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 This paper studied external-source-excited vibration response of double-bay multi-storey 
building frames for the effect of joint stiffening on bending moment and joint displacement. 
One of the frames has normal rigid joints. Three others of the frames have stiffened joints 
of stiffened lengths: 275mm, 425mm and 775mm respectively. Lumped mass system was the 
dynamic model adopted. The frames were modeled as those with flexible horizontal 
members, permitting rotation of joints and having multi degrees of freedom (MDOF). 
Classical displacement method of analysis was adopted using fixed end reactive moments 
which were modified to include the contributions of joint stiffening. The study revealed that 
stiffening of joints results in: (i) decrease in displacements at the joints; (ii) substantial 
reduction in deflection and significant increase of deflection ductility and energy ductility 
of flexural members. (iii) increase in joint moments and decrease in span moments. 
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1. Introduction 

As skeletons constitute the load bearing components of animals 
with bones, so do frames constitute the major load bearing 
components of constructed facilities such as buildings, tricycles, 
towers, guyed masts, bridges, to mention only a few. Building 
structures [1], together with structures of other constructed 
facilities, are subjected not only to static, i.e. gradually applied 
loads or forces, but also they are subjected to time-dependent, 
vibration – inducing loads or forces known as dynamic loads, 
dynamic disturbances or dynamic excitations.  

Various sources of dynamic loads or forces do exist. They can 
pose serious challenges to the lifespan of the constructed facility. 
These forms of dynamic loads [2 - 4] may be summarized as: 
vibrations induced by people such as to pedestrian bridges, floors 
with walking people, floors for sport and dance activities, floors 
with fixed seating and spectator galleries and high diving 

platforms. Machine induced vibrations could impact by way of 
machine foundation and supports, bell towers, structure borne 
sounds and ground transmitted vibrations. 

In addition, there are [2, 3], wind induced vibrations that could 
tremendously affect buildings, towers, chimneys and masts, 
guyed masts, pylons, suspension and cable-stayed bridges and 
cantilevered roofs. 

Vibrations, [2, 3, 5], induced by traffic and construction activity 
can deeply affect buildings, roads, railways, bridges and 
construction work. More vibration – induced sources were 
recounted in [5 - 9]. 

The tendency [5] of one object, applied energy, force, imposed 
displacement excitation source to induce another adjoining or 
interconnected object into vibration motion is referred to as forced 
vibration. In the case of building and civil Engineering structures, 
[5, 6], forced vibrations can be induced by any dynamic excitation 
source on the structure that is subjected to externally applied loads 
or forces. 
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 Eliminating vibrations [3, 7]. may save human lives. A good 
example is the vibration control of building and civil engineering 
structures in an earthquake scenario. Effective vibration control of 
building and civil engineering structures [8] lies in astuteness and 
acuity in structural dynamics analysis and design of structures of 
the constructed facility. 

Stiffened joints [9] are non-deformable joints. In response to the 
action of external loads, they simply rotate as rigid bodies without 
admitting any deformation. Consequently [9] the joints are 
assumed to be infinitely rigid. Greater benefits of stiffened joints 
than there are for normal rigid joints are contained in [4, 9, 12- 14]. 

A typical member of a frame with flexible and stiffened segments 
is depicted by figure1, whereas figure 2 shows the plan of double-
bay building framed structure. Figures 3 and 4 represent double-
bay four-storey building frames with normal rigid and stiffened 
joints respectively. 

 Shear frame model [9] does not permit rotation of its joints but 
allows lateral vibration motion in its plane due to the assumed 
infinite rigidity of its horizontal members. Improved model, 
known as frames with flexible horizontal members, permits 
rotation of its joints [3]. Better acceptability of frames with flexible 
horizontal members, as a generalized dynamic model for multi-
storey building structure, rather than the shear frame model, are 
contained in [3 - 5, 9 - 11]. 

