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The large and ever-increasing variety of remote sensing sensors used in satellite imagery today
explains why detecting changes between identical locations in images that are captured, at
two separate times, from heterogeneous capturing systems is a major and challenging recent
research problem in the field of satellite imaging for fast and accurate determination of temporal
changes. This work presents an original concentric circular invariant convolution model that
aims at projecting the first satellite image into the imaging modality of the second image. This
allows the two images to have identical statistics so that one can then effectively use a classical
monomodal change detection method. The invariant circular convolution kernel parameters are
estimated in the least squares sense using a conjugate gradient routine whose optimal direction
is determined by a quadratic line search algorithm. After the projection of the before image
into the imaging modality domain associated with the after image is achieved, a basic pixel-
by-pixel difference permits the estimation of a relevant soft difference map which is segmented
into two classes by a multilevel Markovian technique. A series of experiments conducted on
several pair of satellite images acquired under different imaging modalities, resolution scales,
noise characteristics, change types and events, validates the effectiveness of this strategy. The
experimentation shows that the proposed model can process different image pairs with less
re-striction about the source images and natural event, coming from different sensors or from
the same sensor, for detecting natural changes.

1 Introduction

The ever-increasing number of Earth observation satellites, which
use today new high-tech sensors, are often technologically quite
different from those that have provided the satellite images so far
archived. This heterogeneity of satellite image data has thus lately
contributed to the advent and development of a novel and rapidly
growing research interest in remote sensing and geoscience imag-
ing commonly known as multi-modal (or heterogeneous) change
detection (MCD). The purpose of the multimodal CD (MCD) [1, 2]
is to detect and precisely locate any change in land cover between at
least two satellite images taken in the same place, at different times
and under different acquisition conditions. It usually concerns CD
models that process heterogeneous satellite images, i.e. provided
by different satellite sensor types which may combine active and
passive sensors such as SAR/optical or by one sensor type, with two
heterogeneous SAR, optical or others or finally by different satellites
using the same satellite sensor but under different specifications,

looks, wavelengths, or calibrations [3].

Recently, MCD has aroused a lot of attention and interest in
satellite imagery thanks to its consistency and coherence with our
environment favouring the emergence of increasingly heterogeneous
images. Nevertheless, it is a difficult procedure because MCD has to
be flexible enough to treat a multi-modal image pair, for solving the
problems usually considered by the traditional single-modality CD
methods [4, 5] including damage, land, environmental monitoring
or city planning.

In the literature, the proposed MCD approaches can be classified
under four classes. The first class includes the simplest methods
which use local descriptors [6] or similarity measures [6]–[9], using
invariance properties relative to the imaging modality processed.
The second category gathers the methods that do not have assump-
tions about the data distributions and are thus non-parametric. This
includes algorithms using machine learning techniques that learn
from the training samples [10]–[19] or from unsupervised parameter,
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without requiring any training phase, for example the least squares
(LSQ) Multidimensional scaling (MDS) and energy-based model,
integrating data-driven pixel pairwise constraints, introduced in
[20]. The third group relies on parametric methods trying to model
common statistical features or relationship between the different
imaging modalities or between the different multisource data via a
set of multivariate distributions [21]–[27] or through a pixel pair-
wise modeling integrated in a Markov Random Field (MRF) model
[28]. Finally, the last category regroups algorithmic procedures
essentially relying on a projective transformation of the heteroge-
neous images to a common intermediate feature space, where the
projected satellite images would ultimately share the same statis-
tical characteristics and on which any conventional homogeneous
CD models could be subsequently used [29]–[38]. This category
can encompass also the procedures projecting the first image in
the imaging modality of the second image or inversely [39]. The
method presented in this work fits fully into this sub-category.

More precisely, this work presents a concentric circular invari-
ant convolution mapping which aims at projecting the before image
onto the imaging modality of the after image. In this way, we en-
sure that the statistics of the pre and after-event satellite images
are nearly identical and that a classical monomodal CD procedure
can then be efficiently used, as easily as if the two images came
from the same imaging modality or sensor with the same settings
(specifications/calibrations/wavelength).

