have studied in detail and compared the performance of 
the proposed algorithm with SVM and LR based detection 
schemes through simulations. Our simulation results confirm that 
an ANN based wormhole detector can detect wormhole attacks 
with higher precision and accuracy as compared to the non-linear 
logistic classification algorithm. 

 The rest of this paper is arranged as follows: Section 3 
presents a detail of wormhole attack and its classification. We 
discuss literature review, ANN, SVM and LR in Section 3, 4, 5, 
and 6, respectively. The proposed ANN-based detections scheme 
described in detail in Section 7. The evaluation results are 
discussed in Section 8. Section 9 concludes the paper and provide 
a scope of future work. 

2.  Wormhole attacks 

A wormhole can be a severe attack against any packet routing 
protocol, especially in ad-hoc and wireless sensor networks. It is 
very difficult to detect and to take preventive measures against 
wormhole attack since the malicious nodes behave as legitimate 
nodes and initially do not perform any illegal activity in the 
network[2]. The word ‘wormhole’ means the creation of any 
shortcut path between two far apart points in the space-time [17]. 
Thus, the concept of ‘wormhole’ is used as a tool to launch this 
attack aiming to spoil the existing routing protocol. 

The wormhole attack starts by compromising at least two 
nodes from the sensor network by hacking or, deploying two 
nodes with superior capabilities (e.g. directional antenna, larger 
radio range) in two distant places of the network [18]. This attack 
would be more devastating if the aggressor launches the attack 
with multiple nodes. Although, wormhole attack can be launched 
with the single node by broadcasting received packets with high 
power level [19-20]. Those malicious nodes are known as 
‘wormhole node’. Furthermore, to launch the attack, the 
wormhole nodes connect themselves through a low latency 
communication link, which is called the wormhole link. In some 
literature, this link is also named as wormhole tunnel [11]. The 
wormhole nodes gain unprecedented access to the network by 
forming this low latency link. This wormhole link can be formed 
in numerous ways, such as packet encapsulation, high power 
transmission, wired link and out of band radio link [4].  Packet 
encapsulation is the most prominent way to establish wormhole 
link in the network where smallest hop count is used as metric to 
select the best route.  

 
Fig. 2 The depiction of (a) ‘in-band’ and (b) ‘out-band’ 

wormhole attack. 

 The wormhole attack can be categorized into two classes 
based on the wormhole link formation. In the ‘out band’ 
wormhole [21], two external nodes are deployed with higher 
communications and computational power than deployed sensor 
nodes. This kind of attack is hard to establish due to the 
requirement of the special hardware. In this case, the adversary 
connects two separate regions of the network using a directional 
antenna or wired link. Similarly, in the ‘in band’ wormhole, the 
adversary compromises at least two legitimate nodes from the 
different zone of the network. One of these is usually located close 
to the base station so that it could disguise its adjacent nodes by 
advertising fabricated routing information. In contrast to ‘out of 
band’ wormhole attack, adversary uses packet encapsulation 
technique to create wormhole node rather than a directional 
antenna or wired link [9]. In this circumstance, two compromised 
nodes are connected through several legitimate nodes between 
them. 

 Once the wormhole link is functional, one of the colluding 
nodes transmits the data packets, collected from the one part of 
the network, towards another malicious node.  The other 
malicious node broadcasts those received packets into its radio 
range [22]. The wormhole node influences those nodes, who 
normally multiple hops away from it, to send data packets via 
wormhole by convincing them that they are few hops away from 
the base station [23]. In the other words, due to the high-speed 
wormhole link, the received data packets (by wormhole nodes) 
would travel faster from one part of the network to another part of 
the network than a usual multi-hop route. This illusion would 
disrupt existing packet routing mechanisms. 

 At the initial stage, wormhole node eavesdrops or captures 
the packets passing through it for further analysis and retransmits 
them to another wormhole node. When the wormhole attack 
begins, malicious nodes do not know about the cryptographic keys 
are being used in the network. If this malicious node starts 
dropping the packets without knowing the content of the packets, 
the target of compromising the integrity and confidentially would 
not be achieved. On the other hand, the dropping of the packets 
might rise suspicion of those nodes who have relayed the packet 
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through wormhole node. Therefore, there is a chance of being 
detected as a malicious node in the network. In fact, Wormhole 
node tries to place itself in most of the route without revealing its 
identity. However, the initial phase of wormhole attack is called 
hidden wormhole attack [20]. In the hidden mode of attack, the 
wormhole does not appear in the routing table. Still, wormhole 
node is able to establish the denial of service (DOS) [24] attack 
by dropping packets in the hidden mode of attack.  

 Once the wormhole node breaks the encryption technique by 
analyzing the recorded packets, then the aggressor takes the attack 
to the new level. In the active mode, the malicious node takes part 
in the routing mechanism as legitimate node [20] and starts 
modifying or dropping the packets passing through it [4]. In some 
cases, wormhole node drops the selected or critical packets to 
interrupt the usual operation of the network [21]. 

2.1. The impact of wormhole attack: 

Wormhole attack is considered as server threats for routing 
protocols of WSNs. This attack usually occurs in the network 
layer and immune to encryption techniques. The wormhole attack 
is able to degrade the performance of the routing protocol and 
compromises the integrity and confidentiality of the data packets 
traveling throughout network [25]. Once wormhole nodes get the 
access to the network, the adversary can drop the packet 
selectively or delay the transmission of critical packets for the 
system in order to destabilize the system performance [21]. The 
aggressor tries to establish the denial of service attack (DOS) and 
attempts to compromise the integrity and confidentiality of the 
network. 

During the active mode of this attack, the malicious nodes 
become the sinkholes [4]. However, other nodes around 
wormhole send data packets without aware of the fact that they 
are the victims of the wormhole attack. Hence, a significant 
amount of data traffic is passing through the malicious node and 
attacker can control and monitor the packets without having 
multiple observation points in the network. Some literature also 
suggests that wormhole node also lessens the throughput of the 
network by the selective dropping of the packets [4]. Furthermore, 
wormhole node also can turn on and off the wormhole link 
randomly [4].  This event creates instability in the routing service 
and causes a significant amount of control packets flow 
throughout the network.  

In general, the routing protocol of the wireless sensor network 
can be categorized into two classes, such as ‘pro-active’ routing 
protocol and ‘on-demand’ routing protocol. Routing updates are 
transmitted periodically in the pro-active routing protocol, 
whereas on-demand routing protocol searches the route to a 
specific destination when it is necessary. However, the wormhole 
attack is successful to invade the network accessibility for the both 
class of wormhole attack [26]. Some literature on wormhole 
attack mentions that two wormhole nodes are able to attract more 
than 50% data traffic towards them directed to the base 
station[6][27]. 

3. Related works 

 As the wormhole attack can be launched from legitimate 
nodes and relays the valid packets into the network; therefore, it 
is reasonably difficult to detect it from the infected network. 
Furthermore, lightweight cryptographic solutions are 
incorporated into most of the routing protocol to prevent false data 
packets injection into the network. As the legitimate nodes are 
compromised by the adversary and the wormhole node doesn’t 
change the packet’s content at the initial stage, so the wormhole 
node easily passes the cryptographic test.  The wormhole attack is 
a simple task to launch, but very difficult to identify. Many 
researchers have been working on this field to develop efficient 
wormhole detection schemes based on the geographical locations, 
transmission time, connectivity graph, neighborhood counts and 
radio fingerprint.  

3.1. Distance consistency based approach: 

 Most of the researchers in this field try to detect the 
wormhole attack by distance bounding techniques. In these 
approaches, two communicating nodes are allowed to determine 
the distance between them; based on message traveling time 
information, transmission time information, and geographical 
information. Sometimes sensor nodes are equipped with 
specialized hardware like the directional antenna, GPS, 
ultrasound[8] to measure the distance between two adjacent 
sensor nodes. However, these schemes are considered impractical 
due to the addition of the special hardware and their performance 
in the sparse sensor network. These schemes may not perform 
well in the presence of ‘out of band’ wormhole nodes. 