 This work studied forced vibration of double-bay multi-storey 
building frames with stiffened joints. This investigation involved 
four case studies. One of the frames has normal rigid joints. Three 
others of the frames have stiffened joints of stiffened lengths: 
275mm, 425mm and 775mm respectively. Each of the frames was 
modeled as a structure having finite number of degrees of freedom, 
adopting the lumped mass element concentration at the right corner 
of each upper floor level, figure 5. Loading of the conjugate system 
is depicted in figure 6. Figure 7 presents dynamic loading for the 
frames. 

 Aim in this study is to determine the effect of joint stiffening 
on forced vibration of double-bay multi-storey building frames. 
The study sought to achieve the aim through the following 
objectives: 

• To identify the dynamic degrees of freedom 
corresponding to the number of lumped masses; 

• To determine the bending moment for the fundamental 
or conjugate system; 

• To assess the complete reactions to form the identity 
stiffness matrix;  

• To calculate the reactions at the points of imaginary 
supports of the conjugate system to form the load vector 
of the dynamic structure matrix; 

• To solve the equation for forced vibration to obtain the 
amplitudes of forced vibration; 

• To determine the bending moment values due to 
dynamic effect. 
 

2. Previous Works 

In [12], the author carried out dynamic analysis of tall building 
frames. Study in [12] revealed that it was quite insufficient to 

deploy any type of static analysis model to estimate the effect of 
dynamic loads on structures without actually carrying out 
dynamics analysis of such structures that may be subjected to 
dynamic loads. The study in [12] is related to this present work by 
way that both works treated dynamic analysis. They are distinct 
from each other in the matter of joints of infinite rigidity which 
was treated in this present study. Furthermore, the present work 
treated double-bay frames but in [12], mono-bay or single-bay 
frames were treated. 

In [13], the author worked on the matrix analysis of frames 
with stiffened joints. The study in [13] established that joint 
stiffening enhances the structural performance of frames such as 
higher bending resistance and greater stability. Relatedness of 
work in [13] with this present study lies in the fact that both 
studies treated analysis of frames with stiffened joints. However, 
in [13], effects of static loads were determined whereas the 
present work determined the effects of dynamic loads. Again, the 
present work treated double-bay frames. In contrast, the author in 
[13] treated mono-bay i.e. single-bay frames. 

In [9], the author investigated the stress analysis of frames 
with stiffened joints. The study revealed that joints of infinite 
rigidity bring about enhanced stability of framed structures. The 
common ground with the study in [9] and the present work lies in 
both of the studies treated joints of infinite rigidity. This very 
work treated dynamic analysis, whereas the author in [9] treated 
static analysis. This marked an uncommon ground for the two 
studies. Moreover, mono-bay frames were studied in [9]. The 
present study treated double-bay frames. 

The authors in [14], studied effect of joint stiffening on the 
dynamic response of frames. The study in [14] revealed that 
stiffening of joints yielded significant decrease of dynamic 
bending moment values. Study in [14] is related to this present 
work in that both of them treated dynamic analysis of frames with 
stiffened joints. However, category of frames studied in [14] was 
mono-bay, i.e. single or one-bay, as distinct from double-bay 
frame treated in this present work. 

Apart from distinctiveness of the present study with respective 
individual previous works, there exists an aspect of 
distinctiveness of the present study over the previous works put 
together. This lies in mono-bay and double-bay. The previous 
works studied mono-bay frames. The present work treated 
double-bay frames. 

3. Equation of Motion 

3.1. Free Vibration 

At any point in time, t, in the course of a free undamped 
vibration of a multi degree of freedom frame the equation of 
motion is obtained by adding the force of inertia due to the masses 
in motion and the restoring forces due to the stiffness of members. 
Thus, 

𝑚𝑚𝑖𝑖
𝑑𝑑𝑑𝑑2

𝑑𝑑2 𝑋𝑋𝑗𝑗
(𝑑𝑑) +  𝐾𝐾𝑖𝑖𝑗𝑗𝑋𝑋𝑖𝑖(𝑑𝑑) = 0                           (1) 
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Where, Xi (t) = displacement function 
     

mi = mass at the ith floor 
 

Kij = the reaction at the ith floor, obtained from the 
bending moment diagram due to the application of unit 
displacement at the jth floor of the conjugate frame. 

