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 Bearings are the key components of many rotating machines, in which serious failure or 
even major breakdown may occur due to their abnormal operation and defects. Thus, 
accurate fault diagnoses of bearing elements are essential for proactive predictive 
maintenance. However, the using of multiple sensors with high sampling rate reveal 
considerable shortages in the analysis of big data acquisition. Therefore, compressive 
sensing (CS) proposes in this study to overcome the aforementioned problems and support 
the fault diagnostic approach of ball bearing defects. The amount of data processed by CS 
technique can be significantly reduced to be more reliable for backup data. It can be a 
collaborative reconstruction method to compress the sampling data size and reliably 
exploiting similar sparsity structure of the acquired signal. Little attention has been paid 
for practically used sparseness of the CS converted signal in early fault detection of defects 
in ball bearing. Envelope analysis and CS technique are employed on experimental 
vibration data for fault detection in inner race and outer race of ball bearing. The results 
show that the reconstructed CS signal can characterize reliable features for bearing fault 
detection with some limitations in the range of compression ratio (up to 40%) and the 
selection of reconstructed sparse bandwidth. Hence, envelope analysis can provide optimal 
bandwidth to reconstruct the sparse modulated signal of ball bearing to overcome the 
limitation of the CS method. 
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1. Introduction  

Ball bearing is widely used to support rotors in rotating 
machinery, in which its failure is one of the foremost causes of 
system breakdowns. The faults in bearing could inevitably cause 
serious failures or even catastrophic damages to the machinery. 
Fatigue fracture, flacking, crack and wear are the most common 
failure modes of bearing, which starts by spalling in the bearing 
raceway and becomes more severe over a period of time. This may 
result in extensive damage to the operating mechanism of the 
bearing and the system assembly. Proper operation of bearing can 
be achieved by careful handling and right usage operation. The 
lifespan is relatively long, and it may eventually fail due to 
overloading, which result in significant increase in noise and 
vibration. Therefore, it is important to monitor the condition of the 
rotating machine elements, which is often effective to indicate the 
condition of raised faults at early stages. However, the using of 
multi sensors with high rate data acquisition comprise considerable 
shortages in transferring, storage and processing the acquired data, 
which is a major challenge in the detection efficiency [1-2]. 

The signature of bearing fault is generally masked by noise and 
spread over a wide frequency band, which make difficulties in fault 
diagnosis. Thus, different techniques have been used in various 
studies to detect various bearing faults at the early stages [3]. This 
can help to avoid long-term breakdown of the machinery. 
Vibration analysis is an effective way for condition assessment and 
fault diagnostics of various mechanical equipment applications. It 
can be processed with wide diversity signal processing methods to 
give valuable information for early detection of the abnormality in 
the bearing structure [4]. Basically, time domain and frequency 
domain analyses are used for tracking machinery operating 
conditions. Hence, various studies aimed to detect and diagnose 
the existence of a localized defect in bearing by using efficient time 
and frequency domain methods. Envelope analysis or 
demodulation extraction is an effective technique used for the fault 
detection approach from the amplitude variation of modulated 
signal [5]. It is widely used for detecting harmonics from the 
spectrum of vibration signal based on high frequency resonance 
techniques [6]. The envelope analysis has increasingly used in 
monitoring the health condition of bearings due to its simplicity 
and strength [7]. However, making envelope analysis suitable for 
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speed and load transients are constrained and the defect 
information is not obvious and the selection of optimal band is the 
most difficult task. 

