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In this paper, we propose an adaptive discrete-time fuzzy sliding mode 
control for a class of chaotic systems. For this aim, a discrete sliding 
mode controller and a fuzzy system are combined to achieve an 
adequate control. The Laypunov stability theorem is used to testify the 
asymptotic stability of the whole system and the consequence 
parameters of the adaptive fuzzy system are tuned on-line by adaptive 
laws. The simulation example of the 3D Henon chaotic model is giving
to confirm the effectiveness and the robustness of the proposed method.
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1 Introduction
In recent years, the control of chaotic systems has in-
creasingly interested researchers. The first chaos con-
trol method has been proposed by Ott et al. [1], nowa-
days known as the OGY (Ott-Grebogi-Yorke) method.
This is a discrete technique that considers small per-
turbations applied in one system parameter when the
trajectory approaches the vicinity of the desired or-
bit when crossing a specific surface. Since then, nu-
merous control techniques have been proposed for
controlling chaos in different chaotic systems such as
backstepping [2–4], adaptive control algorithms [5–7]
and sliding-mode control [8–10].

The sliding mode control (SMC) has undergone ex-
tensive and detailed studies in the last three decades.
It is noted that SMC is a powerful robust control strat-
egy treating the model uncertainties and external dis-
turbances. The design and the implementation of dis-
crete time sliding mode control have later been con-
sidered, and still in progress because a large classes
of continuous systems are controlled by digital sig-
nal processors and microprocessors. Indeed, discrete
sliding mode control is well studied in the literature
[11–14]. The aim of this work is to give a further con-
tribution in this field. The main objective is to design
a discrete time sliding mode control strategy and en-
hanced by a stable adaptive fuzzy inference system to
cope with modeling inaccuracies and external distur-
bances that can arise. Many researches on introduc-
ing the concept of fuzzy logic and especially fuzzy ap-
proximators into sliding mode control have been de-

veloped in the past years [15–18]. Historically, fuzzy 
logic systems have been proposed in an attempt to 
control nonlinear systems whose parameters are inac-
curacy, and presenting neglected dynamics as well as 
time varying systems [19]. Since then, fuzzy logic con-
trol becomes an active research area and it has been 
implemented in several industrial applications. Ac-
cordingly, fuzzy logic with discrete sliding mode con-
trol are proposed to improve system control perfor-
mances. Thus, the overall control system drives the 
tracking error to zero even in the presence of exter-
nal disturbances. This paper is organized as follows: 
Section 2 and 3 deal with discrete sliding mode and 
fuzzy system respectively. Moreover, the detailed de-
sign procedure of fuzzy sliding mode controller is ex-
plained in section 4. Numerical simulations are car-
ried out in section 5 for illustration and verification 
of the proposed controller. Finally some concluding 
remarks are given in section 6.

2 Discrete-time sliding mode con-
troller

Consider the following nonlinear discrete time system



x1(k + 1) = x2(k)
x2(k + 1) = x3(k)

...
xn−1(k + 1) = xn(k)

xn(k + 1) = f (x(k)) +u(k) + d(k)

(1)
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where x(k) = [x1(k),x2(k), . . . ,xn(k)]T is the state vector
and u(k) is the input signal.
f (x(k)) is unknown but it is a bounded function
and d(k) is a bounded external disturbance such that
|d(k)| < D.
When u(k) = 0, system (1) behaves chaotically. There-
fore, the aim of this work is to apply a discrete-time
sliding mode controller u(k) in order to track a de-
sired trajectory.
Let xd(k) = [xd1(k),xd2(k), . . . ,xdn(k)]T the well known
desired trajectory. Then, the tracking error can be ex-
pressed as

e(k) = x(k)− xd(k) (2)

where e(k) = [e1(k), e2(k), . . . , en(k)]T .
The sliding surface can be defined as

s(k) = c1e1(k) + c2e2(k) + . . .+ cn−1en−1(k) + en(k)

= Ce(k) = 0 (3)

where C = [c1, c2, . . . , cn−1,1] can be selected as h(z) =
zn−1 +cn−1z

n−2 + . . .+c2z+c1 is stable. The sliding mode
controller is designed by adopting the reaching law
defined by [12]