3.2. Time information based solutions: 

 The most popular detection methods of wormhole attack use 
the packet traveling time between two consecutive nodes as a 
detection attribute. Most of the cases, the data packets traveling 
time is calculated from the measured round trip time (RTT) [28-
31], the authors proposed RTT based solutions to confront against 
wormhole attack. In [32], delay per hop is determined by 
measured RTT whereas, for each successive hop, RTT is 
measured to detect wormhole attack [33]. In these schemes, the 
distance between two adjacent nodes is measured using RTT and 
determine if the two communicating sensor nodes are apart by the 
valid possible distance. If the measured RTT is higher than a 
defined threshold value, the presence of wormhole node will be 
declared. However, the RTT based solutions require the 
cooperation of the sensor nodes on the path and don’t work 
properly on the DSR[34] and DSDV routing protocols [35-36]. 
These RTT based solutions may not perform well if the wormhole 
is created by protocol deviation. The wormhole nodes forward the 
packets without waiting for the certain time in order to reach the 
destination earlier than legitimate multiple hop path. Beside this, 
in the ‘out of band’ wormhole attack, the wormhole nodes use the 
high-speed low latency link for transferring packets between them. 
In this type of attack, data packets reach to another wormhole 
node more quickly than ‘In-band’ wormhole attack. In fact, the 
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time required to forward the packets to another wormhole node is 
significantly reduced in ‘out of band’ wormhole attack. Therefore, 
the performance of RTT based detection scheme is in question 
with the presence of ‘out of band’ wormhole attack. Some works 
of literature [37] also suggested that the RTT based detection 
scheme cannot detect ‘active’ mode of wormhole attack and may 
not detect wormhole attack in the sparse sensor network. 

     In [38], the authors proposed a detection scheme based on 
neighborhood count and RTT. The authors considered the two 
facts. First, as the malicious nodes establish the new link in the 
network, so the neighbors around the malicious node increases 
significantly. Second, the measured RTT between two malicious 
nodes increases significantly in a similar fashion. However, these 
proposed solutions may not detect ‘out of band’ wormhole attack 
from the infected network.  

     In [37], the authors proposed a detection scheme based data 
transmission time of each successive hop in a route assuming that 
the wormhole nodes are in hidden mode. In this scheme, the data 
transmission time of each successive hop is calculated from the 
measured RTT. All sensor nodes in the route transmit the recorded 
transmission time to the source. The source is solely responsible 
for checking if there is any wormhole node exist in the route. This 
scheme may perform poorly in the sparse sensor network. In fact, 
the performance of this scheme may be degraded when malicious 
nodes use high-speed communication channel. 

3.3. Special Hardware-based scheme: 

 The directional antennas are incorporated with sensor nodes 
for adding access restriction [6,39-41] and finding legitimate 
neighboring nodes in the network. The entire communication 
region of a sensor node is divided into several zones. Moreover, 
each zone is defined by a directional antenna. When a sensor node 
receives the signal first time from its peering sensor node, then the 
probable location of the sender in terms of the zone is determined 
by the directional antennas. According to the authors, if a sensor 
node sends a packet from a particular zone, the recipient will get 
the signal from the opposite direction (zone). After that, the 
recipient sensor node verifies the legitimacy of the sender through 
receiving direction of the packet from unknown sensor nodes. The 
recipient node also cooperates with its neighbors to find out 
whether this node is known to other legitimate neighboring nodes 
or not. The incorporation of directional antennas to each sensor 
node makes this scheme expensive and inappropriate for practical 
deployment.  

 Another protocol named SECTOR was introduced in [29], 
that mostly depends on special hardware. The main concept of this 
detection scheme is to measure the distance between two 
communicating nodes based on the data transmission speed. The 
proposed model does not need any clock synchronization and 
geographical information of communicating nodes. In this 
algorithm, the mutual authentication with distance bounding 
(MADB) protocol [42] was implemented to measure the distance 
between nodes at the time of the encounter. According to the 

authors in [42], the proposed scheme permits one node to measure 
the mutual distance between two nodes and compares with 
maximum possible upper bounding distance. In this scheme, each 
node is incorporated with the special device that can give 
feedback to the sender without any delay. Initially, a node sends 
the one-bit challenge to its neighbors before sending any packets. 
Then recipient node responds back through a special device to the 
sender at the time it receives the one-bit challenge. When the 
sender transmits the one-bit challenge to a node, it turns on the 
clock and measures the time till it gets the response back from that 
node. After that, the sender estimates the mutual distance based 
on the measured time assuming that the data transmission speed 
is as same as the speed of light. However, in the [30], the authors 
slightly modify the schemes described in [42]. In [30], both parties 
are allowed to measure the mutual distance and validated the 
authenticity of the adjacent nodes around their communication 
range. The addition of the special device to each sensor node 
makes this scheme expensive and inappropriate for practical 
deployment.  

3.4. Geographical information-based schemes: 

 In [43] and [7], the author proposed a detection scheme that 
assigns a maximum traveling distance to each data packet. The 
authenticity of a data packet is ensured by using the concepts of 
geographical and temporal packet leashes that would help to 
minimize the effectiveness of the wormhole nodes in the network. 
In the geographical leash (GL), when a sender sends packets to 
any sensor node, the sender node incorporates sending time and 
its own location information to the packet. When the recipient 
node receives the packet, it will estimate the approximate distance 
between the sender and receiver based on the geographical leashes. 
The temporal leash includes the maximum lifetime to each packet.  
In temporal leash (TL), a sender adds either transmitting time or 
expiration time of packet so that the recipient can verify if the 
packet has made a journey too far based on maximum 
transmission speed and time. A predetermined time threshold is 
set between any two neighbors based on their position in the 
network. For a specific two neighboring nodes, the data packet 
would be discarded if it violates the time boundary set by these 
specific nodes. This scheme can perform better if strict time 
synchronization and the additional device like GPS are provided. 
Beside this, this proposed scheme may be performed poorly when 
the wormhole node is in active mode.  

3.5. Trust Based Solutions: 

 Trust information of neighboring nodes is used as an 
attribute to detect wormhole attack in the WSN. Each sensor node 
monitors the data packet forwarding pattern of its neighbors and 
rates them accordingly. In the trust base scheme, a sensor node 
selects the most trustworthy path to reach the destination based on 
the trustworthiness of its neighbors. In this scheme, the 
researchers consider the fact that the wormhole node drops all the 
received packets coming from its adjacent nodes. It is expected 
that the system would rate the least trust level to the malicious 
nodes. By using this trust level scheme, the wormhole node can 
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be avoided during the selection of a path to the destination. This 
also helps to reduce the effectiveness of the wormhole nodes in 
the infected network. The source node would forward the packets 
to the neighbor which possess maximum trustworthiness. 

 In [44], a new detection scheme was proposed to detect 
wormhole attack in the network based on both time and trust. In 
this scheme, both data travel time and trustworthiness of the 
sensor are used as potential attributes to detect the malicious 
nodes from the infected network. These two modules of this 
proposed scheme run in parallel. Here, the time-based module 
works in three stages. Firstly, each sensor node identifies its 
neighbors and update the neighbor list accordingly. Secondly, 
each node finds the best path toward the base station based on the 
trustworthiness of neighbors. Finally, the proposed algorithm 
determines the presence of the wormhole nodes in the selected 
path. According to the authors, the malicious nodes deceive the 
time-based solutions in many ways. Hence, the trust-based model 
is incorporated with the time base scheme. In this scheme, a 
sensor node monitors the neighboring node continuously and 
select the best route to the destination based on the rating.  

 Another trust based wormhole attack detection scheme was 
proposed in [45].To execute the model, the deployed sensor node 
must operate in a particular mode, named as ‘promiscuous mode’. 
This trust-based scheme is applied to the DSR protocol and 
inherent features of DSR routing protocol are used to measure the 
trust level of the neighboring nodes. Here, the algorithm must be 
executed in each sensor node and each node must measure the 
trust level of its neighboring nodes by monitoring the packet 
transmission pattern stated by the system. The source node 
verifies in several stages whether the forwarding node passes the 
IP packets or not through the sequence of integrity check. If the 
neighboring node for a particular source forwards all the packets, 
the trust level of the node would be increased. Similarly, if the 
opposite happens, the trust level of that node would be 
decremented.      

 The success of this module lies on the packet dropping 
criteria of the malicious nodes. However, the wormhole nodes do 
not drop packets in the hidden mode of this attack. Hence, the trust 
base detection model is not capable of detecting the hidden 
wormhole attack. On the other hand, each node monitors the 
packets forwarding pattern of its neighbors. As we know, sensor 
nodes have some constrained-on power and energy resources. It 
would be a burden for the system which leads to excessive energy 
dissipation of the nodes.  

3.6. Graph-based solution: 

 Multi-dimensional scaling-visualization of the wormhole 
(MD-VOW) [46], was proposed based on the graph theory. The 
multi-dimensional scaling analysis of the constructed 
connectivity graph was used as an analysis tool to detect malicious 
node in the network. For the static sensor network, the 
connectivity graph is not supposed to change frequently. Hence, 
the authors have considered the fact that the presence of malicious 

nodes introduces the anomalies in the connectivity graph. In the 
network connectivity based wormhole attack detection schemes, 
the positions of the neighboring nodes are estimated from the 
received signal strength (RSSI) by each node and send this 
information to the base station. By compiling the received 
information, the base station determines the network layout and 
compared with the current connectivity graph. Then the presence 
of the wormhole node can be detected if any forbidden structure 
is found in the constructed network layout. However, it is prone 
to the distance estimation errors, especially for the sparse network. 
The surface smoothing technique is applied to the constructed 
network layout graph to compensate distance error. This approach 
also causes a significant amount of control packets flow to the 
base station. Similarly, if the wormhole node is located in the 
sparsely populated area, then the wormhole attack may not be 
identified by this network visualization based algorithm.  

