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Machine learning has been dramatically advanced over several decades, from theory
context to a general business and technology implementation. Especially in healthcare
research, it is obvious to perceive the scrutinizing implementation of machine learning
to warranty the rewarded benefits in early disease detection and service recommendation.
Many practitioners and researchers have eventually recognized no absolute winner approach
to all kinds of data. Even when implicit, the learning algorithms rely on learning parameters,
hyperparameters tuning to find the best values for these coefficients that optimize a particular
evaluation metric. Consequently, machine learning is complicated and should not rely on one
single model since the correct diagnosis can be controversial in a particular circumstance.
Hence, an effective workflow should effortlessly incorporate a diversity of learning models
and select the best candidate for a particular input data. In addressing the mentioned
problem, the authors present processes that interpret the most appropriate learning models
for each of the different clinical datasets as the foundation of developing and recommending
diagnostic procedures. The whole process works as (i) automatic hyperparameters tuning for
picking the most appropriate learning approach, and (ii) mobile application is developed to
support clinical practices. A high F1-measurement has been achieved up to 1.0. Numerous
experiments have been investigated on eight real-world datasets, applying several machine
learning models, including a non-parameter approach, parameter model, bagging, and
boosting techniques.

1 Introduction

This paper is an extension of work initially presented in IEEE
ACOMP 2019 [1] as an invited paper.

The advancement in clinical and healthcare practice today is due
to the vast database explosion. Hospitals, health professionals, and
treatment centers disclose medical data to the community to call for
mutual support and benefit. The data availability is expanding in
many forms, both the number of known attributes and the number
of new observations [2]. We can see an excellent example from the
widely published new coronavirus (COVID-19) data [3]. However,
due to privacy concerns, medical data is abundant, but it is also very
sparse, which we only have on specific individuals. A country’s
medical data may not be relevant to develop solutions for the same
disease in another country. That creates challenges and difficulties
for traditional medical diagnosis because many observations are
lost due to a lack of information. The central issue is that health
data is characterized by the considerable complexity of detecting

new symptoms and sparsely presenting diseases due to insufficient
data collection across a population or community. As an added diffi-
culty, medical data exists in many different structures. For example,
numbers, categories, text, images, and time-series make medical
diagnosis even more difficult. However, from the benefit of big data
to health care, leveraging medical data collection offers an excellent
opportunity to improve the efficiency of healthcare provider [4, 5].
Current challenges in health practice include information overload,
confounding attributes, and noise data in different populations, mak-
ing manual analysis of experts ultimately difficult [6, 7]. The cost
of using medical professionals to examine multiple clinical cases
accumulated over time is very high. From a medical diagnosis, one
can argue that there is an urgent need to work with a wide variety of
data, leverage useful knowledge, and recommend a system that can
make the most of information from that data.

Classification is an essential task in health diagnostic systems.
We use observed metrics to classify samples into different diseases,
or separate degrees of the same illness [8, 9]. Clinicians are trained
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and have the solid knowledge to classify diseases based on sample
data accurately. We can agree that correctly distinguish the right
disease is one of the fundamental bases for effective treatment of
the disease. However, as more data appears in clinical fields, the
existing manual diagnostic process that relies on expert expertise
cannot be applied quickly and effectively. As a result, the course of
treatment may have to be done more slowly or eliminated. Address-
ing mentioned problems lies in the interactions between healthcare
and automation decisions based on machine learning, applying to
the classification problem. Thus, one can argue that the classi-
fication design is an iterative process between machine learning
and available clinical sources to demonstrate the implications of a
medical diagnostic procedure. Consequently, the authors turn our
attention to proposing processes that automatically select the most
suitable machine learning models for each of the different types of
data as the foundation of building and recommending diagnostic
procedures.