Online monitoring of machinery elements requires analyse of 
big data acquisition to simultaneously propose real time condition 
monitoring approach. The continuous data streams should be 
analysed without distortion or being affected by scalability, which 
may put a big challenge for integrating the predictive maintenance 
decision. The powerful analysis of big data provides reliable 
decision support to detect the abnormality within the system 
components and indicate its performance. However, sampling rate 
is the major limit for acquiring big data acquisition. To get a good 
balance between a big data acquisition and the limitations of 
sampling theory, compressive sensing (CS) is a new signal 
processing technique, which can be used in machine condition 
monitoring due to its ability to sample the signal below the Nyquist 
sampling rate [2, 8]. CS is widely used in various applications such 
as medical imaging, seismic imaging, communications and 
networks [9-11]. It can reduce the big data by a down-sample 
strategy with preserving reliable extraction of fault features [12]. 
The compression approaches can help the measuring of wireless 
transmission data by reducing its volume, hence significant 
reduction in energy consumption of wireless communication can 
be achieved [13-14]. The CS method can overcome the problem 
with the sampling, storage, transmission, and processing of big 
data acquisition. 

The detection of bearing's fault feature can be extracted from 
the sparse samples of the vibration signal based on reconstruction 
compressive sensing signal. The CS can improve the condition 
monitoring approaches to be smaller, cheaper and efficient for 
used power in wireless devices [13]. It has the capability to develop 
useful information for condition monitoring of roller bearing with 
high level of accuracy [6, 8, 15-17], However, little attention has 
been paid for providing good sparseness of the CS converted 
signal, and apply it in fault diagnosis of ball bearing defects. 

This study uses envelope analysis and CS method for 
monitoring and fault diagnosis of ball bearing defects, based on 
frequency shift and envelope analysis. These techniques has 
performed on vibration signal that acquired from experimental test 
of a ball bearing presented in an induction motor. It is expected 
that the CS approach achieves better classification accuracy for the 
purposed fault diagnosis from down sampling of the acquisition 
data. 

2. Envelope Analysis 

This method is mainly used to extract the periodic excitation in 
vibration signal of machinery, which can be used to detect and 
diagnose various defects in bearing. It has the ability to extract the 
amplitude modulated of vibration signal due to fault symptoms 
based on selected band pass filter. Figure1 shows the general steps 
of envelope analysis method for detecting process, which based on 
the following equations [5, 15-16]: 
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where, X(f) is the fast Fourier transform of the raw vibration signal 
x(t). x(n) is the resampled signal based on the selected bandwidth 
with N number of samples. The analysed envelope signal is xenv 
and its envelope spectrum is Xenv. The main advantage of the 
envelope analysis is reliable fault detection of wide frequency 
range within certain frequency bands, which gives high excitation 
related to the impact of fault frequency. However, the envelope 
analysis is often mixed with noise, which may add some 
difficulties for the effective extraction of fault features. 

 
Figure 1: The general steps of envelope analysis method [18] 

3. Theory of Compressive Sensing 

In order to overcome the limitation of the sampling rate and 
processing of big data acquisition, compressive sensing method 
has been developed to resample the signal below the Nyquist 
sampling rate and express reliable sparse signal. The original 
signal, x(t) is reconstructed and multiplied by a sensing matrix to 
perform the compressed data, which denoted by y, as [6, 8-12]: 

 y x= Φ  (5) 

where, Φ is a random sensing matrix with size of M×N. M is the 
length of compressed signal (y) with size of M≤N. 

The sparse components are produced with the dictionary of 
sparsifying transform Ψ by the following equation: 

 y η= Φ Ψ  (6) 

The proposed CS strategy is used for defecting bearing’s fault 
from the representation η of the sparse signal x, which can be 
demonstrated in figure 2. Before resampled the vibration signal 
with the bandwidth, the frequency was shifting with an exponential 
function, e-j2πft based on interest shift frequency. The resampled 
signal is then divided into multiple partitions and averagely 
calculate root mean square (RMS) for each divided segment. The 
RMS values are composed based on the length of the sensing 
matrix M (M<N) and reconstruct the signal with sparse 
representation, η to determine its discrete Fourier transform. The 
extracted sparse representation of the signal can help to indicate 
the variation due to presence of defect. The defects existing in 
bearing elements are produced at a certain period and referred as 
bearing fault frequencies. Envelope demodulation technique is 
applied to the high-frequency band to extract the periodic 
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excitation in the vibration signal and the harmonics of fault 
frequency components. 