3.7. Radio fingerprinting based scheme: 

  In [47], the authors explored the potentiality of the 
fingerprinting device as a tool to validate the legitimacy of the 
node in a wireless sensor network. Most important goal of this 
research is to extract the features from the radio signals, radiating 
from the nearby sensor nodes; by which the legitimacy of a node 
can be evaluated. In this research, each node has to be equipped 
with the radio fingerprinting device. The radio fingerprinting 
device captures the radiated radio signal from the nearby sensor 
nodes. After that, the fingerprinting device converts the radio 
signals into digital format. The transient part of the signal is 
located and the important features are extracted.  After that, those 
extracted features are taken into account as fingerprints so that 
recipient sensor node can identify the neighboring node. The 
authors also implemented the incorporation of the radio 
fingerprinting device with a sensor node [47]. In this research, the 
authors also showed that the fingerprinting approach identified 
the nearby node while the message contents and the identification 
of the nearby devices were hidden. There are few issues are 
required to be investigated in this approach. The radio 
fingerprinting devices’ performance in a noisy environment, and 
in the mobile platform is in question. By using this detection 
method, only the ‘out of band’ wormhole attack can be detected. 
This proposed algorithm cannot detect ‘in-band’ wormhole attack 
as it can be launched from the legitimate node.  

3.8. Neighborhood counts based detection scheme 

 No. of neighbors around a sensor node are used in [10-12,19] 
as detection attributes in the neighbor based detection scheme. In 
the centralized method, each sensor node finds the number of 
neighbors within its communication region and sends this 
information to the base station. As the distribution of the sensor 
node is known, the base station computes the hypothetical 
distribution of the number of neighbors along with the true 
distribution of the neighborhood counts. This process also creates 
a significant amount of control data packet flow throughout the 
network and leads to the unexpected energy dissipation of sensor 
node. This process is also used as secondary approach with the 
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distance-based scheme. In another neighborhood count based 
approach [12], detector node takes the count of neighbors at the 
each site it visited. In this approach, ANN-based detection scheme 
may not able to detect the wormhole attack if the wormhole nodes 
are located in the sparsely populated area. Another important 
factor is that by this scheme, the probable location of the 
wormhole node cannot be identified. Some authors also use signal 
processing tool like Fourier transform, Discrete wavelet transform 
[48]  and, variance fractal dimension [49]  on the data series of the 
neighborhood counts. However, these proposed algorithms only 
work on the acquired data series while deployed sensors are 
distributed uniformly. However, these schemes may not able to 
locate the probable location of the wormhole node.      

4. Artificial neural Network (ANN) 

 The Artificial Neural Network (ANN) is a network based 
stochastic learning model that has evolved from the study, 
characteristics, organization, and decision-making ability of the 
unit cell of a human brain called a neuron [19]. In other words, it 
aims to imitate the most simplified and basic function of the 
human brain. Analogous to the unit cell of a human brain, an ANN 
contains several interconnected information processing units, 
called a neuron, learning the underlying process of the data 
samples presented to the network. The significant phenomena of 
ANN are the ability to estimate the non-linear complex 
relationship between inputs and outputs without any prior 
knowledge of dataset like a black box. ANN is usually observed 
as a model of interconnected neurons that maps the input and 
outputs through information exchange among neurons[50]. 

 Furthermore, in a multi-layer perceptron (MLP), there is an 
input layer, followed by one or more hidden layers, and an output 
layer [51]. In each layer, several neurons are employed, which are 
fully connected with other neurons of an adjacent layer, and they 
are connected to different random weight values. In other words, 
neurons are fully attached to the neurons of the following layer; 
but in the same layer, neurons are not connected with each other. 
The number of neurons in the output layer depends on the type of 
the problem that we want to solve by the ANN. 

 

Input 
layer

Hidden 
layer

Output
layer

 X1  

X3

X2 

 h1 

h2

 h3

 Y1

 Y2

 
Fig. 3 The structure of an ANN. 

4.1. Forward Propagation of the ANN: 

 Input features from the input layer are shared with an 
adjacent hidden layer through unidirectional branches[50]. Those 
input features are multiplied by random weights associated with 
the unidirectional branches; summed up, and passed through the 
activation function of the neuron (e.g. sigmoid function). The bias 
term is also added to each layer except the output layer to activate 
the artificial neurons. This bias term is also connected to the 
neurons of the adjacent layer with unidirectional branches 
associated with the weight values (𝑏𝑏𝑖𝑖

(𝑙𝑙)) so that the summed inputs 
exceed the predefined threshold. 

 
Fig. 4 Forward propagation of ANN  

 In the forward propagation, the output of each neuron of the 
prior layer is considered as the input to all neurons of the 
following layer. As shown in the Fig. 4, the three layers are 
connected with the weight value 𝜃𝜃𝑖𝑖𝑖𝑖

(𝑙𝑙). 𝜃𝜃𝑖𝑖𝑖𝑖
(𝑙𝑙) represents the weight 

value going to the unit 𝑖𝑖 in layer (𝑙𝑙 + 1) and coming from the unit 
𝑗𝑗 in layer 𝑙𝑙 . According to the Fig. 4, the net output of 𝑖𝑖𝑡𝑡ℎ unit 
(including bias term) of the hidden layer (𝑎𝑎𝑖𝑖

(2) ) is, 

𝑍𝑍𝑖𝑖
(2) = �𝜃𝜃𝑖𝑖𝑖𝑖

(1)𝑥𝑥𝑖𝑖
(1) + 𝑏𝑏𝑖𝑖

(1)
𝑛𝑛

𝑖𝑖=1

                          (1) 

𝑎𝑎𝑖𝑖
(2) = 𝑔𝑔(𝑧𝑧𝑖𝑖2) = 𝑔𝑔(�𝜃𝜃𝑖𝑖𝑖𝑖

(1)𝑥𝑥𝑖𝑖
(1) + 𝑏𝑏𝑖𝑖

(1)
𝑛𝑛

𝑖𝑖=1

)    (2) 

In the equation (1) and (2),  𝑍𝑍𝑖𝑖
(2) represents the total input of the 

𝑖𝑖𝑡𝑡ℎ unit of layer 2 .Similarly, the net output of 𝑘𝑘𝑡𝑡ℎ unit of the 
output layer can be shown as equation (3), 

𝑜𝑜𝑘𝑘
(3) = 𝑔𝑔(�𝜃𝜃𝑘𝑘𝑖𝑖

(2)𝑎𝑎𝑖𝑖
(2) + 𝑏𝑏𝑘𝑘

(2)
𝑛𝑛

𝑖𝑖=1

)            (3) 

The cost function, 
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𝐽𝐽(𝜃𝜃) = �
1

2𝑚𝑚

𝑛𝑛

𝑘𝑘=1

�(𝑜𝑜𝑘𝑘𝑚𝑚 − 𝑦𝑦𝑘𝑘𝑚𝑚)2
𝑚𝑚

𝑖𝑖=1

                   (4) 

In the equation (4), 𝐽𝐽(𝜃𝜃) refers to the average error occurred over 
𝑚𝑚 training samples during the training procedure, and 𝑘𝑘 defines 
the number of neurons in the output layer. 

 The transfer function of a neuron plays an important role in 
the training procedure. The purpose of the transfer function is to 
replicate the activation mechanism of the biological neuron. 
Usually, the net output of a unit in a layer is calculated from the 
net received input through the transfer function. The transfer 
function must be non-linear, continuous and differentiable at any 
point in order to apply gradient descent learning algorithm. There 
are several types of transfer function such as sigmoid function, 
hyperbolic tangent function, and rectified linear function. Some 
literature also suggests that the rectified linear function was found 
to accelerate the convergence rate of stochastic gradient descent 
due to its non-linear and non-saturating form. However, in our 
research, the sigmoid function was used as the transfer function 
of each unit in any layer (except input layer). 

𝑔𝑔(𝑧𝑧) =
1

1 + 𝑒𝑒−𝑧𝑧
                                             (5) 

 

𝑔𝑔(𝑧𝑧) = tanh(z) =
𝑒𝑒𝑧𝑧 − 𝑒𝑒−𝑧𝑧

𝑒𝑒𝑧𝑧 + 𝑒𝑒−𝑧𝑧
                       (6) 

 

𝑔𝑔(𝑧𝑧) = �0   𝑖𝑖𝑖𝑖 𝑧𝑧 ≤ 0
𝑧𝑧  𝑖𝑖𝑖𝑖 𝑧𝑧 > 0                                       (7) 

 
4.2. Back Propagation of the ANN 

 In the back propagation, the outcome of the output layer is 
compared with desired output. The error between the network 
output and desired output is measured and propagated backward 
to adjust the branch weights in order to minimize error that would 
occur due to the estimation of output. In other words, we minimize 
the cost or energy of the error function, 𝐽𝐽(𝜃𝜃) by passing back the 
error occurred during the training phase. In the back propagation, 
the gradient descent algorithm is applied to learn the network 
parameters (𝜃𝜃𝑖𝑖𝑖𝑖

(𝑙𝑙), 𝑏𝑏𝑖𝑖𝑖𝑖
(𝑙𝑙)) from the training set {𝑥𝑥𝑖𝑖𝑚𝑚,𝑦𝑦𝑖𝑖𝑚𝑚}.  