The classic definition of machine learning is ”A computer pro-
gram is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E”. It was initially
described as a computer program that learns to automatically per-
form a required task or make a decision from data without explicitly
programmed. This definition is comprehensive and can cover al-
most any set of data-driven approaches. Machine learning has been
dramatically advanced over several decades, from theory context to
a general business and technology implementation. Especially in
healthcare research, it is obvious to perceive the scrutinizing imple-
mentation of machine learning to warranty the rewarded benefits
in early disease detection, service recommendation, and patient-
oriented information offering [10]–[13]. There are two substantially
interrelated questions in medical diagnosis: How can computer sci-
entists build machine learning programs that automatically improve
through experience, e.g., through data? How can practitioners and
clinical experts incorporate with these machine learning programs?
The first question can be addressed by marriage between machine
learning models and vast medical data. The more data we feed
into the learning algorithms, the more accurate the prediction is.
Whatever the machine learning models are used, the fundamental
expectation is to generalize the knowledge from training data to
unseen observations. It is the generalization capacities of learning
approaches on how robust they are to their modeling assumptions
or the errors in the test set. However, many practitioners and re-
searchers have eventually recognized that there is no absolute winner
approach to all kinds of data. The reasons can be broken down into
many considerations. The prediction accuracy is diminished when
the quantity and quality of clinical data are incomplete.

Different regions expose unique characteristics of a particular
disease, which may affect the generalization capacities of learning
models [13]. The privacy of medical records also subtracts the high
availability of data for research. It is inadvertently possible that
racial biases might be built into healthcare systems [14]. The reason
might be placed at the characteristics of machine learning models
themselves. Even when implicit, the learning approaches generally
reply to learn parameters, hyperparameters tuning to find the best
values for these coefficients that optimize a particular evaluation
metric. Consequently, the use of machine learning is complicated

and should not rely on one single model since the correct diagno-
sis in a particular circumstance can be controversial. Hence, an
effective workflow should effortlessly incorporate a diversity of
learning models and select the best candidate for a particular in-
put data. It comes to the design idea of black-box models [15] in
unintended consequences of machine learning in medicine. The
workflow should work with various types of input data and transpar-
ently amalgamate diverse models. In that setting, different learning
approaches for medical diagnosis are evaluated to select the most
accurate one. More importantly, the result’s interface should also be
attractive to enhance hospital experts and end-users’ incorporation.

Today, smartphones are one of the most ubiquitous communica-
tion devices and the fastest growing technology industry sectors. An
increasing number of mobile applications have been developed to
perform a comprehensive spectrum of daily tasks and entertainment.
Its impact on medical treatment has already been significant on a
global scale. In this paper, the authors deploy an Android mobile
application to illustrate how the proposed workflow integrates with
hospital experts and patients as end-users. Mobile health is a new
concept that describes services supported by mobile communication
devices such as smartphones, tablets, smartwatches, patient monitor-
ing devices. However, the discussion of mobile health is out of our
research scope. Interesting readers might refer to several mindful
papers in the literature [16]–[18].

To be the best of our knowledge, the authors have made several
contributions as follows:

• We sharp the connection between the automatic selection of
machine learning models for classification in medical diagno-
sis.

• We extend the pool of machine learning models, including a
single approach, bagging algorithm, and advanced boosting
technique. We prove that there is no winner model to address
medical data sources.

• We extend the background of machine learning algorithms in
much more details.

• We extend the experiments section where we carefully de-
scribe experimental results, reproducibility, and mobile app
development.

The rest of the paper is organized as follows. Section 2 gives a
general idea of how our proposed workflow works and how the best
learning model is selected. Then in Section 3, the authors introduce
required machine learning materials and methodology that need to
comprehend the experiments. More specifically, we discuss several
well-known machine learning models and evaluation metrics. Our
intensive comparison is then discussed in Section 4 in which we
go through data collection, experimental results, reproducibility,
and mobile app development. Finally, several final thoughts are
presented in Section 5.
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Figure 1: Automatic Selection of Machine Learning Models.

Figure 2: Hyperparameters tuning for picking the most appropriate learning approach.