𝑑𝑑2𝑥𝑥𝑥𝑥
𝑑𝑑𝑑𝑑2

(𝑑𝑑) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑜𝑜 𝑑𝑑ℎ𝑎𝑎 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚 𝑚𝑚𝑖𝑖 

It is assumed that the motion of the frame is simple harmonic and 
so the displacement function is further defined by 

𝑋𝑋𝑖𝑖(𝑑𝑑) = 𝑋𝑋𝑖𝑖 sin𝜔𝜔𝑑𝑑                                       (2) 

Where, 𝑥𝑥𝑖𝑖 = 𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 𝑎𝑎𝑜𝑜 𝑑𝑑𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝑑𝑑 𝑎𝑎𝑜𝑜 𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚,𝑚𝑚𝑖𝑖 

  𝜔𝜔 = 𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑎𝑎𝑎𝑎𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓 

Performing the differentiation in Equation (1) gives: 

𝑚𝑚𝑖𝑖
𝑑𝑑2

𝑑𝑑𝑑𝑑2 (𝑋𝑋𝑖𝑖 sin𝜔𝜔𝑑𝑑) +  𝐾𝐾𝑖𝑖𝑗𝑗𝑋𝑋𝑖𝑖(𝑑𝑑) = 0 

 

−𝑚𝑚𝑖𝑖𝜔𝜔2𝑋𝑋𝑖𝑖(𝑑𝑑) + 𝐾𝐾𝑖𝑖𝑗𝑗𝑋𝑋𝑖𝑖(𝑑𝑑) = 0                    (3) 

 

Using the amplitude, equation (3) becomes 

𝐾𝐾𝑖𝑖𝑗𝑗𝑋𝑋𝑖𝑖 − 𝑚𝑚𝑖𝑖𝜔𝜔2𝑋𝑋𝑖𝑖 = 0 

or 

�𝐾𝐾𝑖𝑖𝑗𝑗𝑋𝑋𝑖𝑖 − 𝑚𝑚𝑖𝑖𝜔𝜔2� [𝑋𝑋𝑖𝑖] = 0                         (4) 

Gauss reduction which is used to solve equation (4) requires, for a 
non-trivial solution, that the determinant of the coefficients of X 
equals zero i.e. 

�𝐾𝐾𝑖𝑖𝑗𝑗 − 𝑚𝑚𝑖𝑖𝜔𝜔2�  = 0                                  (5) 

Thus, equation (5) is an eigenvalue problem whose solution yields 
the natural frequencies 

𝜔𝜔1,𝜔𝜔2 … … …𝜔𝜔𝑛𝑛                                    (6) 

𝑤𝑤ℎ𝑎𝑎𝑎𝑎𝑎𝑎, 𝜔𝜔1 < 𝜔𝜔2 < ⋯𝜔𝜔𝑛𝑛 

3.2. Forced Vibration 

The equation of motion for forced vibration is also  time 
dependent and it is obtained by adding  the forcing function to 
equation (3) and replacing the natural frequency with the forcing 
frequency. Thus, 

miθ2xi + kij𝑋𝑋𝑖𝑖(t) + 𝑅𝑅𝑖𝑖𝑖𝑖(t) = 0                          (7) 

Using the amplitudes, equation (7) becomes 

[𝐾𝐾𝑖𝑖𝑗𝑗 − miθ2][𝑋𝑋𝑖𝑖] + [𝑅𝑅𝑖𝑖𝑖𝑖] = 0                               (8) 

Where, Xi = Amplitude of joint displacement due to forced 
vibration 

  θ = forcing frequency 

Rip = the reaction at the ith floor obtained from the bending 
moment diagram due to the application of the external load to the 
conjugate frame. 