 However, there are many ways to update the weights: batch 
mode, online mode. In the batch mode, each weight is updated 
once by the total error occurred in an epoch (i.e. after one training 
cycle). In contrast, in the online mode, a training sample is drawn 
randomly from the training set and passes through the network. 
The network parameters are modified 𝑚𝑚 times per training cycle 

if there are 𝑚𝑚 training examples in the training set. This online 
mode of weight updating is also known as stochastic gradient 
descent[50].    

 Let’s consider the multilayer feed forward network shown 
in Fig. 4. The impact of the change in the weight (𝜃𝜃𝑖𝑖𝑖𝑖

(2)) on error 

(𝐸𝐸𝑘𝑘
(3)) occurred in the output layer is, 

𝜕𝜕𝐸𝐸𝑘𝑘
(3)

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
(2) = �𝑜𝑜𝑘𝑘

(3) − 𝑦𝑦(𝑡𝑡)�. 𝑜𝑜𝑘𝑘
(3)�1 − 𝑜𝑜𝑘𝑘

(3)�.𝑎𝑎𝑖𝑖
(2)      (8) 

In the equation (8),  𝑜𝑜𝑘𝑘
(3) represents the output of the 𝑘𝑘𝑡𝑡ℎ unit of 

the output layer and 𝑦𝑦(𝑡𝑡)  refers to the desired output of a training 
example. Similarly, the impact of the change in weight (𝑏𝑏𝑘𝑘

(2)) , 
associated with bias and the neurons of the output layer, on error 
(𝐸𝐸𝑘𝑘

(3)) occurred in output layer is, 

𝜕𝜕𝐸𝐸𝑘𝑘
(3)

𝜕𝜕𝑏𝑏𝑘𝑘
(2) = �𝑜𝑜𝑘𝑘

(3) − 𝑦𝑦(𝑡𝑡)�. 𝑜𝑜𝑘𝑘
(3)�1 − 𝑜𝑜𝑘𝑘

(3)�             (9)   

According to the above equations (8) and (9), the update formulas 
for the weights associated with output layer are given below. 

𝜃𝜃𝑘𝑘𝑖𝑖
(2) = 𝜃𝜃𝑘𝑘𝑖𝑖

(2) − 𝛼𝛼�𝑜𝑜𝑘𝑘
(3) − 𝑦𝑦(𝑡𝑡)�. 𝑜𝑜𝑘𝑘

(3)�1 − 𝑜𝑜𝑖𝑖
(3)�. 𝑎𝑎𝑖𝑖

(2)   (10) 

 

𝑏𝑏𝑘𝑘
(2) = 𝑏𝑏𝑘𝑘

(2) − 𝛼𝛼�𝑜𝑜𝑘𝑘
(3) − 𝑦𝑦(𝑡𝑡)�. 𝑜𝑜𝑘𝑘

(3)�1 − 𝑜𝑜𝑖𝑖
(3)�            (11) 

 In the equations (10) and (11), 𝛼𝛼 refers to the learning rate of the 
network. Now, we can calculate the rate of the change in the error  
(𝐸𝐸𝑘𝑘

(3)) over the weight (𝜃𝜃𝑖𝑖𝑖𝑖
(1)) , associated with the input layer and 

the hidden layer shown in the equation (12). 

                 
𝜕𝜕𝐸𝐸𝑘𝑘

(3)

𝜕𝜕𝜃𝜃𝑖𝑖𝑖𝑖
(1) = 𝛿𝛿𝑘𝑘

(3). 𝑎𝑎𝑖𝑖
(2). 𝑥𝑥𝑖𝑖

(1). �1 − 𝑎𝑎𝑖𝑖
(2)�.𝜃𝜃𝑘𝑘𝑖𝑖

(2)         (12) 

Considering 

𝛿𝛿𝑘𝑘
(3) = �𝑜𝑜𝑘𝑘

(3) − 𝑦𝑦(𝑡𝑡)�. 𝑜𝑜𝑘𝑘
(3)�1 − 𝑜𝑜𝑘𝑘

(3)�              (13) 

Similarly, impact of the changes in weights (𝑏𝑏𝑖𝑖
(1)) , associated 

with bias and the neurons of the hidden layer, on error �𝐸𝐸𝑘𝑘
(3)�  

occurred in output layer can be calculated as 

𝜕𝜕𝐸𝐸𝑘𝑘
(3)

𝜕𝜕𝑏𝑏𝑖𝑖
(1) = 𝛿𝛿𝑘𝑘

(3). 𝑎𝑎𝑖𝑖
(2)�1 − 𝑎𝑎𝑖𝑖

(2)�. 𝜃𝜃𝑘𝑘𝑖𝑖
(2)                      (14) 

Therefore, according to the equations (12) and (14), the weights 
associated with input layer and the hidden layer can be modified 
by the following equations during the training procedure. 

𝜃𝜃𝑖𝑖𝑖𝑖
(1) = 𝜃𝜃𝑖𝑖𝑖𝑖

(1) − 𝛼𝛼𝛿𝛿𝑘𝑘
(3). 𝑎𝑎𝑖𝑖

(2). 𝑥𝑥𝑖𝑖
(1). �1 − 𝑎𝑎𝑖𝑖

(2)�. 𝜃𝜃𝑘𝑘𝑖𝑖
(2)        (15) 
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𝑏𝑏𝑖𝑖
(1) = 𝑏𝑏𝑖𝑖

(1) − 𝛼𝛼𝛿𝛿𝑘𝑘
(3). 𝑎𝑎𝑖𝑖

(2)�1 − 𝑎𝑎𝑖𝑖
(2)�. 𝜃𝜃𝑘𝑘𝑖𝑖

(2)                   (16) 

These weights adjacent procedure continues recursively until the 
network reaches either to the minimum tolerance level or 
maximum epochs at the training. 

5. Support Vector Machine 

 The support vector machine (SVM) is one of the reliable and 
widely used supervised learning models that analyze the 
presented data samples to perform classification and regression 
analysis[50]. The SVM learns the given data samples, each 
sample marked with a specific class, builds a model that can 
assign a class to a new data sample. SVM learning model set a 
hyperplane in an optimum position in the data space so that 
Euclidian distance from the decision surface for all training data 
samples would be maximized. SVM has been emerged to provide 
the generalized performance to solve a wide range of 
classification and pattern recognition problems such as face 
detection, pedestrian detection, and text categorization etc.  

 Let’s consider a training data set, 𝐷𝐷 = {(𝑥𝑥𝑚𝑚,𝑦𝑦𝑚𝑚)} contains 
𝑚𝑚  training data samples where 𝑥𝑥𝑚𝑚 ∈ 𝑅𝑅𝑛𝑛  and  𝑦𝑦𝑚𝑚 ∈ {−1, +1} , 
represents the label of the 𝑚𝑚𝑡𝑡ℎ data sample. The hyperplane in 
form of decision surface can be defined as 

                  �𝒘𝒘𝑇𝑇𝑥𝑥(𝑖𝑖) + 𝑏𝑏 = 0
𝑚𝑚

𝑖𝑖=1

                                (17)   

 In the equation (17) 𝒘𝒘  and b represent a weight vector and 
a bias term that can be determined through the training process. 
Through these parameters  (𝑤𝑤, 𝑏𝑏) , the decision surface places 
itself in the optimum position in the data space. As we know, the 
SVM places the decision surfaces in the data space in such way 
that it maximizes the geometric margin of all training data 
samples. In this circumstance, the optimization problem is  

min
𝑤𝑤,𝑏𝑏

1
2
∥ 𝑊𝑊 ∥2                                  (18) 

Subject to 

�𝑦𝑦(𝑖𝑖)(𝑊𝑊𝑇𝑇𝑥𝑥(𝑖𝑖) + 𝑏𝑏) − 1 ≥ 0
𝑚𝑚 

𝑖𝑖=1

 

 The concept of the Lagrange multiplier is implemented to 
solve this optimization problem with constraint boundary stated 
in the equation (19).  Therefore, the Lagrange function is  