To this end, we will show that, once the mapping is done by
the proposed convolutive model, the pixel-wise difference image
estimated from the image pair shows good likelihood distributions
properties corresponding to the “change” and “no change” label
classes; that is to say, presenting a mixture of distributions not too
far from normal distributions and also not too flat (i.e. large or non-
informative) so that a binary segmentation with an unsupervised
Markovian model to be efficient, despite the big difference between
the imaging modalities that could be confronted in multi-modal
satellite imagery and which will be evaluated in this paper.
As an amelioration of our convolution model-based mapping [1], in
the present research we propose a circular invariant model. Further-
more, a three dimensional (3D) convolution based mapping strategy
was adopted in the specific case of MCD using two color images
(or multispectral). A battery of tests was conducted to quantify the
benefits of such improvements.

It is worth mentioning that convolution model estimation has
also been widely experienced and analyzed in different image pro-
cessing problems as image restoration [40] or 2D or 3D deconvolu-
tion issues [41]–[44].

The reminder of this paper is structured as follows: Section
2 describes the proposed projection model based on a concentric
circular invariant convolution representation and the unsupervised
Markovian approach. Section 3 presents the results and an exper-
imental comparison with state of the art multimodal CD methods.
Section 4 concludes the paper.

2 Proposed MCD Model
Let Ib and Ia, be the bi-temporal remote sensing image pair of N
pixels, captured in the same area, at two consecutive times (i.e,
before and after a given event), and coming from different imaging
systems or sensors. Let I]b and I]a also be the informational part
of the image or the semantic information of the scene concretely
representing the set of real objects and materials imaged in Ib and
Ia. The acquisition system, related to respectively the pre-event and
post-event image can be modeled by the following linear models:
Ib = I]b ∗ ub and Ia = I]a ∗ ua where “∗” is the convolution operator
and ub and ua mathematically model the underlying structure of the
Point Spread Function (PSF) of the pre-event and post-event data
acquisition system [45].

This modeling framework defines a reliable and efficient way
for projecting the before-change image to the domain or imaging
system of the after-change image image. It consists to apply the
following operation to the pre-event image: (Ib ∗ u∗−1

b ) ∗ ua = I]b ∗ ua

where “u∗−1
b ” represents the inverse convolution operator of ub (giv-

ing u∗−1
b ∗ub = δ, such as δ is the Dirac impulse function) or by

commutativity and associativity of the convolution product, apply-
ing the convolution operator ub 7→a = (u∗−1

b ∗ ua) = (ua ∗ u∗−1
b ) to Ib.

This operation allows us to convert the original MCD issue into a
conventional monomodal CD method which is used in the case of
a pair of images having the same acquisition mode and therefore
having the same statistics.

In order to reliably find ub 7→a, the simplest strategy is to search
for the convolution filter parameters that will minimize in the LSQ
context, the energy function given by equation 1:

ûb 7→a=arg min
u

E(ub7→a )︷                                     ︸︸                                     ︷∑
(x,y)∈S nc

(
[Ib(x, y) ∗ ub7→a (x, y)] − Ia(x, y)

)2
(1)

where S nc is the set of pixels that do not belong to the class
label “change” and which must be evaluated in the final change
detection map. As first approximation for ûb 7→a, we can take for
S nc, the set of all pixels in the image. This can be justified because
the area of change is usually quite small in proportion to the image
which, also, can be considered (in a very first approximation) as
noisy observations or outliers in the image data with which it is
shown that the LSQ estimator performs well (especially thanks to
the fact that the function E(ub 7→a) to be minimized is convex with
regard to the parameter vector of the convolution filter ub 7→a). As a
result, different efficient minimization procedures can be adopted
[47].

In this work, we use a combination of conjugate gradient and
a line minimization search routine guaranteeing a considerably
increased convergence speed compared to other minimization meth-
ods. Another advantage of such a minimization technique consists
on its ability to integrate some hard constraints on ub 7→a. In our
case, since the two imaging modalities are circular invariant, we
constraint ub 7→a to be also circular invariant. To this end, at each iter-
ation k of the conjugate gradient descent (CGD), we simply average
each of the (sz × sz) parameter values of u[k]

b 7→a that are equidistant
(in the L1 distance sense) from the center of the convolution filter
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Table 1: Heterogeneous datasets description