2 Interpretation of Machine Learning
Models

As mentioned in the previous discussion, the authors propose pro-
cesses that interpret the most appropriate learning models for each
of the different clinical datasets as the foundation of developing and
recommending diagnostic procedures. The whole process works as
(i) hyperparameters tuning for picking the most appropriate learning
approach, and (ii) a mobile application is developed to support clin-
ical practices, see Figure 1. Here, clinical experts might not need
to understand the technical part because it is done automatically.
Experts feed hospital data from different sources to the system. First,
data preparation starts with splitting sources into training-validation-
test schemes. The training and validation sets are feed into a black
box of several predefined learning models. The best model is se-
lected based on an evaluation metric’s optimization, performing on

the validation set. Finally, the instances that are considered as un-
seen data belong to the test dataset. Figure (3) illustrates a practical
splitting protocol in machine learning. This selection mechanism is
described in Figure (2). The authors apply decision trees (DT), naı̈ve
Bayes (NB), artificial neural networks (NN), random forest (RF),
support vector machines (SVM), and extreme gradient boosting
(XGBoost).

Figure 3: A visualization of the dataset splitting.
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3 Materials and Methodology

In this section, the authors briefly present the implemented machine
learning approaches. We do not pretend that our discussion will be
an overview of models. Interesting readers might refer to several
textbooks for further self-learning and comprehension [19]–[22].
Furthermore, other interesting papers that connect the gap between
machine learning and medical research can be found at [23]–[26].

3.1 Support Vector Machines

SVM constructs a hyperplane in a high dimensional space. Assum-
ing that the linear model is vT x, then the following constraints need
to be satisfied in case of the data points are linearly separable:

yi(vT xi + b) ≥ 1. (1)

SVM seeks to find a good hyperplane where the margin to
different classes’ data points is maximum. Hence, SVM optimizes:

min
1
2
‖v‖2 (2)

In case of non-linear separation, the constraints cannot be ful-
filled. Then, soft margin is applied. The optimization in Equation 2
becomes

min
1
2
‖v‖2 + C

∑
i

σi,

subject to yi(vT xi + b) ≥ 1 − σi , σi ≥ 0.
(3)

The Lagrangian is calculated as follows:

L =
1
2
‖v‖2 −

∑
i

βi(yi(vT xi + b) − 1 + σi). (4)

Setting the respective derivatives to 0, then the dual form of the
optimization is as follows:

max
∑

i

βi −
1
2
βiβ jyiy jxT

i x j,

subject to
∑

i

βiyi = 0, βi ≥ 0.
(5)

where the ranking model v =
∑

i αiyixi is achieved by solving the
quadratic programming. The optimality in Equation 5 is applied by
the Karush-Kuhn-Tucker (KTT) conditions. Then we get:

βi = 0 ⇒ yi(vT xi + b) ≥ 1, (6)

0 < βi < C ⇒ yi(vT xi + b) = 1, (7)

βi = C ⇒ yi(vT xi + b) ≤ 1. (8)

3.2 Naı̈ve Bayes

Due to its easy implementation and high performance, many ma-
chine learning practitioners consider Naı̈ve Bayes is a simple but
effective machine learning model [27]. We denote a vector x, a
set τ and y = s as model’s parameters and accompanying label
respectively. Then, we can define a generative model x as follows:

P(y = s|x, τ) =
P(y = s|τ)P(x|y = s, τ)∑

s′ P(y = s′|τ)P(x|y = s′, τ)
, (9)

where P(x|y = s, τ), P(y = s|x) are class-conditional density and
class posterior. P(y = s) is class prior. Equation (9) can be propor-
tionally calculated as follows:

P(y = s|x, τ) ∝ P(y = s|τ)P(x|y = s, τ). (10)

Then, the class-conditional density in Equation (9) is estimated
as follows:

P(x|y = s, τ) =

D∏
i=1

P(xi|y = s, τis) , (11)

which is the Naı̈ve Bayes classifier. Because it is not expected that
the features should be independent, Equation (11) can be re-written
depending on each feature’s type, e.g. binary, real-valued, or cat-
egorical attributes. Specifically, in case of binary attributes, the
Bernoulli distribution can be utilized as follows:

P(x|y = s, τ) =

D∏
i=1

B(xi|µis) , (12)

where µis means the probability of attribute i objected to class s.
In case of real-valued attributes, the Gaussian distribution can be
computed as follows:

P(x|y = s, τ) =

D∏
i=1

N(xi|µis, σ
2
is) , (13)

where µis and σ2
is mean the probability of attribute i objected to

class s and its variance respectively. In case of categorical attributes,
multinoulli distribution is used as follows:

P(x|y = s, τ) =

D∏
i=1

C(xi|µis, σis) , (14)

where xi ∈ {1, . . . ,K} is categorical attributes and σis is a histogram
over K.