∆s(k + 1) = s(k + 1)− s(k) = −Qs(k)−Ksign(s(k)) (4)

where 0 < Q < 1 and K > 0.
If f (x(k)) is supposed known and d(k) = 0 then

s(k + 1) =
n−1∑
i=1

ciei(k + 1) + f (x(k)) +u(k)− xdn(k + 1) (5)

therefore ∆s(k + 1) can be expressed as

∆s(k + 1) =
n−1∑
i=1

ciei(k + 1) + f (x(k)) +u(k)

− xdn(k + 1)−
n−1∑
i=1

ciei(k)− en(k) (6)

The equivalent control ueq(k) can be derived by using
∆s(k + 1) = 0 such that

ueq(k) = −
n−1∑
i=1

ciei(k + 1)− f (x(k)) + xdn(k + 1)

+
n−1∑
i=1

ciei(k) + en(k) (7)

Since d(k) , 0 then a switching type control must be
added such that

u(k) = ueq(k) +us(k)

= −
n−1∑
i=1

ciei(k + 1)− f (x(k)) + xdn(k + 1)

+
n−1∑
i=1

ciei(k) + en(k) +us(k) (8)

where us(k) is defined by

us(k) = −Qs(k)−Ksign(s(k)) (9)

where the switching gain K will be determined after-
wards .
Furthermore, if f (x(k)) is unknown then a fuzzy sys-
tem f̂ (x(k)) will be used to approximate f (x(k)) in or-
der to obtain the sliding mode control law. Moreover,
an adaptive adjusting law will be designed.

3 Fuzzy system

The knowledge base for the fuzzy logic system com-
prises a collection of fuzzy IF-THEN rules of the form:

R(j)
1 : If

[
(x1(k) is Aj1)...and (xn(k) is Ajn)

]
then

[
(y(x(k)) = bj )

]
(10)

pour j = 1, . . . ,H . H is the rule number of the fuzzy
logic system.
xi(k), i = 1, . . . ,n and y(x(k)) denote the linguistic vari-
ables associated with the inputs and the output of the
fuzzy logic system.
By the use of the singleton fuzzification strategy,
product inference and center-average defuzzification,
the output of the fuzzy system is expressed as:

y(x(k)) =

∑H
j=1 y

j (x(k))
(∏n

i=1µAji
(xi(k))

)
∑H
r=1

(∏n
p=1µArp (xp(k))

) (11)

where µ
A
j
i

is the membership function of the linguis-

tic variable Aji .
By introducing the concept of fuzzy basis function
vector ξ(x(k)) , (11) can be rewritten as:

y(x(k)) = θT ξ(x(k)) (12)

where

θ =

 y1(x(k))
:

yH (x(k))

 , ξ(x(k)) =

 ξ1(x(k))
:

ξH (x(k))

 (13)

and

ξj (x) =

∏n
i=1µAji

(xi(k))∑H
r=1

(∏n
p=1µArp (xp(k))

) (14)

ξj (x(k)) which are called fuzzy basis functions (FBF’s).
It has been proved that these FBF’s are universal ap-
proximators [20].

4 Fuzzy Sliding mode control

In order to derive the sliding mode control, the fuzzy
system f̂ (x(k)/θf ) is used to approximate f (x(k)) [21].
The fuzzy logic system f̂ (x(k)/θf ) is expressed by:

f̂ (x(k)/θf ) = θTf ξf (x(k)) (15)
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where ξf (x(k)) is the vector of fuzzy basis supposed to
be fixed, while parameters θf are variables which will
be designed by adaptive laws.
Let θ∗f the optimal parameter vectors of the fuzzy
logic system. Minimum approximation error can be
defined as follows:

wf (k) = f (x(k))− f̂ (x(k)/θ∗f ) + d(k) (16)

Then, we can select the control law as:

u(k) = ueq(k) +us(k)

= −
n−1∑
i=1

ciei(k + 1)− f̂ (x(k)/θf ) + xdn(k + 1)

+
n−1∑
i=1

ciei(k) + en(k)−Qs(k)−Ksign(s(k))(17)

where 0 < Q < 1 and K will be determined afterwards.
Therefore, ∆s(k + 1) can be rewritten as

∆s(k + 1) = f (x(k))− f̂ (x(k)/θf )−Qs(k)−Ksign(s(k))

= f̂ (x(k)/θ∗f )− f̂ (x(k)/θf ) +wf (k)

− Qs(k)−Ksign(s(k))

= ΦT
f (k)ξf (x(k)) +wf (k)

− Qs(k)−Ksign(s(k)) (18)

where Φf (k) represent the fuzzy parameter errors
such that:

Φf (k) = θ∗f −θf (k) (19)

Theorem 1 The following adaptive law for adjusting the
parameter vector θf

∆θf (k) = −αξf (x(k))s(k) (20)

asymptotically stabilizes system (1) controlled by (17),
where α is a positive constant which determines the rate
of adaptation.