No Dates Area Image size Event Satellite
1 Sept. 1995 - Jul. 1996 Sardinia, It 412×300 Lake overflow (30 m.) Landsat-5 (NIR band) / Optical
2 Nov. 1999 - Oct. 2000 Gloucester, Uk 330×590 Flooding (≈ 40 m.) SAR-ERS / Spot
3 July 2006 - July 2007 Gloucester, Uk 2325×4135 Flooding (0.65 m.) TerraSAR-X / QuickBird 2
4 Feb. 2009 - July 2013 Toulouse, Fr 4404×2604 Construction (2 m.) TerraSAR-X / Pleiades
5 May 2012 - July 2013 Toulouse, Fr 2000×2000 Construction (0.52 m.) Pleiades / WorldView 2
6 2001 - Jan. 2002 Congo, Af. 400×800 Nyiragongo volcano eruption (10 m.) Radarsat (3 / 5-looks)
7 June 2008 - June 2013 Island town, Chn. 415×403 Urbanization (8 m.) Radarsat-2 / Google Earth
8 June 2008 - Sept. 2012 Shuguang village, Chn 419×342 Building construction (8 m.) Radarsat-2 / Google Earth
9 June 2008 - June 2009 Yellow river, Chn. 409×367 River’s drying up (8 m.) Radarsat-2 (1 / 4-looks)
10 Aug. 2013 - Aug. 2015 Wehe river, Xi’an city, Chn. 392×303 flooding (2 m.) GF-1 (, bands) [46]
11 1999 - 2000 Gloucester, Uk 990×554 flooding (≈ 25 m.) SPOT/NDVI [17]
12 May 2002 - July 2009 Hubei Campus, Chn 240×240 Building construction (2.44 m.) QuickBird / IKONOS
13 April 2005 - July 2009 Wuhan University, Chn. 400×400 Building construction (3.28 m.) QuickBird / IKONOS

(see Algorithm 1). This allows us to integrate this constraint with
a linear complexity with respect to the (sz × sz) parameters of the
convolution filter. This overall minimization routine is presented in
our basic model [1].

Algorithm 1 Concentric Circular Constraint

u(x, y) Convolution filter of dim. (sz×sz) [input]
u◦(x, y) Circular invariant filter [output]
tab[x][y] 2D table (length,width)= (2sz,2) of floats

• Fill the table tab[i][ j] with zeros

for each cell of u(i, j) with coordinates (i, j) do

• d ← L1distance from (i, j) to the center of u

• tab[d][0]← tab[d][0] + u(i, j)

• tab[d][1]← tab[d][1] + 1

for each cell of u◦(i, j) with coordinates (i, j) do

• d ← L1distance from (i, j) to the center of u◦

• u◦(i, j)← tab[d][0]/tab[d][1]

In order to improve this approximation of ûb 7→a, we can formulate
the LSQ estimation problem of the convolution filter parameters
as a fixed point problem involving a contraction mapping. Tech-
nically speaking, the first estimation of ûb 7→a allows us to obtain
Ib 7→a(x, y) = Ib(x, y) ∗ ub 7→a(x, y), corresponding to the image pre-
event image projected on the modality of the post-event image. A
simple pixel-by-pixel difference between Ib 7→a(x, y) and Ia(x, y) en-
ables us then to produce an output image of absolute difference
that is subsequently binarized to the “change” and the “non-change”
class label. To this end, a Gaussian kernel is used to model the dis-
tribution of each class and the Expectation Maximization (EM) [48]
algorithm is used both to estimate the parameters of this weighted
distribution mixture but also to give an approximate estimate of S nc

(i.e., the pixels that does not belong to the class label “change”)
with a binarization scheme in the Maximum Likelihood (ML) sense.
This process allows us to finally better estimate ûb 7→a (see Eq. 1).
This process is repeated until the stability of the algorithmic steady
state fixed point thus defined is reached. This fixed point-based
strategy yields to the following iterative procedure:

û[k+1]
b 7→a

=arg min
u

∑
(x,y)∈S [k]

nc

(
[Ib(x, y)∗ub 7→a(x, y)]−Ia(x, y)

)2
(2)

Φ
[k+1]
D = EM

{
|

I[k+1]
b 7→a (x,y)︷                     ︸︸                     ︷

[Ib(x, y) ∗ u[k+1]
b7→a

(x, y)]−Ia(x, y)|︸                                    ︷︷                                    ︸
D[k+1](x,y)

}
(3)

S [k+1]
nc = MLbinarization

{
Φ

[k+1]
D ,D[k+1](x, y)

}
(4)

where S [0]
nc stands for the whole image pixels and Φ

[k+1]
D is the pa-

rameter vector of the two weighted normal kernels evaluated by the
EM procedure (at iteration k + 1) on the difference image D(x, y).
MLbinarization{Φ

[k+1]
D , .} represents the binarization algorithm, based on

Φ
[k+1]
D , in the Maximum Likelihood sense.