𝐿𝐿(𝑤𝑤, 𝑏𝑏,𝛼𝛼) =
1
2
∥ 𝑊𝑊 ∥2−�𝛼𝛼(𝑦𝑦(𝑖𝑖)(𝑊𝑊𝑇𝑇𝑥𝑥(𝑖𝑖) + 𝑏𝑏) − 1)

𝑚𝑚 

𝑖𝑖=1

 (19) 

 In the equation (19) 𝛼𝛼 is the multiplication factor and 𝛼𝛼 ≥ 0. 
If we differentiate the Lagrange function with respect to 𝑤𝑤, 𝑏𝑏 and  ; 
then the optimization problem mention in the equation (18) can 
be formulated as   

max
𝛼𝛼

𝐿𝐿(𝛼𝛼) = max (
𝛼𝛼

�𝛼𝛼𝑖𝑖

𝑚𝑚

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑖𝑖𝑦𝑦(𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

𝑦𝑦(𝑖𝑖)𝑥𝑥(𝑖𝑖)𝑥𝑥(𝑖𝑖))
𝑚𝑚

𝑖𝑖=1

               (20)  

Subject to  

�𝛼𝛼𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑦𝑦(𝑖𝑖) = 0 

𝛼𝛼𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … … . . ,𝑚𝑚 

The solution of the equation (20) drives to get optimum decision 
surface that is able to separate the positive and negative training 
data samples. If the presented data samples are not linearly 
separable, then the non-linear kernel trick can be implemented to 
deal with this problem. The Gaussian kernel is widely used as the 
kernel function. Because this function can increase the 
dimensionality of the data samples infinitely[52]. The expression 
of the Gaussian kernel is shown as equation (21). 

𝐾𝐾�𝑥𝑥(𝑖𝑖), 𝑥𝑥(𝑖𝑖)� = exp �
−∥ 𝑥𝑥(𝑖𝑖) − 𝑥𝑥(𝑖𝑖) ∥2

2𝜎𝜎2
�                (21) 

6. Non-linear Logistic regression 

 Logistic regression is a statistical model in which the 
category, from a predefined list of categories, of a new 
observation or data sample, is predicted, by estimating the 
probability of the class using a logistic function (e.g. email 
sorting). It is evolved from linear regression and designed to solve 
classification problems. That’s why, in some literature, it is 
referred as logistic classification[50]. 

 Logistic classification can be shown as a special case of 
linear regression, but we can draw a distinct line between these 
two statistical models. In the linear regression, the predictor 
predicts the continuous value by a fitting curve to the given 
training input data samples [53]. In contrary, in logistic 
classification, a predictor learns how to classify the data through 
a training phase and predicts a discrete value for the 
corresponding new data sample. Like linear regression, the same 
decision boundary equation is used for logistic classification. 

ℎ𝜃𝜃(𝑥𝑥) = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥22 + ⋯+ 𝜃𝜃𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛 = 𝜃𝜃𝑇𝑇𝐱𝐱          (22)          

Here, in the equation (22), 𝒙𝒙 represents a given input vector that 
contains 𝑛𝑛 input features. The 𝜃𝜃 refers to the model parameter that 
is required to be optimized by using the training input data 
samples. This decision boundary can be either linear or nonlinear 
that depends on the application of the logistic classification. 

                                  𝑍𝑍 = 𝜃𝜃𝑇𝑇𝒙𝒙                                                  (23)                                      

                                   𝑔𝑔(𝑧𝑧) = 1
1+𝑒𝑒−𝑧𝑧

                                            (24)                              
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 In logistic regression, a sigmoid function is used to measure 
the certainty level of the class that new observation or data sample 
belongs to. The main advantage of using sigmoid function is that 
it is continuous, differentiable at any point and monotonically 
increasing. The probabilistic interpretation can be done in a 
simple way; as the value of the 𝑔𝑔(𝑧𝑧)  in greater than 0.5, the 
predictor would be more certain about the class of the given data 
sample [54]. If the same cost function of linear regression is used, 
𝐽𝐽(𝜃𝜃) yields non-convex cost function. Consequently, special kind 
of the cost function is used in logistic classification to learn model 
from the training data which is convex. 

 

𝐽𝐽(𝜃𝜃) = − �1
𝑚𝑚
∑ 𝑦𝑦𝑖𝑖log (𝑚𝑚
𝑖𝑖=1 ℎ𝜃𝜃(𝑥𝑥𝑖𝑖)) + (1 − 𝑦𝑦𝑖𝑖)log (1 −

ℎ𝜃𝜃(𝑥𝑥𝑖𝑖))]� + 𝜆𝜆
𝑚𝑚
∑ 𝜃𝜃𝑖𝑖2𝑛𝑛
𝑖𝑖=1                                                  (25) 

 

 𝐽𝐽(𝜃𝜃) denotes the cost function of the logistic classification with 
regularization term, where 𝑚𝑚 refers to the total training examples 
of a given training set, 𝜆𝜆  is the regularization parameter, 𝑦𝑦𝑖𝑖  
represents the target output for 𝑖𝑖𝑡𝑡ℎ  training example, and 𝑥𝑥𝑖𝑖 
represents the 𝑖𝑖𝑡𝑡ℎ  training example. There are two learning 
methods used in the training procedures:  Gradient decent and 
Newton’s method. In this research, the newton’s method is 
applied as the learning model. Because it converges to the optimal 
solution within few iterations.   

7. Propose detection scheme 

The proposed algorithm is a network based approach, in which 
neighborhood counts are used as the detection feature to detect a 
wormhole attack. 

Fig. 5 Impact of wormhole attack on neighborhood count. 

 A mobile sensor node, known as detector node (𝐷𝐷𝑁𝑁 ), is 
deployed in an area where sensor nodes could be uniformly or 
non-uniformly distributed. The detector node 𝐷𝐷𝑁𝑁  moves around 
this sensor field and collects a neighborhood count and  the 
coordinate at each site it visited. When it reaches to the wormhole 
infected zone, the neighborhood population would increase 
abnormally sharply or abnormally lightly, depends on the sensor 
distribution and the position of the wormhole nodes. For instance, 
Fig. 5 shows the impact of wormhole nodes on the neighborhood 
counts.  Let’s say, the detector node 𝐷𝐷𝑁𝑁  is moving spontaneously 
around the area where the sensor nodes are deployed. At the 
time  𝑡𝑡1 ,  𝐷𝐷𝑁𝑁  moves from a location 𝐴𝐴1  to another location  𝐴𝐴2 . 
Since the detector node collects the neighborhood count at each 

site, it transmits neighbor discovery message (NDM) to the 
adjacent sensor nodes within its communication range. According 
to the Fig. 5, the wormhole node (𝐸𝐸1) also hears the broadcast as 
it is located in the transmission range of 𝐷𝐷𝑁𝑁.Since wormhole node 
doesn’t read the content of the packet, it encapsulates and 
forwards the packets along the virtual tunnel to another malicious 
node (𝐸𝐸2) . Furthermore, 𝐸𝐸2  retransmits the received packets 
towards its neighbors. The neighbors of the distant malicious 
nodes (𝐸𝐸2) respond back with valid neighbor ID (NID) through 
the wormhole link. After that, 𝐸𝐸1 unicasts the received responses 
to the originator, 𝐷𝐷𝑁𝑁. 𝐸𝐸1 compels 𝐷𝐷𝑁𝑁 to think that the responses 
have come from the sensors located within its radio ranges. 
Though some of those responses have traveled long distant within 
the network. That’s how the neighborhood counts from the 
infected zone increases sharply due to the wormhole node shown 
in the Fig. 6. This may be true for uniform sensor distribution.  

 As we know, the sensor density in the non-uniform sensor 
distribution is inconsistent over the area. If the wormhole nodes 
are placed in the sparsely populated area, then the number of 
neighbors would not increase abruptly or lightly as expected. In 
this circumstances, it would be difficult for ANN based detection 
scheme to detect wormhole attack based on the collected 
neighborhood counts (also true for the sparse network).  

 
Fig. 6 The series of neighborhood count (Uniform sensor 

distribution) 

 
Fig. 7 The series of neighborhood count (Non-uniform 

sensor distribution) 

 Sometimes the neighborhood counts taken from the infected 
zone are same as, or far smaller than the counts taken from the 
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non-infected zone shown in the Fig. 7. In this case, the ANN-
based detector may suffer to distinguish between positive and 
negative data samples. Therefore, another detection feature along 
with neighborhood count is required in order to detect wormhole 
attack from the infected network (either uniform or non-uniform) 
more precisely and confidently. 

 In this paper, we introduce a new detection feature called 
‘average residual energy pattern of the neighbors (AREPN)’. As 
we know, wormhole nodes circulate false route information into 
the network that the base station is multiple hops away from the 
wormhole nodes. Therefore adjacent sensor nodes of the 
wormhole get influenced and transmit their data packets to the 
base station through wormhole nodes. However, the wormhole 
nodes force them to hand over the collected data packets to one of 
the wormhole nodes. That means the wormhole nodes receive 
more data packets after the base station and its neighbors. Now, 
the question is how the wormhole nodes get those data packets 
coming from the adjacent nodes. Apparently, the data packets are 
coming through its neighbors. 