Divide the resampled signal into N segments 
xi (i=1,2,..N) with length L

Calculate sparse representation of RMS values  for the ith segment

Compress the vector composed by RMS values with measurement 
matrix Φ and get compressed signal with length M (M<N)

Envelope demodulation based on the compressed signal  and 
sensing matrix A (A=ΦΨ) to obtain the sparse representation

Reconstruct Band-pass filter based on resonant frequency 

Resample based on the bandwidth 

Acquire bearing vibration signal x(t) with length n

End 

Fault characteristic frequency 

Reconstructed vibration signal with sparse coefficient 

Y

N

 
Figure 2: Fault detection strategy based on compressed sensing method 

The determination of an optimal bandwidth to reconstruct the 
sparse signal of ball bearing imposes a severe challenge to apply 
the CS method. Due to modulation of the acquired vibration signal 
with the resonance frequency of the system or even with 
accelerometer, uncontrolled bandwidth could affect the 
performance analysis of the proposed method in a specific 
application. Hence, envelope analysis can give a clear indication 
to the effect of modulation within the measured vibration signal, 
which can help to overcome the limitation of the CS method. 

4. Experiment test 

Various experiments were performed with outer race and inner 
race faults in ball bearings to verify the effectiveness of using 
envelope analysis and the CS method. The experiment test was 
implemented in the laboratory to detect the seeded faults in ball 
bearings that used in an induction AC motor to drive a DC motor 
at various conditions. Figure 3 shows the construction of 
experiment test and the components of data acquisition system. 

DAQ and PC
Vibration 
Sensors 

Induction Motor and DC Generator   
Figure 3: The Schematic diagram of experiment test system 

In this experiment, three similar ball bearings have been used 
within the motor drive and their main operating parameters are 
detailed in Table 1. 

Table 1: The description of ball bearing parameters 

Component Value 
Pitch Diameter, Dp  46.4 mm 
Ball Diameter, Db  9.53 mm 
Number of ball, Np  9 
Contact angle, β 0 
Operating motor speed 
(shaft frequency, fr ) 

1496rpm  
(24.94 Hz) 

The three tested ball bearings are denoted as baseline (without 
fault) and the other two bearings are produced with inner race fault 
and outer race fault, respectively. The seeded bearing faults are 
shown in figure 4. The failures of inner race and outer race of 
bearing are very common defects that could happen due to 
improper installation, incorrect lubrication, overloading, etc. 
Furthermore, the defect at any rotating element of machinery 
transmits to the bearing races and presents in terms of spalling, 
smearing, wear and surface distress. As a result, higher level of 
vibration is excited, which can be sensitive indicator to the starting 
of bearing deterioration. 

 
Figure 4: The Photographs of simulated ball bearing’s faults 

The ball bearing characterises with a complex excited vibration 
can be extracted from the measured vibration signal by an 
accelerometer mounted on the bearing’s housing in vertical and 
horizontal directions. The excitation of bearing vibration is 
proportional with the structural design parameters of the ball 
bearing and the defects in their elements. The bearing vibration is 
rich in multi frequency components that induced in wide frequency 
bandwidth. The characteristic frequencies of the bearing defects 
can be identified by analysing the relative motion between the 
bearing elements and the rotor frequency, fr. Then, the defect 
characteristic frequencies of the ball bearing elements can be 
indicated based on: 

Outer race fault frequency: 1 cos
2

b b
o r

p

N D
f f

D
β

 
= −  

 
 (7) 

Inner race fault frequency: 1 cos
2

b b
i r

p

N D
f f

D
β

 
= +  

 
 (8) 

where Np is the number of rolled balls, Db is the ball diameter, Dp 
is the pitch diameter of the bearing, and β is the contact angle. 