A second enhancement can be incorporated in this iterative pro-
cedure by simply inverting the direction of temporality of the two
(before and after) satellite images in the algorithm introduced in our
basic model [1]. Concretely, the estimation of ûa 7→b can be done by
Ia 7→b(x, y) = Ia(x, y) ∗ ua 7→b(x, y). This allows us to obtain another
difference map between Ia7→b(x, y) and Ib(x, y). The reverse estimate
can be used along with the original one to obtain an average esti-
mate ensuring an improved (less noisy) difference image D(x, y)
(see Algorithm 2).

In the case where the image before or after is a single-band
image and the second image (possibly a multi-band) is then con-
verted into gray levels and this pair of greyscale images are used as
explained in Algorithm 3. A third improvement is proposed in the
particular case where we have at our disposal two images before and
after in colors (or with b > 1 color bands). In this case, the mapping
and a difference map D(b, x, y) is estimated for each of the b images
individually and sequentially. A difference map is defined finally as
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the L∞ distance, for each pixel (x, y), between the b-components of
each pixel (D(x, y)← maxb D(b, x, y)) as illustrated in Algorithm 2.

After the fixed point becomes stable (concretely when S [k]
nc ≈

S [k+1]
nc , or after LP

max, a maximal number of iterations is reached),
the parameter vector of the Gaussian kernel mixture ΦD (given
by the EM procedure) is used to classify the difference map into
two classes, once again, in the Sequential Maximum A Posteriori
(SMAP) sense by using the multiscale, fine-to-coarse and coarse-to-
fine segmentation procedure [49].

This overall minimization routine is summarized in Algorithm
2 and in Algorithm 3 for a N-band image pair.

Algorithm 2 Convolution-Based Multimodal Change Detection

S (x, y) Binary change detection map [output]
Ib(x, y) The before image [input]
Ia(x, y) The after image [input]
D(x, y) Difference map
ΦD Vector parameters

L
EM

max Maximal number of iterations for EM
LP

max Maximal number of fixed-point iterations

1. Initialization
• Set S (x, y) with labels “no change” for each pixel

2. Fixed Point Estimation Step
Repeat

• Estimate ub7→a and ua 7→b (see [1])

• Circular constraint on ub7→a and ua 7→b

• D(x, y) = |[Ib(x, y) ∗ ub7→a (x, y)] − Ia(x, y)|
. + |[Ia(x, y) ∗ ua7→b (x, y)] − Ib(x, y)|

• ΦD ← EM estimation (L
EM

max iter.) on D(x, y)

• S [l] ←ML binarization of D(x, y) based on ΦD

• k + +

Until k<LP
max (or S (x, y)[l],S (x, y)[l−1]);

3. Segmentation Step
• S (x, y)← SMAP on D(x, y) based on ΦD

3 Experimental Results

3.1 Heterogeneous Dataset Description

Our strategy is validated by conducting a set of evaluation scenar-
ios on thirteen dissimilar heterogeneous datasets exhibiting differ-
ent multi modality imaging data such as cross-sensor or multisen-
sor (#1,#5,#12,#13), multisource (#2,#3,#4,#7,#8), multi-looking
(#6,#9,#11) or multispectral images (#10)) with different resolution
levels and image sizes and imaging a wide variety of changed events
which are degraded by a wide variety of both noise type and levels
as depicted in Table 1.

In all the experimental results, we recall that if one of the two
images is in grayscale, we must convert the other image (colors or
with b (> 1) bands) into grayscale to apply algorithm 2. Otherwise,
if the two images contain the same number of bands (b), we rely on
algorithm 3.

In addition, for computational reasons, we have reduced the
image size so that the widest edge of it is at most equal to 500 pixels.
For the estimation stage, the size sz of the convolutional (square)
filter was set to 9, with a maximal iteration number LG

max set to 200
and a fixed-point iteration number LP

max equal to 2. The iteration
number L

EM

max used in the EM algorithm is 12 iterations (see our basic
model [1]). For the segmentation stage, the depth of the SMAP was
set to d =9 [49]. The regularization parameter θ was fixed to 0.9 (a
value commonly used for this SMAP fine-to-coarse, coarse-to-fine
segmentation algorithm [49, 54]).