After obtaining the amplitude of joints displacement from the 
solution of equation (8) bending moment values, table 2, due to 
forced vibration are then determined using the relation: 

𝑀𝑀 = �  
𝑛𝑛

𝑖𝑖−1

𝑀𝑀𝑖𝑖𝑋𝑋𝑖𝑖 + 𝑀𝑀𝑖𝑖                                            (9) 

Where, 

M = bending moment due to forced vibration, unit = KNM 

Mp = bending moment for the conjugate system due to external 
load, unit = KNM 

Xi = amplitude of joint displacement due to forced vibration, units 
= mm 

Mi = bending moment for the conjugate system due to unit 
translation at ith floor level. 

4. Methodology 

Derivation of fixed end moments due to applied loads for 
beams with stiffened joints can be facilitated using ideas 
developed by the author in [9] or making adaptations from the 
equations deduced by the authors in [14]. 
Case I: Uniformly distributed load q, on beam fixed at both ends. 
 

𝑀𝑀𝐴𝐴 =  
−𝑓𝑓𝑞𝑞2

12
�1 + 6 �

𝑎𝑎
𝑞𝑞
� + 6 �

𝑎𝑎
𝑞𝑞
�  2�

=
−𝑓𝑓𝑞𝑞2

12
[1 + 6𝛼𝛼 + 6𝛼𝛼 2]                              (10) 

 

𝑀𝑀𝐵𝐵 =  
−𝑓𝑓𝑞𝑞2

12
�1 + 6 �

𝑏𝑏
𝑞𝑞
� + 6 �

𝑏𝑏
𝑞𝑞
�  2�

=
−𝑓𝑓𝑞𝑞2

12
[1 + 6𝛽𝛽 + 6(𝛽𝛽) 2]                         (11) 

 

Case II: Point load, P, acting within the span of the beam fixed at 
both ends, fixed end moment is given by: 

𝑀𝑀𝐴𝐴 =  
−𝑃𝑃𝑑𝑑𝑎𝑎2

𝑞𝑞2
�1 + 2 �

𝑎𝑎
𝑞𝑞
� + �

𝑎𝑎
𝑎𝑎
��

=
−𝑃𝑃𝑑𝑑𝑎𝑎2

𝑞𝑞2
�1 + 2𝛼𝛼 +

𝑎𝑎
𝑎𝑎
�                            (12) 

 

𝑀𝑀𝐵𝐵 =  
−𝑃𝑃𝑑𝑑𝑎𝑎2

𝑞𝑞2
�1 + 2 �

𝑏𝑏
𝑞𝑞
� + 6 �

𝑏𝑏
𝑎𝑎
��

=
−𝑃𝑃𝑑𝑑𝑎𝑎2

𝑞𝑞2
�1 + 2𝛽𝛽 +

𝑎𝑎
𝑑𝑑
�                            (13) 

For a special case where: 

c = d = L/2: 

𝑀𝑀𝐴𝐴 =  
−𝑃𝑃𝑞𝑞

8
�1 + 4 �

𝑎𝑎
𝑞𝑞
�� =

−𝑃𝑃𝑞𝑞
8

[1 + 4𝛼𝛼]                           (14) 

http://www.astesj.com/


Mbanusi E. C. et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 68-77 (2017) 

www.astesj.com     71 

     𝑀𝑀𝐵𝐵 =  −𝑃𝑃𝑃𝑃
8
�1 + 4 �𝑏𝑏

𝑃𝑃
�� = −𝑃𝑃𝑃𝑃

8
[1 + 4𝛽𝛽]                                 (15) 

 

𝑀𝑀(1 2� ) =  
𝑃𝑃𝑞𝑞
8

                                                                    (16) 

Where, with respect to figure 1, 

a = length of stiffened A end of member. 

b = length of stiffened B end of member. 

c = distance between the point of application of the concentrated 
load and the end of flexible length at A side of member. 

d = distance between the point of application of the concentrated 
load and the end of flexible length at B side of member. 
α = a/L = stiffened factor at A end of member. 
β = b/L = stiffened factor at B end of member. 
where, α=β =a/L =b/L 
 
 

 

 

Figure 1: Flexible and stiffened segments of member. 

