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 This paper focuses on optimizing the decoding complexity of the progressive-edge-growth-
based (PEG-based) method for the extended grouping of radio frequency identification 
(RFID) tags using a hybrid iterative/Gaussian elimination decoding algorithm. To further 
reduce the decoding time, the hybrid decoding is improved by including an early stopping 
criterion to avoid unnecessary iterations of iterative decoding for undecodable blocks. 
Various simulations have been carried out to analyse and assess the performance achieved 
with the PEG-based method under the improved hybrid decoding, both in terms of missing 
recovery capabilities and decoding complexities. Simulation results are presented, 
demonstrating that the improved hybrid decoding achieves the optimal missing recovery 
capabilities of full Gaussian elimination decoding at a lower complexity, as some of the 
missing tag identifiers are recovered iteratively. 
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1. Introduction  

Checking the integrity of groups containing radio frequency 
identification (RFID) tagged objects or recovering the tag 
identifiers of missing objects is important in many activities to find 
missing tagged objects. Autonomous verification of a group of 
RFID tags is an essential feature in RFID systems, because it 
ensures standalone operations as well as scalability, privacy and 
security. This can be achieved by treating a group of tag identifiers 
as packet symbols which are encoded and decoded as in binary 
erasure channels (BECs). This paper is an extension of work 
originally presented in [1], by optimizing the decoding complexity 
of the progressive-edge-growth-based (PEG-based) method for the 
extended grouping of RFID tags while achieving significant 
missing recovery enhancements compared to other extended 
grouping methods presented in [2–4]. 

Various decoding algorithms are devised to recover erasures 
over BECs, each with different performance and complexities. The 
most prominent decoding algorithms are maximum likelihood 
(ML) and iterative (IT) decoding algorithms. ML decoding for a 
BEC can be implemented as Gaussian elimination (GE), which 

provides the optimum decoding in terms of erasure recovery 
capabilities at the price of high decoding complexity [5]. On the 
other hand, IT decoding based on belief propagation features a 
linear decoding complexity, but it remains suboptimal in 
recovering erasures, as it is affected by the existence of short cycles 
[6, 7]. This suggests a hybrid (HB) decoding strategy which 
combines the above-mentioned IT with GE decoding algorithms in 
order to compromise between performance and complexity. 
References [8–12] proposed and implemented HB decoding 
algorithms in BECs with the basic idea of employing IT decoding 
first. If the IT decoding fails to recover all the erased symbols, the 
GE decoding is activated to complete the decoding process and 
resolve the simplified system. The GE decoding algorithm can 
fully recover the erasures in the simplified system if the columns 
of the decoding matrix are linearly independent. This paper 
focuses on optimizing the decoding complexity of the PEG-based 
method using an HB decoding algorithm. To further reduce the 
decoding time, the HB decoding is improved by including an early 
stopping criterion to avoid unnecessary iterations of iterative 
decoding for undecodable blocks. Simulation results are presented, 
demonstrating that the improved HB decoding achieves the 
optimal missing recovery capabilities of full GE decoding at a 
lower complexity, as some of the missing tag identifiers are 
recovered iteratively. 
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The remainder of this article is organized as follows. A brief 
overview of ML and IT decoding algorithms is provided in Section 
2. Section 3 introduces the early termination of IT decoding, while 
Section 4 presents the improved HB decoding. Section 5 evaluates 
the performance achieved with the improved HB decoding using 
simulations. Conclusions and future work follow in Section 6. 

2. Maximum Likelihood and Iterative Decoding 
Algorithms 

 Maximum Likelihood Decoding Algorithm 

The ML decoding algorithm on the BEC involves solving a 
system of linear equations and finding the unknowns (erasures) in  

 
 

(1) 

where TIDk` and TIDk are the arrays of lost and known symbols 
(tag identifiers), respectively. Similarly, Ak` is the matrix which 
contains the columns of A related to TIDk`, while Ak is the matrix 
which contains the columns of A related to TIDk. A system of linear 
equations has a unique solution, if and only if the columns of Ak` 
have full rank (i.e. they are linearly independent). This ML 
decoding can be implemented as GE by reducing Ak`

 to row 
echelon form. The process of the algorithm consists of two steps. 
The forward elimination step first reduces the system to an upper 
triangular form, which can be done using elementary row 
operations. The algorithm continues with a backward substitution 
step. It recursively resolves erased symbols until the solution is 
found. The last symbol of an upper triangular matrix is given the 
value of the symbol on the right-hand side. Then, this value is 
replaced in all the equations in which it is included. GE provides 
the optimum decoding in terms of erasure recovery capabilities at 
the price of the high decoding complexity of O(n3), where n is the 
number of variables [13]. GE is used to represent ML throughout 
this article. 