Algorithm 3 CBMCD For N-Band Image pair

S (x, y) Binary change detection map [output]
Ib(b, x, y) The before image with b<N bands [input]
Ia(b, x, y) The after image with b<N bands [input]
D(x, y) Difference map
ΦD Vector parameters

D(b, x, y) Temporary map with b<N bands
L

EM

max Maximal number of iterations for EM
LP

max Maximal number of fixed-point iterations

1. Initialization
• Set S (x, y) with labels “no change” for each pixel and
fill D(k, x, y) with zeros

2. Fixed Point Estimation Step
Repeat

for each band b of [Ib(b, x, y), Ia(b, x, y)] do

• Estimate ub7→a and ua7→b

• Circular constraint on ub 7→a and ua7→b

• D(b, x, y)= |[Ib(b, x, y)∗ub7→a ]−Ia(b, x, y)|
. + |[Ia(b, x, y) ∗ ua 7→b ] − Ib(b, x, y)|

• ΦD ← EM (L
EM

max iterations) on D(b, x, y)

• D(x, y)← maxb D(b, x, y)

• S ←ML binarization of D(x, y) based on ΦD

• k ← k + 1
Until k<LP

max (or S (x, y)[l],S (x, y)[l−1]);

• ΦD ← EM (L
EM

max iterations) on D(x, y)

3. Segmentation Step
• S (x, y)← SMAP on D(x, y) based on ΦD

3.2 Convolution Filter Estimation Step Result

For all the test scenarios, the maximum iteration number used in
the conjugate gradient descent combined with the minimization line
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process, is sufficient to ensure the convergence of the minimization
procedure. As example, we show, in Figure 1, how evolves the
error rate along the minimization process. In addition, for all the
scenarios, we estimate for ub 7→a or ua 7→b a convolution filter (that
can be likened to a point spread function (PSF)) which is quite dif-
ferent from one dataset to another since the frequency response (or
modulation transfer function) of the imaging modality is also quite
different for each pair of imaging multi-modalities. Besides, the
convolution filter size sz is also justified, enough because small val-
ues of parameters are estimated at the edges of the rectangular filter
in all the tested cases (see Figure 2) for an example of convolution
filter estimate).

3.3 Results & Evaluation

We evaluate and compare the obtained results using the classification
rate accuracy that measures the correct changed and unchanged pix-
els percentages: ACC and the F-measure Fm which can be defined
in the equations 5 and 6.

ACC =
T P + T N

T P + T N + FN + FP
(5)

Fm =
2T P

2T P + T N + FN + FP
(6)

where TP and TN are the true positives and negatives. FN and FP
designate the false negatives and positives.

Table 2 shows a comparison between our segmentation results
and the different supervised and unsupervised state-of-the-art meth-
ods [9, 12, 16, 17, 20, 23]–[27, 32, 38, 51]–[53].

Figures 3, 4 and 5 compare qualitatively the obtained results.
The average accuracy rate of our proposed model is higher than the
supervised and unsupervised state-of-the-art methods, obtained by
our proposed MCD model on the thirteen heterogeneous dataset
is 87.78% with a F-measure equals to 0.444. Compared to these
results, our preliminary model (non-circular invariant) [1] gave es-
sentially the same result in terms of rate accuracy but with a much
lower F-measure which did not exceed 0.389.

Globally, we notice that our approach works efficiently when a)
the considered MCD problem tends towards the simple monomodal
CD problem; in other words, in the case of a simple imaging modal-
ity which is not too different between the pre-event and post-event
image (e.g., when there are similar sensors involving slightly dif-
ferent noise laws between the before and after images), or b) in the
case of a couple of images with high resolution, or c) in the case of
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Figure 1: Cost function evolution (see Eq. (1) for the estimation of ub7→a associated to dataset #1

Figure 2: 9 × 9 Convolution filter estimate ub 7→a associated to dataset #1
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Figure 3: Multimodal datasets. (a) image t1, (b) image t2, (c) the ground truth; (d) binary map segmentation, (e) confusion map estimated by our model with white (TN),
red (TP), blue (FP), cyan (FN) colors
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Figure 4: Multimodal datasets. (a) image t1, (b) image t2, (c) the ground truth; (d) binary map segmentation, (e) confusion map estimated by our model with white (TN),
red (TP), blue (FP), cyan (FN) colors

simple changed events images with a simple uniform texture; as ex-
ample, a city is flooding by a river (inducing an uniform texture for
a new zone or also in building construction or structure with a uni-
form texture very different from the rest of the image). Conversely,
our approach is a little less suitable when it comes to processing
a bi-temporal images in which the variability between the before
and after images is more important. Otherwise said, in the case of
an imaging modality resulting from the combination of active and
passive sensors, thus inducing a combination of multiplicative and
additive noises in the before and after images with a dissimilar noise
law. Also for images pairs with a low spatial resolution and show-
ing complex changed events; as example, urban site construction
(replacing a complex texture zone by the new complex texture area).