The seeded defects in the inner race and outer race can be 
detected based on their identified frequencies, and denoted by fault 
frequency are evaluated in Table 2. 
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Table 2: Fault frequency of ball bearing 

Parameter Value (Hz) 
Inner Race Fault Frequency, fi 135.26 
Outer Race Fault Frequency, fo  89.16 

5. Vibration Data Analysis 

The vibration signal of ball bearing is mainly recorded in time 
domain for visual inspection, which is analysed by using advance 
signal processing methods. The analysis of vibration signal in time 
domain and frequency domain are obviously the two powerful 
techniques used for contemporary condition monitoring scheme. 
However, no clear impacts of the defects can be located and some 
frequency harmonics coincide and spread within wide waveform, 
and cause a lot of difficulties in the fault detection and diagnostic 
approaches [19]. Figure 5 and figure 6 show the time waveform 
and spectrum of vibration signal for three types of ball bearings 
(baseline (no fault), outer race fault and inner race fault).  

 
Figure 5: Vibration waveform and spectrum for baseline and outer race fault 

 
Figure 6: Vibration waveform and spectrum for baseline and inner race fault 

The spectra of the bearings with outer race and inner race 
defects represents resonance around 3kHz. This excitation effect is 
probably due to resonate the natural frequencies of bearing 
elements or the accelerometer with the periodic impacts of the 
bearing defects. Figure 7 shows the spectra of the tested bearings 
at low frequency band (< 500Hz) includes characteristic 
frequencies of the bearing defects. The difference in the bandwidth 

of the ball bearing defect is belonged to the variation of the 
transmission path of the excited vibration from the bearing 
components to the transducer. The vibration from the bearing with 
outer race defect has shorter path as compared with the inner race 
defect, where the harmonics cannot be revealed distinctively. 

 
Figure 7: The spectra of the tested bearings at low frequency bands 

5.1. Envelope Analysis 

Amplitude modulation of vibration signal can be extracted 
from the envelope analysis in some specific bands. Figure 8 and 
figure 9 show the envelope analysis results of baseline, outer race 
fault and outer race fault bearings. The characteristic frequencies 
due to bearing defect and their harmonics (fo=89.16 Hz  and 
fi=135.26 Hz) are significant, which are verified by using effective 
filter parameters. A band pass filter was used within the range of 
modulation bandwidth (1kHz – 5kHz). This range was chosen 
based on the higher amplitude of spectra shown in figures 5 and 6, 
where the bearing defects can be demodulated from the bearing 
natural frequencies. However, the determination of an optimal 
narrowband becomes poses a severe challenge for accurately 
employing envelope analysis. 

 
Figure 8: Envelope waveform and spectrum of baseline and outer race fault 

5.2. Compressive Sensing Analysis 

In order to overcome the problem with high sampling rate and 
big data acquisition, CS method can significantly reduce the 
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consumption energy and the volume of transmission data [13-17]. 
The sampling rate can be reduced with using frequency shifting 
that can move the sparse signal from the high frequency range to a 
lower bandwidth. An exponential function e-j2πfot was used to 
resample the ball bearing vibration signal with envelope 
resampling from the original sampling frequency 96kHz to 3kHz. 
Then, divide the resampled signal into segments averagely and 
calculate the RMS value for every segment. The RMS values 
composed by all N vector are compressed with a random sensing 
matrix to provide a reconstruct compressed signal with length M 
(M<N). The RMS value was determined for every 5 points, thus 
the sampling frequency is compressed to 600Hz and the length of 
this vector is 2400 points and the CS process was repeated 10 times 
to acquire the average results of bearing faults, where random 
effects of measurement matrix can be reduced. Figure 10(a) shows 
the period of original RMS signal and the reconstructed RMS 
signal with CS for outer race bearing’s fault, where the 
compression ratio (M/N) of this process is up to 30%. 