 
Fig. 8 Impact of wormhole nodes on adjacent nodes.  

 More packets arrive at the wormhole node means, more 
packets have been received and transferred by its neighbors. As 
we know, a node dissipates a significant amount of energy due to 
the transmission and reception of the data packets. Since the 
wormhole nodes are getting the numerous data packets from the 
adjacent nodes, so the neighbors of the wormhole nodes are also 
losing energy more quickly by retransmitting packets intended for 
the wormhole node. Now it can be said that the sensors located in 
the infected zone lose more energy than other nodes located in the 
non-infected zone.  

 In our proposed scheme, the detector node broadcasts NDM 
to the adjacent sensor nodes at each site it visited. The adjacent 
nodes reply back by transmitting a data packet incorporating valid 
NID and information of residual energy. By this way, 𝐷𝐷𝑁𝑁 is able 
to calculate the number of neighbors and average residual energy 
of the neighbors (AREPN).  𝐷𝐷𝑁𝑁 captures this evidences as a two-
featured sample and stores it. It is expected that AREPN taken 
from the infected zone is much smaller than the AREPN taken 
from the non-infected zone. As we know, the adjacent nodes of 
the base station dissipate energy quicker than the normal node. 

That’s why, 𝐷𝐷𝑁𝑁 doesn’t cover a certain geographic area based on 
the location of the base station. Once the mobile node reaches 
close to the base station, it transfers all the collected samples for 
further analysis. 

  
Fig. 9 Wormhole infected network. 

As shown in the Fig. 9, the sensors of the wormhole infected zone 
lose energy (red marked box) more quickly than the non-infected 
zone. In that case, the initial energy of each sensor node is 5 units.    

   The performance of an artificial neural network highly 
depends on the method of training and the dataset containing 
potential features. The Base station gathers (by the help of the 
detector node) a data set (𝐷𝐷𝑠𝑠𝑒𝑒𝑡𝑡)  consists of 𝑁𝑁 data samples. In this 
first half, 𝐷𝐷𝑁𝑁 gathers two featured 𝐾𝐾  data samples (𝐾𝐾 ∈ 𝑁𝑁) from 
the non-infected zone which are called negative data samples. 
Similarly, the same amount of data samples is collected from the 
wormhole infected zone, known as positive data samples. After 
that, those two types of data samples are mixed up randomly so 
that training can be performed without any bias. Then, 𝑀𝑀 data 
samples (𝑀𝑀 ∈ 𝑁𝑁) are drawn from the 𝐷𝐷𝑠𝑠𝑒𝑒𝑡𝑡  and stores in a training 
dataset 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 (𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 ⊂ 𝐷𝐷𝑠𝑠𝑒𝑒𝑡𝑡). At the same time, rest of the 𝑃𝑃 
data samples ( 𝑃𝑃 ∈ 𝑁𝑁)  are stored in 𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡  (𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 ⊂ 𝐷𝐷𝑠𝑠𝑒𝑒𝑡𝑡)  to 
evaluate the learning performance of the trained neural network. 

 

Fig. 10 Collected two featured data samples by 𝐷𝐷𝑁𝑁  (red 
marked samples are positive data samples) . 
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Proposed Algorithm: 
 

1. Collect two featured  𝐾𝐾 negative data samples from the non-
infected zone  

2. Collect two featured  𝐾𝐾   positive data samples from the 
wormhole infected zone  

3. Store the both type of data samples in 𝐷𝐷𝑠𝑠𝑒𝑒𝑡𝑡 which consists of 
𝑁𝑁 data samples 

4. Select 𝑀𝑀  data samples from 𝐷𝐷𝑠𝑠𝑒𝑒𝑡𝑡  and store in 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛  where 
(𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 ⊂ 𝐷𝐷𝑠𝑠𝑒𝑒𝑡𝑡)   

5. Rest of the 𝑃𝑃 data samples are stored in 𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 where (𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 ⊂
𝐷𝐷𝑠𝑠𝑒𝑒𝑡𝑡)   

6. Train the neural network with the data set 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛  and 
appropriate network parameters up to 𝑇𝑇 epochs 

7. Test the neural network by using the samples of  𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡   
8. If output for a specific sample ≥ 0.5  , then this sample 

represents wormhole attack and probable location of the 
malicious node are identified. 

9. If output for a specific sample  < 0.5 then this sample doesn’t 
represent wormhole attack  

10. Update 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛   by 𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡   for further training  
11. Reset 𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡  and update with new data samples gathered by 𝐷𝐷𝑁𝑁 

 Furthermore, data samples of 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛 are fed into the input 
layer of the ANN. The training procedure is performed repeatedly 
until it reaches a predefined maximum number of training cycles 
i.e. 𝑇𝑇  epochs. The testing procedure involves checking the 
learning progress of the ANN-based detector. In the testing part, 
each data sample passes through the trained neural network. If the 
output for a specific data sample is greater than 0.5, then this 
sample represents wormhole attack. Since, 𝐷𝐷𝑁𝑁  stores the 
coordinate of the locations along with the two featured data 
samples, so the probable position of the wormhole node can also 
be identified by the detection scheme. 

 
Fig. 11 Probable location of a wormhole node 

After that, 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛  is updated by the 𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡   for further training. This 
would minimize the error level that has achieved in the training 
phase. The 𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡   entries are cleared up and updated with new data 
samples collected by the 𝐷𝐷𝑁𝑁 in real time. 

 

Fig. 12 Flowchart of the ANN-Based proposed algorithm 

8. Simulation and results  

 In this section, extensive research experiments are 
conducted under various network scenarios to assess the 
effectiveness of the proposed algorithm in detecting wormhole 
attack from the affected sensor network. The first phase of the 
experiments is conducted to see if the proposed scheme is able to 
classify the malicious data samples that represent wormhole 
attack. Furthermore, we evaluate the performance of the detection 
scheme in terms of detection accuracy, false positive rates, and 
false negative rates. In the second phase, the efficacy of the 
proposed algorithm is explored considering single featured data 
samples and two featured (i.e. the number of neighbors and 
AREPN) data samples. As the energy dissipation of the sensor 
node depends on the routing protocol; hence, the proposed 
algorithm is also tested considering ‘On demand’ based routing 
protocol (AODV) and cluster based routing protocol (LEACH). 
Afterward, we record and analyze the efficacy of the proposed 
algorithm in detecting wormhole attack from different sensor 
distributions. Finally, the performance of the proposed algorithm 
is compared with the performance of other machine learning 
technique based detection schemes like support vector machine 
(SVM) and regularized non-linear logistic regression (LR). In 
addition, all experiments have been performed in MATLAB 
2015a. 
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Fig. 13 The depiction of the simulation set up (uniform sensor 

distribution) 

 
Fig. 14 Non- uniform sensor distribution (Gaussian) 

 In the simulation, 300 sensor nodes are distributed (uniform 
or non-uniform) within the square field of 500𝑚𝑚 × 500𝑚𝑚. The 
deployed sensor nodes and the base station are static in nature. 
Each sensor node has the communication resources of which they 
use to communicate with the adjacent sensor nodes. Radio range 
of each sensor node equals to 50 𝑚𝑚. Initially, each sensor node 
has five (05) units of energy that would be used in sensing and 
transferring packets. A detector mobile sensor node,  𝐷𝐷𝑁𝑁  is 
deployed as a mobile observation point of the network. The basic 
task of the 𝐷𝐷𝑁𝑁 is to collect neighborhood counts and AREPN of 
neighboring population at each site it visited within this deployed 
area. The radio range of the detector node is same as deployed 
sensor nodes. We assume that the detector node is fully aware of 
its position, the boundary of the targeted area, and any obstacles 
in the area that may restrain its movement. A pair of wormholes 
node is placed at the locations 150𝑚𝑚 × 150𝑚𝑚 , and 300𝑚𝑚 ×
350𝑚𝑚. Random waypoint model is implemented in the simulation 
as the mobility model for the 𝐷𝐷𝑁𝑁 .Similarly, the base station is 
positioned at a location of350𝑚𝑚 × 450𝑚𝑚 .In these experiments 
we only consider the data communication between a node to the 
base station. Moreover, the experiments have been conducted on 
thirty (30) different instances for each sensor distribution (e.g. 

uniform sensor distribution) in order to get valid (average) 
performance matrices of the proposed detection scheme. 

 
Fig. 15 The location visited by the  𝐷𝐷𝑁𝑁 ( red ,blue and white 

indicate non-infected zone, infected zone and the area not 
covered by 𝐷𝐷𝑁𝑁).   