5. Results and Discussion 

5.1. Results 

Table 1 contains values of bending moment, Mp, of the conjugate 
system due to external load. 
Table 2 depicts bending moment values due to dynamic effect for 
forcing frequency or function, 𝜃𝜃, = 5.3√𝐸𝐸𝐸𝐸 𝑋𝑋10−3 Rad/sec, for 
the frame of normal rigid joints and for the frames of stiffened 
joints. Table 3 presents reactions at imaginary supports due to 
externally applied loads for the conjugate system. Table 4 
contains values of the maximum span moment due to dynamic 
effect for forcing frequency, 𝜃𝜃, = 5.3√𝐸𝐸𝐸𝐸 𝑋𝑋10−3 Rad/sec for 
the frame of normal rigid joints and frames of stiffened joints. 
Table 5 contains values of amplitude of joint displacement due to 
forced vibration.  

 

Figure 8 is the graph of joint moment, joint 10, due to forced 
vibration versus stiffening factor,α and β. Figure 9 shows the graph 
of the maximum span moments due to forced vibration, versus 
stiffening factors, α and β. Figure 10 presents the graph of joint 
moment, joint 11, due to forced vibration, versus stiffening factor, 
α and β. Figure 11 depicts the graph of joint moment, joint 12, due 
to forced vibration, versus stiffening factor, α and β. Figure 12 
shows the graph of amplitude of joint displacement due to forced 
vibration versus stiffening factor, α and β. 

5.2. Discussion 

• With joint stiffening of double-bay frames, the bending 
moments due to dynamic effect are greater over the supports 
than they are at the mid-spans and hence the beam does not 
materially affect the stresses. This is more pronounced with 
increase in length of stiffening, tables 2 and 4.  

This very trend is in consonance with fundamental 
characteristics of the continuous beam structure.  

• Values of bending moment over the supports due to dynamic 
effect, especially with respect to the horizontal members, are 
smaller for the frame with normal rigid joints than they are 
for the frames with stiffened joints, table 2, figures 8, 10 and 
11. In figure 10, M11-8 tends to exhibit a response that suggests 
closeness to effect of ‘beating’ on the central column joint of 
the first upper floor level. 

• Values of bending moment at the spans due to dynamic effect 
are smaller for the frames with stiffened joints than they are 
for the frame with normal rigid joints table 4, and figure 9. 

• The maximum span moments due to dynamic effect 
decreased progressively with increase in stiffening lengths in 
such a manner that between stiffening lengths of 425mm and 
775mm, this trend passed through zero and migrated to 
negative values for the frame of stiffened length of 775mm, 
table 4, and figure 9. This trend suggests an optimal length of 
stiffening, say lo, exists at which the span moment would hit 
zero value. This means there must be a stiffening length 
versus the flexible length at which zero span moments would 
occur.  

• This optimal stiffening length could enable optimal extension 
of column-free spaces in situations needing as large a 
column-free space as possible.   

• From table 5, it would be observed that joint displacement 
decreased with increase in joint stiffening. This establishes 
that joint stiffening increases stability for double-bay 
building frames. 

• Support moments increase with increase in stiffening factor, 
figures 8, 10 and 11.  

• Span moments decrease with stiffening factor, figure 9. 

6. Conclusion 

On account of diminishing maximum span moment with joint 
stiffening, stiffening of joints of double-bay frame structure can 
be utilized to achieve large column-free spaces in building 
structures and structures of other relevant constructed facilities 
where, in the first place, large column-free spaces were 
functionally needed. 