 
Figure 9: Envelope waveform and spectrum of baseline and inner race fault 

 
Figure 10: Reconstructed RMS signal and its sparse representation of vibration 

signal with outer race fault 

It is clear that the amplitude of reconstructed signal is much 
smaller than that of the original RMS signal with maintaining good 
consistency so the fault frequency is not much affected, as 
demonstrated in figure 10(b). The sparse representation of the 
RMS signal is displayed at frequency 90.25Hz and its harmonics, 
which are closer to the outer race fault frequency. The deviation in 

the fault frequency fo could result due to the variation in the rotor 
frequency fr of the induction motor. 

Similarly, the trends of the reconstructed RMS signal for the 
ball bearing with inner race fault is shown in figure 11(a), where 
same parameters of averaging and compression ratio were used. 
The reconstructed RMS signal shows good consistent with the 
original RMS signal. Thus, the inner race fault frequency is 
displayed clearly at frequency 134.8 Hz, as shown in figure 11(b). 
The frequency 50Hz is the second harmonic frequency of the shaft 
rotating frequency, which is modulated with the inner race fault 
frequency. Therefore, it can be concluded that CS method can be 
reliably used to extract and detect the outer race and inner race 
faults of ball bearings and can be used to classify the defect 
according to the damaged element. 

 
Figure 11: Reconstructed RMS signal and its sparse representation of vibration 

signal with inner race fault 

The performance of the CS method was evaluated for various 
compression ratios (M/N) by measuring signal to noise ratio (SNR) 
of the compressed signal. SNR is related to the reconstructed 
compressed signal and the original measured data. Figure 12 
shows a clear decreasing in the SNR with increasing the M/N ratio. 
It can be observed that the range of compression ratio between 30-
40% provides an acceptable level of SNR, which is significantly 
decreased for further compression of the signal.  

 

Figure 12: The evaluation of CS method for various compressions of the signal 

Due to reduction in the sparse representation of the 
reconstructed signal, the diagnostic features of bearing defects are 
also influenced by the variation of the M/N ratios. Figure 13 shows 
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the variation in the amplitude peaks of the reconstructed sparse 
signal at the fault frequency features (fo and fi). The peaks of the 
fault frequency give clear indication for the sparse signal with the 
range of compression ratio up to 40%. However, the amplitude of 
the fault frequencies is decreased for higher compression ratios, 
which may influence the fault diagnostic approaches. Good fault 
detection accuracy can be found for the compression ratio between 
20-40%, which can be evaluated based on the amplitude variation 
of bearing fault frequency. The higher accuracy of the CS method 
within the compression range was found for M/N=30%. The 
indication accuracy of bearing defects was found to be 94.7% for 
the 30% compressed signal as compared with the original signal. 
Moreover, the accuracy of the CS method was 91.8% for 40% 
compression ratio, which is relatively acceptable to reduce the data 
size and provide good indication of bearing defects. 

 
Figure 13: The amplitude peaks of the compressed signal at the diagnostic fault 

frequencies of inner race and outer race defects 

6. Conclusion 
This paper proposes the using of CS strategy as an approach 

for intelligent condition monitoring and fault detection of ball 
bearing. The CS method was applied based on frequency shifting  
of the high sparse response to a lower frequency band with 
applying envelope extraction at certain frequency bands, to 
overcome the problems of big data acquisition and the limitation 
of sampling theory. This process can help to significantly reduce 
the sampling rate with reliably extract the ball bearing’s fault 
features, where sufficient information can be retrieved from the 
limited samples. Thereby, CS method can be reliably used to 
extract and detect ball bearing’s faults, in which reliable fault 
detection can be extracted for compression ratio up to 40%. The 
limitation of applicable CS method on the bearing fault diagnosis 
is the selection of suitable reconstructed sparse bandwidth. Hence, 
the bearing vibration signal is a modulated signal with bearing 
resonance frequencies or even with accelerometer elements, which 
can be extracted from envelope analysis. However, the 
determination of an optimal narrowband poses a severe challenge 
to be employed. More evaluation of the proposed method in terms 
of accuracy and cost comparison with other methods will be 
addressed in the future work with considering of wireless 
transmission data for a large range of applications. 
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