It requires about 54 seconds to the MCD to process an image.
The processing time depends on the estimation problem complexity,
the size of image, and the mono or multichanel based estimation
(or 660 seconds for the set of 13 image pairs considered in this
validation study) using a code with non-optimized C++ version

running on i7 − 930 Intel CPU with 2.8 GHz Linux machine.

4 Conclusion
We have presented in this work an efficient mapping model for the
change detection problem in multimodal imagery relying on the
parametric estimation of an invariant circular convolution CD model.
Optimization of the model was performed on a convex quadratic
error function using a conjugate gradient routine, whose optimal
direction is determined by a quadratic line minimization algorithm,
and formulated as a fixed point problem involving a contraction
mapping. This allows us to project the before image in the imaging
modality space of the second image and inversely so that a differ-
ence change map is then computed pixel by pixel and efficiently
binarized with a multiscale Markov model. Our proposed strategy
seems well suited for the multimodal change detection issue and
robust enough against images provided under different resolution
levels, type or level of noise and exhibiting a variety of natural
event.
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Figure 5: Multimodal datasets. (a) image t1, (b) image t2, (c) the ground truth; (d) binary map segmentation, (e) confusion map estimated by our model with white (TN),
red (TP), blue (FP), cyan (FN) colors

Figure 6: SMAP-based segmentation obtained for the dataset #1
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Table 2: Results comparison.

Dataset [#1] Accuracy rate
Proposed model 0.942
Touati et al. [38] 0.942
Zhang et al. [12] 0.975

PCC [12] 0.882

Dataset [#2] Accuracy rate
Proposed model 0.835

Liu et al. [32] 0.818
Liu et al. [32] 0.655

Dataset [#3] Accuracy rate
Proposed model 0.896
Touati et al. [20] 0.949
Touati et al. [9] 0.932

Touati et al. [38] 0.943
Prendes et al. [26] 0.844
Correlation [26] 0.670

Mutual Information [26] 0.580

Dataset [#4] Accuracy rate
Proposed model 0.882
Touati et al. [20] 0.867
Touati et al. [38] 0.878
Touati et al. [38] 0.881

Prendes et al. [50, 27] 0.918
Prendes et al. [25] 0.854
Copulas [23, 25] 0.760

Correlation [23, 25] 0.688
Mutual Information [23, 25] 0.768

Difference [51, 25] 0.782
Ratio [51, 25] 0.813

Dataset [#5] Accuracy rate
Proposed model 0.866
Touati et al. [20] 0.853
Touati et al. [9] 0.870

Touati et al. [38] 0.877
Prendes et al. [26, 27] 0.844
Correlation [26, 27] 0.679

Mutual Information [26, 27] 0.759
Difference. [51, 27] 0.708

Ratio [51, 27] 0.661

Dataset [#6] Accuracy rate
Proposed model 0.818

Chatelain et al. [24] 0.749
Correlation [24] 0.713
Ratio edge [24] 0.737

Dataset [#7] Accuracy rate
Proposed method 0.946

zhan et al. [52] 0.979

Dataset [#8] Accuracy rate
Proposed model 0.949
Touati et al. [38] 0.967

Liu et al. [16] 0.976
PCC [16] 0.821

Dataset [#9] Accuracy rate
Proposed model 0.882
zhan et al. [52] 0.991

Dataset [#10] Accuracy rate
Proposed model 0.862
zhan et al. [52] 0.937

Dataset [#11] Accuracy rate
Proposed model 0.882

HPT [17] 0.826

Dataset [#12] Accuracy rate
Proposed model 0.835
Tang et al. [53] 0.986
Multiscale [53] 0.991

Optical/Optical [#13] Accuracy rate
Proposed model 0.815
Tang et al. [53] 0.959
Multiscale [53] 0.966
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