One of the benefits derivable from joint stiffening of double-bay 
frames is not reduction in end, i.e.; support moments, but in the 
reduction of the maximum span moments even to the barest 
minimum values. 

Since joints stiffening of double-bay multi-storey building frames 
can bring about shifting or transforming of span moments from 
positive values, through zero, to negative values, table 4 and 
figure 9, then, joints of infinite rigidity: (i) substantially reduce 
deflection; (ii) increase deflection ductility and energy ductility of 
flexural members as from the instance of substantial reduction in 
positive span moments; (iii) yields far insignificant a deflection 
scenario at zero span moments; and (iv) further pushes back the 

A C
c

P

D B
d

ba
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frontiers of deflection concerns for the beams when the span 
moments are at negative values. 

Joint stiffening significantly reduces dynamic joint displacements, 
table 5, and figure 12, hence, enhances buckling resistance of 
vertical members. This leads to greater structural stability. 

7. Recommendation 

Where beams of double-bay multi-storey frames are of reinforced 
concrete, the span reinforcement due to dynamic effect should be 
conceived in terms of double reinforcement. 

This is because span moments, depending on the stiffening 
lengths versus flexible lengths provided, can shift from positive 
value stance to the negative value stance, when operating within 
dynamic regime scenario. 

8. Area for Further Investigation 

This lies in establishment of functional relationship between 
stiffening lengths, flexible lengths and the overall lengths of beam 
spans for double-bay frames of stiffened joints so as to achieve as 
large a column-free space as necessary for design and 
construction of double-bay framed structures. 

 

 

 

 

 

 

 

Figure 2: Plan of double-bay multi-storey building framed structure 

 

 

 

 

 

 

 

 

 

Figure 3: Double-bay four-storey normal rigid building frame 

 

 

 

 

 

 

 

 

Figure 4: Double-bay four-storey building frame with stiffened joints. 

 

 

 

 

 

 

 

Figure 5: Dynamic model for the double-bay four-storey building frame 

q1 = q2 = q3 = 45 KN/m 
 q4 = 32 KN/m 

P1 = P2 = P3 = 15 KN 

 

 

 

 

 

 

 

Figure 6: Loading for the conjugate system of the frames 

 

 

 

 

 

 

 

 

 

 

Figure 7: Dynamic loading for the frames 
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Table 1:  Bending moment, Mp, of the conjugate system due to external load for the frames 

 Normal Rigid 
Frame: a=b=0 

(KNM) 

Stiffened Frame 
a=b=275mm 

(KNM) 

Stiffened Frame 
a=b=425mm 

(KNM) 