 In this simulation, the detector node collects two featured 
data sample (i.e. number of neighbors and AREPN) at each site it 
visited. For each instance of each sensor distribution (uniform or 
non-uniform sensor distribution), the detector node,𝐷𝐷𝑁𝑁  collects 
50000 data samples from deployed area in which 25000 samples 
are negative data samples, and 25000 samples are positive data 
samples. The collected data samples are stored at the 𝐷𝐷𝑠𝑠𝑒𝑒𝑡𝑡  in the 
base station. After that, 49000 randomly selected samples are 
stored in the  𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛  for the training purpose. Rest of the data 
samples is used to test the learning performance of the proposed 
detection scheme. 

8.1. The performance of Proposed ANN based detection scheme: 

 A multi-layer, feed forward network (with back propagation 
algorithm) is implemented for the experiments. The input layer 
contains one or two neurons considering the type of data samples 
(one featured or two featured) used to train the network. Moreover, 
the hidden layer consists of 100 neurons and the output layer has 
only one (01) neuron. We used a sub data set, 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛  comprised of 
49000 randomly selected data samples from 𝐷𝐷𝑠𝑠𝑒𝑒𝑡𝑡  for training 
collected by 𝐷𝐷𝑁𝑁. 

 
Fig. 16 The structure of the ANN for two featured data 

samples  

 At first, the neural network was trained by the single 
featured the training examples from  𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛  and evaluated 
learning performance of ANN by the rest of the data samples 
stored in the  𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡 . After that, two featured training samples are 
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fed into the neural network and acquired results are compared 
with the results obtained by using single feature data samples. 
During the training period, the minimum error tolerance level is 
set to 10−5.  The Table 1 represents the parameters which are used 
during the training phase.  

Table 1 Parameters used for ANN. 

 
Parameter  Value 
No of attributes 2 
No of Data points (training) 49000 
No of Data points (testing) 1000 
Architecture (for one feature) [1,100,1] 
Architecture (for two features) [2,100,1] 
Performance  0.00001 
Learning rate, α 0.001 
Epoch 500 
CPU time (for one instance) 2.17 mins 

 

 In the testing phase, the test data set,  𝐷𝐷𝑡𝑡𝑒𝑒𝑠𝑠𝑡𝑡  is fed into the 
input layer. Then the output of the ANN based model is observed 
if it could detect the existence of wormhole attack in the given 
network. Fig. 17 shows that, the ANN based wormhole attack 
detection scheme can classify the samples that represent 
wormhole attack from the both single featured and two featured 
data samples successfully 
 

 

Fig. 17 Classification of wormhole attack 

 
Fig. 18 Performance of the ANN-based detection scheme 

using single featured data samples (AODV) 

 Fig. 18 shows the performance of the ANN-based detection 
model in detecting wormhole attack using single featured data 
samples (i.e. neighborhood count) when the network uses AODV 

routing protocol. In this graph, the highest detection accuracy is 
recorded as 97.47% when sensors are distributed uniformly in the 
square field, whereas the lowest detection accuracy is measured 
90.29% for poisson sensor distribution. Furthermore, detection 
accuracy for Gaussian distribution is almost same as the gamma 
distribution. Accordingly, 91.056%, 91.74%, and 97.873% 
detection rates are measured for Gaussian, Gamma, and Beta 
sensor distribution. However, the average detection accuracy is 
calculated as 92.23%. The false positive rate and false negative 
rate entirely follow the same trend of detection accuracy. The 
lowest false positive rates and false negative rates are measured 
for uniform sensor distribution. The average false positive rates 
and false negative rate are accordingly 5.98% and 1.74%. 

 
Fig. 19 Performance of the ANN-based detection scheme 

using single featured data samples (LEACH) 

 Fig. 19 shows the results obtained by applying single 
featured data samples on ANN based detection model considering 
LEACH routing protocol. It is observed that this algorithm 
performs better for uniform sensor distribution compares to non-
uniform sensor distribution. 97.63% detection accuracy, 1.62% 
false positive rate, and 1.23% false negative rate are achieved for 
the uniform sensor distribution. After that, it has performed better 
for Gaussian sensor distribution among all non-uniform sensor 
distributions. The detection accuracy, false positive rate and false 
negative rate for Gaussian sensor distribution are 91.95%, 7.03% 
and 1.02% accordingly. The similar trend in detection accuracy is 
observed for Poisson, beta, and gamma sensor distribution. 
However, considering all the sensor distributions, the false 
negative rates are lower than the false positive rates. The average 
detection accuracy and false positive rate for all sensor 
distributions are accordingly 92.62% and 5.99%. 
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Fig. 20  The relationship between neighborhood count and 
detection accuracy (ANN) 

 Fig. 20 represents the relationship between the 
neighborhood counts and the detection accuracy. Undeniably, the 
detection accuracy of the proposed algorithm (considering single 
featured data samples) increases as the total number of neighbors 
around wormhole nodes increase for all sensor distributions. The 
detection accuracy of the system has a non-linear relationship 
with the total number of the neighbors around the wormhole nodes. 
For the uniform sensor distribution, we can model this 
relationship as 4𝑡𝑡ℎ degree polynomial. For the other non-uniform 
sensor distribution, the relationship can be modelled as 2𝑛𝑛𝑛𝑛  .It 
means that the proposed scheme may not perform well 
considering single featured data samples if the wormhole nodes 
are located in the sparsely populated area in the network.  

 
Fig. 21 Performance of the ANN-based detection scheme 

using two featured data samples (AODV) 

 The two featured data samples are applied to the ANN-based 
detection scheme. Like prior, the performance of the ANN is 
evaluated considering both AODV and LEACH routing protocol. 
Fig. 21 presents the performance of the ANN-based model 
considering two featured samples and AODV routing protocol. 
The proposed algorithm gives a better performance to detect the 
wormhole attack for the uniform sensor distribution. 99.56% 
detection accuracy, 0.2% false positive rates, and 0.24 % false 
negative rate are achieved for the uniform sensor distribution. For 
all non-uniform sensor distribution, the detection accuracy varies 
in between 95% to 97%. In this circumstance, the average 
detection accuracy and false positive rate for all the sensor 
distributions are 97.69% and 1.82%. Most importantly, the 
detection accuracy, considering all sensor distribution, is 
significantly increased for the application of the two featured data 
samples. 

 

Fig. 22 Performance of the ANN-based detection scheme 
using two featured data samples (LEACH) 

 As shown in the Fig. 22, the performance of the ANN-based 
detection scheme improves significantly considering LEACH 
routing protocol and the application of two featured data samples 
on the ANN. Evidently, the ANN-based model performs better for 
the uniform sensor distribution compares to all non-uniform 
sensor distribution. The highest achieved detection accuracy for 
the uniform sensor distribution is 99.88%. The detection accuracy 
for the non-uniform sensor distributions fluctuates from 97.43% 
to 97.98%. Furthermore, the lowest false positive rates and false 
negative rates are achieved for the poisson sensor distribution 
which is 1.54% and 0.35% respectively. In this circumstance, the 
average detection accuracy, false positive rate, and the false 
negative rate for all the sensor distribution are accordingly 
98.23%, 0.45%, and 0.33%. In summary, the application of the 
two featured data samples on the ANN enhances the performance 
of the proposed scheme for both AODV and LEACH protocol. 

A. The performance of the SVM-based detection scheme 

 For the different sensor distributions, one and two featured 
training examples are applied to the SVM accordingly.  The 
average result of detection accuracy, false positive rates, and false 
negative rates are calculated to measure the efficacy of the SVM-
based algorithm for all network scenarios. The Table 2 represents 
the parameters which are used during the training phase. 

Table 1 The parameters used for SVM 
 

Parameter  Value 
No of attributes 2 
No of Data points (training) 49000 
No of Data points (testing) 1000 
Kernel Gaussian 
Sigma default 
Tool MATLAB 
CPU time (for one instance) 3.17 mins 
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Fig. 23  The relationship between the neighborhood count 
and the detection accuracy (SVM). 

 Fig. 23 represents the relationship between the counts of 
neighbors around wormhole nodes and the detection accuracy 
considering one featured data samples applied to the SVM-based 
detection scheme. Like the previous case, the detection accuracy 
follows the non-linear relationship with the total number of 
neighbors for all sensor distribution. As the neighborhood count 
increases, the detection accuracy of the SVM-based algorithm 
also increases. Similar to the ANN-based detection scheme, it 
may suffer to detect wormhole attack if the wormhole nodes are 
placed in the sparsely populated area. 

 
Fig. 24 Performance of the SVM-based detection scheme 

(AODV). 

 Fig. 24 shows that the performance of the SVM-based 
algorithm when the network uses AODV as the routing protocol. 
According to the Fig. 24, SVM-based detection scheme gives 
better the performance considering two featured data samples like 
the ANN-based model. SVM-based algorithm reaches 
approximately 96.30% on an average for all sensor distribution. 
Similarly, it achieves lowest false positive and false negative rates 
for two featured data samples which are 6.27% and 0.58% 
approximately. Using two featured data samples, the performance 
of the SVM-based algorithm enhances around 3.39%. 