Proof: The Lyapunov function candidate is chosen as

V (k) =
1
2
s2(k) +

1
2α

ΦT
f (k − 1)Φf (k − 1) (21)

Then, ∆V (k) can be obtained as

∆V (k + 1) = V (k + 1)−V (k)

=
1
2
s2(k + 1)− 1

2
s2(k) +

1
2α

ΦT
f (k)Φf (k)

− 1
2α

ΦT
f (k − 1)Φf (k − 1) (22)

Let

∆θ̃k =
1

2α
ΦT
f (k)Φf (k)− 1

2α
ΦT
f (k − 1)Φf (k − 1) (23)

then

∆V (k + 1) =
1
2
s2(k + 1)− 1

2
s2(k) +∆θ̃k

=
1
2

(∆s(k + 1) + s(k))2 − 1
2
s2(k) +∆θ̃k

=
1
2
∆s(k + 1)2 + s(k)∆s(k + 1) +∆θ̃k

=
1
2
∆s(k + 1)2 +∆θ̃k

+ s(k)
[
ΦT
f (k)ξf (x(k)) +wf (k)−Qs(k)−Ksign(s(k))

]
=

1
2
∆s(k + 1)2 + s(k)ΦT

f (k)ξf (x(k)) + s(k)wf (k)

− Qs2(k)−Ks(k)sign(s(k)) +∆θ̃k (24)

Moroever, ∆θ̃k can be transformed as

∆θ̃k =
1

2α
ΦT
f (k)Φf (k)− 1

2α
ΦT
f (k − 1)Φf (k − 1)

=
1

2α
ΦT
f (k)Φf (k)

− 1
2α

(Φf (k)−∆Φf (k))T (Φf (k)−∆Φf (k))

=
1
α
ΦT
f (k)∆Φf (k)− 1

2α
∆ΦT

f (k)∆Φf (k) (25)

Substituting (25) into (24), we obtain

∆V (k + 1) =
1
2
∆s(k + 1)2 + s(k)ΦT

f (k)ξf (x(k))

+ s(k)wF(k)−Qs2(k)−Ks(k)sign(s(k))

+
1
α
ΦT
f (k)∆Φf (k)− 1

2α
∆ΦT

f (k)∆Φf (k)

=
1
2
∆s(k + 1)2 + s(k)wf (k)−Qs2(k)−Ks(k)sign(s(k))

+ ΦT
f (k)(s(k)ξf (x(k)) +

1
α
∆Φf (k))

− 1
2α

∆ΦT
f (k)∆Φf (k) (26)

By applying the adaptive law (20), equation (26) can
be rewritten as

∆V (k + 1) =
1
2
∆s(k + 1)2 + s(k)wF(k)−Qs2(k)

−Ks(k)sign(s(k))− 1
2α

∆ΦT
f (k)∆Φf (k) (27)

According to (18), we have

|∆s(k + 1)| ≤ |ΦT
f (k)ξf (x(k))|+ |wf (k)|

+ |Qs(k)|+ |Ksign(s(k))| (28)

Furthermore, it’s obvious that ξf (x(k)) remains
bounded such that

‖ξf (x(k))‖ ≤ ψξ ∀k ≥ 0 (29)

where ψξ is a positive constant.
According to (20) and (29) and from k > N0, we have

|∆θf (k)| ≤ ψθ |s(k)| (30)

where ψθ is positive constant.
Consequently, we can deduce that

|Φf (k)| ≤ ψΦ |s(k)| (31)

www.astesj.com 397

http://www.astesj.com


H. Medhaffar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 395-400
(2017)

It is obvious that the term |wf (k)| ≤ ψw where ψw is a
positive constant.
If we define usgn = −Ksign(s(k)) then

|∆s(k + 1)| ≤ ψξψΦ |s(k)|+ψw +Q|s(k)|+ |usgn|
≤ (ψξψΦ +Q)|s(k)|+ψw + |usgn|
≤ β|s(k)|+ (ψw +K) (32)

where β = (ψξψΦ +Q). By taking square from both
sides of (32), we can get

|∆s(k + 1)|2 ≤ β2|s(k)|2 + (ψw +K)2

+ 2β|s(k)|(ψw +K) (33)