Stiffened Frame 
a=b=775mm 

(KNM) 
M1-2 -136.62502 -172.47558 -198.63228 -263.02094 

M1-4 -136.62502 -172.47558 -198.63228 -263.02094 
M2-1 -203.58353 -246.81158 -277.60053 -340.09485 

M2-5 -27.00186 -31.22164 -33.75587 -35.66880 

M2-3 -176.58166 -215.58994 -242.84467 -304.43605 

M3-2 -94.13145 -123.02986 -144.95843 -205.87282 
M3-6 -94.13145 -123.02986 -144.95843 -205.87282 

M4-1 106.89054 138.2269 161.87205 226.32273 

M4-5 -186.96919 -231.93461 -263.83615 -343.20268 

M4-7 -80.07865 -93.71190 -101.96411 -116.87991 
M5-4 -217.48193 -260.85209 -290.78084 -362.02720 

M5-2 21.56789 25.48206 27.99247 32.29713 

M5-6 -179.20534 -217.25063 -244.03847 -308.60470 

M5-8 -16.70870 -18.11940 -18.74990 -21.12537 
M6-3 76.41084 101.80996 121.56509 178.96965 

M6-5 -136.44870 -175.19812 -203.70035 -276.92450 

M6-9 -60.03786 -73.38815 -82.13529 -97.95490 

M7-4 82.99792 97.43619 106.23188 120.81081 

M7-8 -187.0732 -231.68649 -263.43549 -343.58384 
M7-10 -104.00609 -134.22557 -157.20359 -222.77299 

M8-7 -221.03678 -265.47049 -296.16996 -369.23204 

M8-5 17.28348 18.81324 19.50037 21.15220 

M8-9 -182.67231 -221.78523 -249.32369 -314.71870 
M8-11 -21.08097 -24.87200 27.34590 -33.36115 

M9-6 61.38549 75.13015 84.14297 100.60216 

M9-8 -136.62009 -175.16930 -203.54165 -277.13180 

M9-12 -75.23460 -100.03917 -119.39868 -176.52966 
M10-7 122.09500 155.67195 180.58150 249.46969 

M10-11 -196.85976 -242.95370 -276.05115 -361.38748 

M10-13 -74.764.75 -87.28173 -95.46964 -112.01783 

M13-10 37.38238 50.16981 59.11203 80.56297 
M11-10 -253.18853 -305.39068 -341.49867 -427.18030 

M11-8 24.30368 28.33032 30.85063 36.98969 

M11-12 -214.20411 -261.47907 -294.72287 -373.92497 

M11-14 -14.68074 -15.58128 -15.92514 -16.26565 
M14-11 7.34037 5.68577 9.86039 11.69822 

M12-11 141.19614 -179.66665 -208.24449 -283.95688 

M12-15 -53.46003 -64.29897 -71.73173 -87.34170 

M15-12 26.73002 36.95925 44.41421 62.81595 

M12-9 87.73608 115.36768 136.51274 196.61519 
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Table 2:  Bending moment due to dynamic effect for 𝜃𝜃 = 5.3√𝐸𝐸𝐸𝐸 𝑋𝑋10−3 Rad/Sec 

 Normal rigid Frame: 
a=b=0 
(KNM) 

Stiffened Frame 
a=b=275mm 

(KNM) 

Stiffened Frame 
a=b=425mm 

(KNM) 

Stiffened Frame 
a=b=775mm 

(KNM) 
M1-2 -116.03486 -161.60428 -179.20319 -268.24866 
M1-4 -116.03486 -161.60428 -179.20319 -268.24866 
M2-1 -221.12689 -256.37968 -294.13419 -334.95391 
M2-5 -64.16006 -51.78553 -71.86412 -24.07263 
M2-3 -156.96699 -204.59211 -222.27504 -310.87573 
M3-2 -116.79310 -135.31369 -167.99186 -199.34768 
M3-6 -116.79310 -135.31369 -167.99186 -199.34768 
M4-1 89.74401 127.93788 147.96153 -225.19658 
M4-5 -160.36169 -219.65840 -234.90723 -358.59200 
M4-7 -70.61768 -91.72758 -86.94576 -133.39538 
M5-4 -241.58140 -272.22151 -318.13336 -347.25584 
M5-2 53.58140 44.61527 59.88292 68.63167 
M5-6 -151.61094 -204.06030 -211.64822 -327.02729 
M5-8 36.70641 -23.54337 -46.60223 88.86021 
M6-3 -166.23023 -189.27895 -237.62631 -257.90698 
M6-5 95.41714 113.39282 138.38718 178.56129 
M6-9 -70.81309 -75.88332 -99.23915 -79.35011 
M7-4 57.66173 79.53900 72.83115 126.43404 
M7-8 -182.90571 0243.13451 -263.50706 -378.42561 
M7-10 -125.24067 -163.57431 -190.67589 -252.05199 
M8-7 -224.25507 -254.45280 -295.44738 -334.67612 
M8-5 50.54224 37.28057 63.64087 6.18210 
M8-9 -179.11818 -234.65492 -250.33966 -358.20544 
M8-11 5.40211 17.47681 18.53928 29.70515 
M9-6 -141.05426 -161.88435 -203.16814 -233.33765 
M9-8 87.71443 93.09982 119.25638 92.96672 
M9-12 -53.33984 -68.77864 -83.91176 -140.37095 
M10-7 113.80187 168.01851 184.61312 262.13025 
M10-11 -231.775506 -277.85320 -318.29110 -419.70351 
M10-13 -117.97455 -109.84412 -133.67800 -157-56892 
M13-10 187.93779 77.63577 120.24978 152.47587 
M11-10 -222.66726 -273.92372 -303.25845 -372.29985 
M11-8 16.79523 3.45329 3.93718 17.57228 
M11-12 -248.46057 -297.81322 -339.60256 -421.87414 
M11-14 42.58854 20.43674 40.28170 52.00670 
M14-11 -63.86561 -42.22376 -61.54693 -76.50861 
M12-11 -102.54783 -139.95023 -159.45947 -263,14950 
M12-9 94.05616 100.17412 128.80553 225.84367 
M12-15 -8.49164 -39.77611 -30.65392 -37.30584 
M15-12 -38.32551 -5.79360 -53.02507 -12.128187 
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Table 3: Reactions Rip, at imaginary supports due to externally applied loads for the conjugate system. 