In our research, disease classification is basically to classify in-
put vector into different categories. Depending on the representation
as a binary or real-valued matrices, Equation (12 or 13) is applied
to make prediction.

3.3 Artificial Neural Networks

We apply Multilayer Perceptrons as the version of artificial neural
networks applied in the experiments. We form the the model as
follows:

p(y|x, θ) = N(y|wT g(x), σ2) , (15)
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where g(x) is called the hidden layer. It is defined as follows:

g(x) = f (Vx) =
[
f (1T x), . . . , f (vT

Hx)
]

, (16)

where H is the number of hidden units, f is a logical function. V is
the weight matrix from the inputs to the hidden nodes, while w is
the weight vector from the hidden nodes to the output. In our exper-
iments, we deploy an artificial neural network with 2 hidden layers
due to the hardware constraints. A sigmoid function is activated on
the output if the classification is binary.

p(y|x, θ) = B(y|sigmoid(wT g(x))) . (17)

Regarding multi-class classification, sum-to-one constraint is
applied:

p(y|x, θ) = C(y|S(Wg(x))) . (18)

3.4 Decision Trees

We denote R as the number of regions, wr is the weight response in
the r region. A decision tree is formed as follows.

f (x) =

R∑
r=1

wrφ(x, vr) , (19)

where vr is the choice of variable to split on.
To find the best partitioning of the input data, the greedy proce-

dure is used in common. There is progress that measures the quality
of a split in the classification setting. Given a threshold t, we fit a
multinoulli model to the data that satisfies the condition X j < t by
estimating the class-conditional probabilities as follows:

π̂c =
1
|L|

∑
i∈L

I(yi = c) , (20)

where L is the data in the leaf. Then the misclassification rate is
calculated as follows:

1
|L|

∑
i∈L

I(yi , ŷ) = 1 − π̂ŷ. (21)

Note that the most probable class is ŷc = argmaxc π̂c. Moreover,
the Entropy can be measured as follows:

H(π̂) = −

C∑
c=1

π̂c log π̂c . (22)

We leave the Entropy as the default setting for the decision tree
in our experiments.

3.5 Bagging Aggregation with Random Forest

Although DT is one of the most effective and speedy models, it is
highly variable due the the splitting. At first, DT is trained on a
complete dataset. Then that dataset is split into two portions. DT is
applied on the two portions and interestingly, they return different
results. The idea of bagging technique helps to reduce the variance
in any model [28]. An example of bagging is the generation of many
decision trees in parallel. We can train T different trees on different

subsets of the data, chosen randomly with replacement, and then
compute the ensemble as follows:

f (x) =

T∑
t=1

1
T

fm(x) , (23)

where ft is the t’th tree. This helps reduce the variance of the
predictions.

3.6 Boosting Technique with XGBoost

XGBoost, see Figure 4, is a popular and efficient machine learn-
ing implementation of the gradient boosted trees [29]. It has been
widely applied in some data competitions. The general idea of
gradient boosting is to predict a class by combining several weak
learners. XGBoost used a regularized objective function (L1 and
L2) that combines a convex loss function (emerging from the differ-
ence between the ground-truth and prediction) and a penalty term
for controlling model complexity. A gradient descent algorithm is
used to minimize the loss when adding new learners. The training
proceeds iteratively, adding new trees that predict the prior trees’
residuals associated with previous trees to perform the final predic-
tion. Regularization is included to reduce overfitting. The authors
denote the i-th instance with an associated label as xi ∈ R

d, ŷ as the
prediction given xi. T is the number of trees. Then we define:

ŷi =

T∑
t=1

ft(xi) , ft ∈ F . (24)

Machine learning is basically the procedure of learning parame-
ters θ = {w j| j = 1, . . . , d}. The objective function is follows:

H(θ) = L(θ) + Ω(θ) , (25)

where L(θ) is the training loss and Ω(θ) is the regularization config-
uration. Optimizing L(θ) results in high prediction accuracy, while
optimizing Ω(θ) balances the simplicity of model. For each iteration
j, we define the XGBoost objective function by expanding Equation
(25).