Then,

1
2
|∆s(k + 1)|2 ≤ 1

2
β2|s(k)|2 +

1
2

(ψw +K)2

+ β|s(k)|(ψw +K) (34)

Thus, we can obtain

1
2
∆s(k + 1)2 −Qs2(k) + s(k)usgn

≤ 1
2

(ψw +K)2 +
β2

2
|s(k)|2 + β|s(k)|(ψw +K)

− Q|s(k)|2 +K |s(k)|+ψw |s(k)| −ψw |s(k)|

≤ 1
2

(ψw +K)2 + (β + 1)|s(k)|(ψw +K)−ψw |s(k)|

+ (
1
2
β2 −Q)|s(k)|2 (35)

If we choose

Q >
1
2
β2 (36)

and

K =
(
− (β + 1) +

√
[(β + 1)2 + 2(Q − 1

2
β2)]

)
|s(k)|

− ψw (37)

then

1
2

(ψw +K)2 + (β + 1)|s(k)|(ψw +K)

+ (
1
2
β2 −Q)|s(k)|2 = 0 (38)

Therefore, (27) can be expressed as

∆V (k + 1) ≤ s(k)wf (k)−ψw |s(k)|

− 1
2α

∆ΦT
f (k)∆Φf (k) (39)

It’s clear that s(k)wf (k)−ψw |s(k)| ≤ 0 since |wf (k)| ≤ ψw,
furthermore ∆ΦT

f (k)∆Φf (k) ≥ 0, then

∆V (k + 1) ≤ 0 (40)

By using the Barbalat’s lemma [23], we can readily
prove that s(k)→ 0 as k→ +∞ thus lim

k→+∞
e(k) = 0.

5 Simulation results

To illustrate the above design approach, a 3D Henon
chaotic model is considered.
The model for the discrete-time 3D Henon map is
given as [22]
x1(k + 1) = x2(k)
x2(k + 1) = x3(k)
x3(k + 1) = −0.2x1(k)− 0.3x2(k)− 1.65x3(k)− x2

3(k)
+u(k)

(41)
The non controlled (u(k) = 0) Henon map has a
chaotic strange attractor. The result of computa-
tion is shown in figure 1 where [x1(0),x2(0),x3(0)]T =
[0.1,0,0.1]T .
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Figure 1: Hénon map attractor.

In order to control this autonomous chaotic sys-
tem, controller u(k), given by (8), is applied at k = 60
to reach the desired trajectory xd(k) = [0,0,0]T .
For the estimation of f (x(k)), we consider five fuzzy
levels, i.e. NB, NS, EZ, PS and PB on x1, x2 and x3. We
use fuzzy logic systems with center-average defuzzi-
fier, product inference, singleton fuzzifier and Gaus-
sian membership functions to approximate f (x(k)).
Slopes ci are chosen as c1 = 0.1 and c2 = 0.9.
In figure 2, we represent the evolution of system states
which converge rapidly to the desired values. Figure
3 represent the sliding surface and the control signal
whose amplitude is always within an acceptable range
compared to the system states.
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Figure 2: Evolution of system states
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Figure 3: Representation of the sliding surface and the
fuzzy sliding mode controller.

In order to illustrate the robustness of our design,
a white gaussian noise with variance equal to 0.01 has
been considered as an external disturbance. The con-
trol objective has been achieved as is illustrated in fig-
ures 4 and 5. Thus, the robustness of the discrete
fuzzy sliding mode controller is proved.
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Figure 4: Evolution of system states in presence of a
white gaussian noise.
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Figure 5: Representation of the sliding surface and the
fuzzy sliding mode controller.

6 Conclusion

In this paper, an adaptive discrete-time fuzzy sliding
mode controller is proposed. This controller, inherits
the advantages of both sliding mode control and fuzzy
systems. It has been proposed for stable control of a
class of chaotic systems. The sliding mode control is
proposed as a robust method to control nonlinear and
uncertain systems. Consequence parameters of fuzzy
control rules have been adjusted on-line in order to
guarantee the reaching condition. Simulation results
of a 3D Henon chaotic model show the applicability
and the effectiveness of the proposed approach.
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