 Iterative Decoding Algorithm 

IT decoding algorithms or message-passing algorithms are 
commonly used in BEC decoding [14]. IT decoding based on 
belief propagation features a linear decoding complexity of O(n), 
but it remains suboptimal in recovering erasures over the BEC, as 
it is affected by the existence of short cycles [6, 7]. IT decoding 
algorithms consist of solving (1) by recursively exchanging 
messages along the edges of a Tanner graph between variable 
nodes and check nodes. All parity check equations having only 
one erased symbol are found, and the erased symbols are 
recovered. Then, new equations which have only one erased 
symbol may be created and used to recover further erased symbols. 
The decoding process is as follows: 

1) Each variable node v sends the same message Mv ∈{0, 1, 
e}, where e denotes the erased symbol, to each of its 
connected check nodes.  

2) If a check node receives only one e, it replaces the erased 
symbol with the bitwise exclusive or XOR of the known 
symbols in its check equation. 

3) Each check node c sends different messages Ec,v ∈{0, 1, 
e} to each of its connected variable nodes v. These 
messages represent the results of the previous step.  

4) If the variable node of an erased symbol receives Ec,v 
∈{0,1}, the variable node updates its value to the value 
of Ec,v. 

The IT decoding iterates the above process until all the erasure 
symbols are recovered successfully or until a predetermined 
maximum number of iterations (Imax) has passed without 
successful decoding [15].  

3. Early Termination of Iterative Decoding 

Early termination of IT decoding has been extensively 
researched within correcting errors introduced by channels. At 
each iteration, the IT decoding detects decodable blocks by 
checking parity check constraints. If all parity check constraints 
are satisfied, the decoding terminates. Otherwise, the decoding 
always completes Imax iterations for undecodable blocks. The 
decoding time and complexity increases linearly with the number 
of decoding iterations. To avoid unnecessary decoding iterations 
when processing undecodable blocks, a proper stopping criterion 
is required to terminate the decoding process early and therefore to 
save decoding time and power consumption [16]. Different early 
stopping criteria have been proposed for IT decoding, aiming to 
detect undecodable blocks and to stop the decoding process in its 
early stage. These criteria can be divided into two types. One type 
utilizes log-likelihood ratios (LLRs), for example the criterion in 
[17]. It identifies undecodable blocks using variable node 
reliability, which is the addition of the absolute values of all 
variable node LLRs. The decoding process is stopped if the 
variable node reliability remains unchanged or is decreased within 
two consecutive iterations. This is a consequence of the 
observation that a consistent increase of the variable node 
reliability is expected from a decodable block. The criterion is 
disabled if the variable node reliability is larger than a channel-
dependent threshold. Similar criteria have been proposed in [18–
20] which monitor the convergence of the mean magnitude of the 
LLRs at the end of each iteration to identify undecodable blocks. 
The other type of criteria are those which observe the numbers of 
satisfied or unsatisfied parity check constraints; for example the 
criteria in [21] and the improved criterion in [22] compare the 
numbers of satisfied parity check constraints in two consecutive 
iterations. If they are equal, the decoding process is halted. On the 
other hand, the criteria in [23, 24] use the number of unsatisfied 
parity check constraints to detect undecodable blocks.  

4. Improved Hybrid Decoding Algorithm  

In the HB decoding process, the decoding time of IT decoding 
for undecodable blocks becomes longer as the decoding iterates for 
Imax. Figure 1 shows the iteration histogram as a function of the 
missing amounts experienced for two variants of group sizes, 
including 49 and 169 tags. Imax is set to 50 and 200, respectively. It 
is explicit that as the number of missing tags increases, iteration 
for Imax starts to occur due to the existence of undecodable blocks. 
This can clearly be seen in the region where IT decoding has failed, 
for example when recovering more than 15 and 70 missing tags 
from a group of 49 and 169, respectively. Therefore, the taking into 
account of an early stopping criterion, which adaptively adjusts the 
number of decoding iterations, arises as an attractive solution to 
avoid unnecessary iterations and thus to save decoding time. Since 
the main advantage of HB decoding is to reduce GE complexity, 
the frequency of GE decoding usage should be as small as possible, 
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(a) 

 
(b) 