 Normal Rigid 
Frame: a=b=0 

(KN) 

Stiffened Frame 
a=b=275mm 

(KN) 

 Stiffened Frame 
a=b=425mm 

(KN) 

Stiffened Frame 
a=b=775mm 

(KN) 
R1P -6.10088 -7.28869  -8.05812 -9.13382 

R2P 4.18562 5.86440  7.14125 9.91980 

R3P -2.52118 -3.89780  -5.00249 -7.94773 

R4P 2.44925 2.33683  3.38925 4.26989 

 

Table 4:  Maximum Span Moment Due to Dynamic Effect for 𝜃𝜃 = 5.3√𝐸𝐸𝐸𝐸 𝑋𝑋10−3 Rad/Sec 

 Normal Rigid Frame: 
a=b=0 
(KNM) 

Stiffened Frame 
a=b=275mm 

(KNM) 

Stiffened Frame 
a=b=425mm 

(KNM) 

Stiffened Frame 
a=b=775mm 

(KNM) 
M1-2 113.88439 73.01301 46.27978 -20.60809 

M2-3 77.96550 45.82138 20.11064 -37.11031 

M4-5 119.22989 74.09292 43.86895 -32.92392 

M5-6 88.26692 50.51787 22.55022 -44.67972 

M7-8 130.41961 85.20633 54.52278 -22.55085 

M8-9 98.91377 60.84072 32.24611 -35.36522 

M10-11 138.7784 90.11540 55.22522 -30.00167 

M10-12 110.11582 67.31541 37.92739 -65.14092 

  

Table 5:  Amplitude of Joint Displacement Due to Forced Vibration 

Stiffening 
factor 

 
X1 

Joint  
X1 

                                  Displacement (mm) 
            X3                                                               X4 

a= b = 0 
α= β = 0 

 
4.94 

 
5.86 

 
6.07 

 
8.36 

     
a= b = 275 

α= β = 0.044 
 

3.30 
 

4.63 
 

5.03 
 

6.52 
     
     

a= b = 425 
α= β = 0.064 

 
2.77 

 
3.54 

 
4.28 

 
5.24 

     
     

a= b = 775 
α= β = 0.134 

 
1.85 

 
2.02 

 
3.04 

 
4.12 
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Figure 8: Graph of joint moment due to forced vibration, dynamic effect, 
versus stiffening factor, α and β. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Graph of maximum span moments due to dynamic effect, versus 
stiffening factor, α and β. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Graph of joint moment, joint 11, due to forced vibration, 

dynamic effect, versus stiffening factor, α and β. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: Graph of joint moment, joint 12, due to forced vibration, 

dynamic effect, versus stiffening factor, α and β. 
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Figure 12: Graph of amplitude of joint displacement due to forced 
vibration, dynamic effect, versus stiffening factor, α and β. 
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