 
Fig. 25 Performance of the SVM-based detection scheme 

(LEACH). 

  Fig. 25 shows the performance of the SVM-based detection 
scheme considering LEACH protocol. Similar kind of trend in 
detection accuracy, shown in Fig. 24, is observed for the LEACH 
protocol. Like Fig. 24, SVM-based detection scheme performs 
better with the two featured data samples. It achieves averagely 
96.44% detection accuracy for all sensor distribution, whereas, 
93.38% detection accuracy is measured for the one featured data 
samples. In this case, the detection accuracy increases 
approximately 3.27% for the two featured data samples. Inversely, 
the false positive rates and false negative rates declined 
significantly for the two featured data samples. 

B. The performance of the non-linear logistic regression:   

 Non-linear logistic regression (LR) algorithm is used to 
measure the performance on this classification problem and 
compare its outcomes with the proposed algorithm. Table 3 shows 
the parameters which are used during the training phase of the 
non-linear logistic classification algorithm. 

Table 2  Parameters used for logistic linear classification 

Parameter  Value 
No of attributes 2 
No of Data points (training) 49000 
No of Data points (testing) 1000 
Iteration 07 
Regularized parameter (𝜆𝜆) default 
Learning method Newton’s methods  
CPU time (for one instance) 3.17 mins 

 

 

Fig. 26 Performance of the LR. 

 Fig. 26 represents the overall performance of the LR to 
detect the wormhole attack considering one featured and two 
featured data samples. According to the Fig. 26, LR based 
detection scheme performs better with two featured data samples 
when the network uses LEACH as the routing protocol. The 
detection accuracy reaches to 95.28 % considering two featured 
data samples. In this case, lowest false positive rate and false 
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negative rate are achieved for the LEACH routing protocol, which 
is 3.87% and 0.82% respectively. Most importantly, this LR based 
detection scheme gives better performance with two featured data 
samples like ANN or SVM based detection scheme. 

C. Performance comparison  

 
Fig. 27 Performace analysis on the uniform and the non-

uniform sensor distribution. 

 Fig. 27 represents the performance of the detection schemes 
on the uniform and the non-uniform sensor distributions 
considering two featured data samples. Clearly, for the uniform 
sensor distribution, three (03) detection schemes achieve higher 
detection accuracy in contrast to the non-uniform sensor 
distributions. As the sensor density of the area is uniform; the 
neighborhood counts increase significantly with the presence of 
the wormhole nodes in the network. In contrary to the non-
uniform sensor distribution, the neighborhood counts increase 
slightly or significantly depends on the position of the wormhole 
nodes in the network. Sometimes the neighborhood counts are 
smaller than the count taken from the wormhole non-infected 
zone (wormhole nodes can be placed in the sparsely populated 
area in the network). Since the uniform sensor distribution has 
consistency in the node density, the total neighbor population of 
the wormhole nodes is much smaller than the total neighborhood 
counts in non-uniform sensor distribution. As the neighbors of the 
wormhole nodes are the only way to reach the wormhole nodes; 
therefore, the neighbors of wormhole nodes in uniform 
distribution dissipate more energy than the neighbors of the 
malicious node in non-uniform sensor distribution. Hence, 
positive data samples are easily distinguished from the presented 
data set. That’s why the detection accuracy of these schemes is 
much better for uniform sensor distribution. 

 
Fig. 28 Performance comparison among ANN, SVM, and 

LR. 

 If we analyze the performance of the three detection 
schemes (shown in the Fig. 28), ANN outperforms SVM and LR 
in detecting the malicious samples that represent wormhole attack 
considering both AODV and LEACH routing protocol. ANN 
achieves 97.69% and 98.23% detection accuracy respectively for 
AODV and LEACH routing protocol. SVM based detection 
scheme performs better than LR based detection scheme 
(achieves approximately 96% detection accuracy) in view of 
AODV and LEACH. Considering LEACH routing protocol, the 
LR based detection scheme attains 95.28% detection accuracy 
which is the lowest among all the detection schemes. As we know, 
the performance of the machine learning techniques highly 
depends on the dataset. In this case, ANN distorts the two featured 
data samples in the higher dimension better than other two 
machine learning techniques; and efficiently put dynamic 
decision surface in between positive and negative data samples. 
That would help the ANN-based detection scheme to gain highest 
detection accuracy.  

 Another important observation of this research is that the 
three detection schemes give better performance in classifying 
positives data samples for LEACH protocol. In the cluster based 
routing protocol like LEACH, a node is nominated as a cluster 
head among the members of a cluster for a specific round of data 
transmission to the base station. Once the cluster head is selected, 
other members send their data packets to the cluster head. 
Afterward, selected cluster head transfers the data packets to the 
base station. For the next round, a new member is randomly 
chosen as cluster head from the other members who is not selected 
as cluster head before for any round. However, wormhole node 
manipulates the cluster head selection process in a particular 
cluster of nodes. Furthermore, the ‘in-band’ wormhole node can 
be selected as a cluster head. If it happens, the wormhole node 
gets a bunch of data packets easily from the other members 
through its neighbors. As we know, wormhole nodes create 
shortcut path to the base station in the network. Therefore, the 
cluster head is deceived throughout the data transmission process 
to the base station. If wormhole nodes are placed in two different 
clusters, the members of the cluster may also be deceived while 
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they are selecting closest cluster head to transmit their data 
packets. Hence, the neighbors around wormhole node dissipate 
more energy in LEACH compared to AODV. The extra 
dissipation of the energy reflects in the feature called AREPN 
collected by detector node. That would help in separating the 
positive data samples and negative data samples when two 
featured data samples are presented to the detection schemes. 

9. Conclusions 

Wormhole attack is one of the detrimental network layer 
attacks for wireless sensor networks. This thesis presents a novel 
detection model based on neighborhood count and AREPN using 
an ANN for wireless sensor networks. The goal of this proposed 
detection scheme is to detect wormhole attacks (In-band, out of 
band, hidden or active mode of wormhole attack) with higher 
precision and accuracy, especially in a non-uniform network 
environment. The experimental results confirm that the proposed 
detection scheme is able to identify the existence of the wormhole 
node without requiring any special hardware both in uniform and 
non-uniform sensor distribution. Another important aspect of this 
detection model is it doesn’t increase the significant amount of 
network overhead flow throughout the network. The simulation 
results also validate that our ANN-based approach performed 
better than SVM or LR based detection scheme. This ANN based 
detection scheme achieves around 99.72% (average) and 97.52% 
(average) accordingly for uniform and non-uniform sensor 
distribution.  Most significantly, the probable location of the 
wormhole node can be identified by this scheme. Future works are 
required to enhance the performance of the detection scheme and 
to investigate in different directions so that we can evaluate the 
efficacy of the proposed detection scheme perfectly.  

Proposed future works are noted as follows. 

a) Nowadays, deep neural networks and convolutional neural 
networks are used to enhance the performance internet threat 
detection schemes. We want to apply this advanced machine 
learning algorithms on the acquired data set to evaluate their 
performance. After that, we will compare the results with the 
Proposed ANN based scheme. 

b) In this research, the relationship between detection accuracy 
and the total count of neighbors around wormhole nodes is 
investigated. In the future work, we want to investigate the 
impact of changes in radio range of sensor nodes (60m,70m, 
and 80m etc.) and number of the sensor nodes (deployed) and 
position of the wormhole nodes on the detection accuracy of 
the proposed model. 

c) If we use more than one mobile node, the two featured data 
samples will be gathered more quickly (detection time) rather 
than using single detector node. Multiple detector nodes will 
help to locate the positions of the wormhole nodes by 
triangulation algorithm. Therefore, in the future work, we 
want to investigate the performance of the proposed detection 
scheme by deploying multiple detector nodes in the different 
sensor network environments. 

d) As we know, the performance of the ANN depends on its own 
architecture. In the future work, we want to apply the acquired 

data set on different network architecture (Varying number of 
neurons in a layer, varying number of the hidden layer) to 
optimize the performance of the proposed ANN-based 
detection scheme.  

e) In this detection scheme, probable location of the wormhole 
node is identified through 𝐷𝐷𝑁𝑁. We want to work further in this 
direction to find the exact location of the malicious nodes in 
the infected sensor network.  

f) The energy dissipation of a sensor node depends on the routing 
protocol that being used in the network. In this research, the 
performance of the proposed detection model is verified 
considering on demand based and cluster based routing 
protocol. In the future, we want to the test the proposed 
algorithm on the hybrid routing protocol such as zoned based 
routing protocol (ZRP) and wireless ad-hoc routing protocol 
(WARP). 
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