H( j) =

n∑
i=1

l(yi, ŷ
j−1
i + f j(xi)) + Ω( f j) . (26)

We can see that we cannot optimize Equation (26) by using
traditional optimization methods because XGBoost objective is a
function of functions. However, we can transform the original ob-
jective function to the Euclidean domain by Taylor approximation
[30].

f (x + ∆x) ' f (x) + f ′(x)∆x +
1
2

f ′′(x)∆x2 . (27)

The first order gradient statistics is defined as gi = ∂ŷt−1 l(yi, ŷt−1),
while the second order gradient statistics of the loss function is de-
fined as hi = ∂2

ŷt−1 l(yi, ŷt−1):. Hence, Equation (26) can be rewritten
as follows:

H( j) =

n∑
i=1

[
gi f j(xi) +

1
2

hi f 2
j (xi)

]
+ Ω( f j) (28)

www.astesj.com 473

http://www.astesj.com


N. Duong-Trung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 469-477 (2020)

Figure 4: The sequential ensemble methods in XGBoost.

4 Experiments

4.1 Evaluation Metrics: F1-measure

We denote TrueP, FalseP, and FalseN as true positive, false posi-
tive, and false negative. With the classification problem where the
classes’ data sets are very different from each other, there is a logical
operation commonly used as Precision-Recall. First of all, consider
the problem of binary classification. We also consider one of the
two classes to be positive and the other to be negative. With a way
of determining a class to be positive, precision (Pre) is defined as
the ratio of the number of true positive points to those classified as
positive (TrueP + FalseP). The recall (Rec) is defined as the ratio
of the number of true positive points to positive (TrueP + FalseN).
Mathematically, Precision and Recall are two fractions with equal
numerators but different denominators:

Pre =
TrueP

TrueP + FalseP
(29)

Rec =
TrueP

TrueP + FalseN
(30)

We combine Equations 29 and 30 to compute F1-measure as
follows:

F1-measure = 2
Pre × Rec
Pre + Rec

(31)

4.2 Dataset Collection

In this paper, eight datasets related to medical data are selected
from the UCI Machine Learning Repository. More specifically,
the experimental datasets are Breast Cancer Data1, Heart Disease
Data2, Dermatology Data3, Vertebrae Data4, Hepatitis Data5, Cervi-
cal cancer (Risk Factors) (RF) Data6, Autism Adolescent Data7, and
Diabetes Data8. The authors prudentially select several categoriza-
tion datasets that are suitable for the research’s scope. Categorical
attributes are converted into numerical representation using a one-
hot encoding process. Data imbalance is accepted as the native
characteristics of classification data sources. The eight experimental
datasets are shown in Table (1).

Table 1: Hospital data from different sources

# Dataset Prediction Type # Samples # Attributes
1 Breast Cancer Binary 286 9
2 Dermatology Multi class 365 22
3 Heart Disease Multi class 303 13
4 Hepatitis Binary 155 19
5 Vertebrae Multi class 310 6
6 Cervical Cancer (RF) Binary 858 32
7 Autism Adolescent Binary 768 20
8 Diabetes Binary 104 8

In the experiments, the authors set up the splitting scheme by
the following ratios. First, we randomly split without replacement
the dataset into 70% and 30% for the pre-training and test parts
respectively. Next, the pre-training portion is randomly split with-
out replacement into 80% and 20% for the training and validation

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
2https://archive.ics.uci.edu/ml/datasets/Heart+Disease
3https://archive.ics.uci.edu/ml/datasets/Dermatology
4https://archive.ics.uci.edu/ml/datasets/Vertebral+Column
5https://archive.ics.uci.edu/ml/datasets/Hepatitis
6https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+(Risk+Factors)
7https://archive.ics.uci.edu/ml/machine-learning-databases/00420/
8https://archive.ics.uci.edu/ml/datasets/diabetes
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portions respectively. The role of these sets is introduced above, see
Figure (2).

4.3 Experimental Results

As mentioned above, the model’s performance is judged by its abil-
ity to predict unseen data accurately. Hence, the best scores are
considered on the test sets. The F1-measure of experimental models
performing on datasets are summarized in Table (2). Overall, there
is no absolute best approach. However, the random forest model
achieves remarkable performance on four different datasets, e.g.,
Breast Cancer, Cervical Cancer, Autism, and Diabetes. The neural
network approach gets the least performance since it does not win
any best prediction.

One interesting point to note is that Naı̈ve Bayes algorithm
achieves the F1-measure of 1.0 on the Dermatology data. Mean-
while, XGBoost gains the F1-measure of 0.94 on the Diabetes
dataset. RF is the best models performing on four different data,
namely Breast Cancer, Hepatitis, Cervical Cancer (RF), and Autism
Adolescent. Observing all experimental datasets, Vertebrae is the
most challenging. Even the best model, e.g., SVM, only achieves
the F1-measure of 0.54. Statistics in Table (1) show that Cervical
Cancer has the most instances and the most attributes, e.g., 858
and 32, respectively. Even though Cervical Cancer has the most
observations, one can argue that only partial representations of prop-
erties might not be enough to learn coefficients for 32 attributes.
The performance of XGBoost is not stable. While it is the winner
performing on Diabetes dataset, the prediction capacity is much
more insufficient than other models on other datasets.

Table 2: The report of F1-scores. The best scores are in bold.

# Dataset Pool of Learning Models
DT RF XGBoost NB NN SVM

1 Breast Cancer 0.76 0.79 0.26 0.75 0.77 0.75
2 Dermatology 0.95 0.96 0.18 1.00 0.90 0.91
3 Heart Disease 0.63 0.61 0.49 0.58 0.52 0.58
4 Hepatitis 0.80 0.80 0.21 0.80 0.70 0.74
5 Vertebrae 0.50 0.52 0.38 0.53 0.51 0.54
6 Cervical Cancer (RF) 0.94 0.94 0.11 0.93 0.91 0.87
7 Autism Adolescent 0.59 0.93 0.15 0.87 0.90 0.87
8 Diabetes 0.61 0.92 0.94 0.53 0.63 0.50

4.4 Reproducibility

A grid search strategy on tuning models’ hyperparameters is pro-
vided for the ease of reproducing the experimental results. The
number of estimators and the allowable depth of the trees are inves-
tigated regarding tree-based models. We investigate the performance
of Gaussian and Bernoulli Naı̈ve Bayes algorithms. Regarding the
neural network, the authors examine the effect of the number of
units in its hidden layers. We take into account the effect of C and
kernel configuration for SVM. Other hyperparameters leave default
settings by scikit-learn library [31]. The experimental environment
is as follows: windows 10, CPU Intel Core i5-2410M, 2.30GHz,
and 8GB of RAM. Table (3) presents our hyperparameters setttings.
Hyper-parameters are parameters that are not directly learned within

estimators. They are passed as the constructor’s arguments of the
estimator classes. The best hyperparameters’ combination for each
machine learning model, and the total search time is presented in
Table (4).

Table 3: Hyperparameters space.

Models Hyperparameters Settings

DT Max depth (Max) 1→ 101
Min samples leaf (Min) 1→ 101

RF
Max 1→ 51
N estimators (N) 1→ 51
Min 1→ 51

NB Algorithm (A) Gaussian (G), Bernoulli (B)

XGBoost

Max 1→ 101
gamma (Gm) 0.1→ 0.9
# of Parallel trees (Nt) 1→ 51
# of jobs (Nj) 1→ 51
Sketch Eps (Ep) 0.1→ 0.9

NN Hidden layer size (S) (1→ 101, 1→ 101)

SVM Kernel (K) Linear (Li), Poly, RBF
C 1→ 101

4.5 Mobile App Development

A mobile application, named Medical Diagnosis, is developed for
disease diagnosis in the clinic. The app supports several prelimi-
nary features such as disease information and input questions for
inspection. Currently, the application runs on the Android mobile
operating system and works on a client-server architecture. Machine
learning approaches are trained on a regular laptop, which acts as a
server. After training the models on a server, the most current classi-
fiers are updated into the client devices. Android Studio 3.2 is used
as the IDE to develop the mobile application. The emulation and
debugging are done on Genymotion version 5.4.2. The proposed
interpretation procedure automatically selects the best model for
an investigated input dataset. Then, the models are saved as pickle
classifiers9 [32, 33].

The client is an Android mobile device that is equipped with
saved pickle classifiers. A friendly graphical user interface (GUI)
provides questions to get input from users on the client-side; either
they type in the required information or select from pre-defined
options. The main components of the GUI are designed as follows.
Textview is used to display messages, comments, and headings.
Gridview is used to create a list of two image columns to choose
diseases that need an easy diagnosis. Listview creates a list of histo-
logical properties for the user to select. The display of symptoms
for users to choose on Listview helps users conveniently review the
selected symptom. HorizontalScrollView is used to display the prop-
erties that the user has selected or entered. Besides, on this screen,
the user can copy or delete the selected properties. Toast in Android
helps users recognize the entered or selected properties, showing
errors connected to the API. The properties are described clearly
for the convenience of the user entering and selecting information
using Dialog. Each disease’s attribute is handled separately with
different Dialogs depending on the value of the feature that the user
enters or selects. The Dialog can also be used to provide diagnostic

9https://docs.python.org/3.6/library/pickle.html
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Table 4: The best hyperparameters combination.

Dataset
Learning Models

DT RF XGBoost NB NN SVM

Ma Mi
Search
time Ma N Mi

Search
time Ma Gm Nt Nj Ep

Search
time A

Search
time S

Search
time K C

Search
time

Breast Cancer 11 1 35s 1 2 23 3h03m 1 0.1 1 1 0.1 1h06m G 8s (8,13) 3h17m Li 6 1m22s
Dermatology 6 1 50s 4 10 1 3h20m 1 0.1 1 1 0.1 1h35m B 7s (49,39) 56m Li 1 1m47s
Heart Disease 4 5 50s 8 18 2 3h22m 1 0.1 1 1 0.1 2h03m B 4s (32,28) 31m Li 1 2m41s
Hepatitis 1 1 40s 5 11 1 3h07m 1 0.3 20 44 0.2 1h12m B 2s (43,72) 45m Li 1 1m05s
Vertebrae 1 1 20s 2 47 22 3h08m 1 0.3 20 14 0.2 1h33m G 3s (7,90) 1h15m Li 3 3m38s
Cervical Cancer (RF) 5 1 9s 1 1 1 2h05m 1 0.1 1 1 0.1 2h05m B 8s (37,33) 50m Li 2 2m30s
Autism Adolescent 3 28 44s 1 8 1 2h54m 1 0.1 1 1 0.1 0h43m B 3s (73,53) 1h19m Li 1 1m09s
Diabetes 4 48 58s 12 7 3 3h17m 1 0.3 20 5 0.2 1h15m G 3s (34,14) 57m Li 2 2m18s

Figure 5: Several screenshots of our mobile application.

returns or report missing symptoms of the user. The application is
designed to suit all types of screens of different mobile phones. The
application can run on Android OS 5.0.0 and above.

The server holds an up-to-date trained model, configuration, a
database, and complete Android packages that are really to install
and update to the client. When this paper is conducted, the authors
merely develop a mobile application for Android only. Several
screenshots of our mobile application are shown in Figure (5).

5 Conclusion

In this research, the authors have described the interpretation of
machine learning models for the task of classification in medical
diagnosis. We propose processes that interpret the most appropriate
learning models for each of the different clinical datasets as the
foundation of developing and recommending diagnostic procedures.
The whole process works as (i) hyperparameters tuning for picking
the most appropriate learning approach, and (ii) a mobile application
is developed to support clinical practices. We also explain an urgent
need to optimize medical processes and regular experts’ workflows
to support healthcare services while reducing investment costs and
improving efficiencies. The experimental results, interpretation of
models, and reproducibility are thoughtfully discussed. A mobile
application is also developed. We believe that our work has substan-

tially extended our previous paper has encouraged further research
machine learning, healthcare, and medical diagnosis.
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