Figure 1. The iteration numbers required for decoding different group sizes: (a) n = 49; (b) n = 169 where j = 3 for the PEG-based method 

even for a large number of missing tags. When GE decoding is 
utilized, the size of the simplified system should also be as small 
as possible. This suggests a stopping criterion for the PEG-based 
method which permits partial decoding of undecodable blocks up 
to a point where IT decoding cannot recover any missing tag 
identifiers. The proposed criterion can distinguish between 
decodable and undecodable blocks. It does not cause any 
computation overheads, as it utilizes the information available 
during the decoding process. Algorithm 1 outlines the improved 
HB decoding algorithm. The input is the received codeword 
y = [y1, y2, … , yn] of the transmitted codeword x = [ x1, x2, … , xn] 
where xi ϵ{0,1} and yi ϵ{0, 1, e} for i = 1 … n. The output is 
M = [M1, … , Mn] where Mi ϵ{0, 1, e}. Let Sj denote the set of 
symbols in the j-th check equation of the code, ne

 is the number of 
erasures at the input to the decoder, and Ej,i is the outgoing message 
from the check node j to the variable node i. The improved 
algorithm is based on the observation of the checksum of erasure 
symbols 𝑛𝑛𝑒𝑒𝐼𝐼  at the end of each iteration I. It halts the decoding 
process if the checksum remains unchanged or does not decrease 
within two consecutive decoding iterations, as in Step 24. This 
results from the observation that decodable blocks exhibit a 
consistent decrease in checksum values.  

Algorithm 1 Improved Hybrid Decoding  

1: I = 0 

2: 𝑛𝑛𝑒𝑒𝐼𝐼−1 = ne 

3: for i = 1 to n do 

4:       Mi = yi 

5: end for  

6: repeat 

7:    for j = 1 to m do 

8:         for i ϵ Sj do 

9:                if a check node j receives only one ‘e’ then  

10:                          Ej,i = ∑ (𝑀𝑀𝑖𝑖`  𝑖𝑖`𝜖𝜖𝐵𝐵𝑗𝑗.𝑖𝑖`≠𝑖𝑖 mod 2) 

11:                else 

12:                          Ej,i = ‘e’ 

13:               end if 

14:          end for 

15:     end for 

16:     for i = 1 to n do  

17:          If Mi = ‘e’ then  

18:               If there is at least one Ej,i = 0 or 1 then  

19:                     Mi = Ej,i  

20:               end if 

21:         end if 

22:     end for 

23:     𝑛𝑛𝑒𝑒𝐼𝐼  = count ‘e’ in Mi   ∀ i = 1… n 

24:     if (Mi ≠ ‘e’ ∀ i=1…n) or (I =Imax) or (𝑛𝑛𝑒𝑒𝐼𝐼−1 =  𝑛𝑛𝑒𝑒𝐼𝐼 … ) then  

25:           Terminate IT decoding and start GE decoding 

26:     else 

27:            Increment I  

28:            𝑛𝑛𝑒𝑒𝐼𝐼−1 =  𝑛𝑛𝑒𝑒𝐼𝐼  

29:     end if 

30: until terminated 

5. Simulation Results 

This section gives an account of the various simulations which 
have been carried out to analyse and assess the performance of the 
PEG-based method under the improved HB decoding, both in 
terms of missing recovery capabilities and decoding complexities. 

Successful region of IT 
decoding 

Successful region of IT 
decoding 
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 Missing Recovery Capability Analysis  

To illustrate the performance of the improved HB decoding in 
recovering missing tags, Figure 2 shows the average error rate as a 
function of the number of missing tags for different values of group 
sizes n where the column weight j varies between 3 and 4. It can 
be clearly shown that increasing j greatly increases the 
performance of the improved HB decoding in recovering missing 
tags. The main reason for this behaviour is that a large value of j 
produces a large number of rows and thus increases the rank of the 
matrix. For example, if five tags are missing from a group of n = 
25, all their identifiers can be recovered with at least j = 3 under 
the improved HB decoding. However, if ten identifiers are 
missing, the column weight needs to be adjusted to 4 in order to 
achieve 100% reliable recovery (0% error rate). Table 1 compares 
the missing recovery capabilities of the simulated PEG-based 
method under the improved HB decoding algorithm with other 
extended grouping methods presented in [2–4]. It is clear that the 
improved algorithm achieves significant missing recovery 
enhancements compared to other extended grouping methods. It 
can be concluded from the results that the improved HB decoding 
achieves the optimal missing recovery capabilities of full GE 
decoding, since the remaining systems of IT decoding containing 
short cycles are solved with GE decoding. The results also reveal 
that the recovery performance of the improved HB decoding 

increases by increasing the group size. This results from the fact 
that the PEG-based method accounts for short cycles in Tanner 
graphs by maximizing the local girth, i.e. the length of the shortest 
cycle, at variable nodes, which is more achievable when the group 
size is large [1]. Applying the improved HB decoding to groups of 
25 and 49 tags, for example, results in the recovery of missing tags 
of up to 48% and 65%, respectively, of the group size, with a 0% 
error rate. On the other hand, for groups of 121 and 169 tags, the 
recovery capabilities increase to 72% and 74.5%, respectively. 

  Decoding Complexity Analysis 

The relative complexities of the improved HB decoding are 
analysed in terms of decoding time. The decoding time is measured 
on a 2 GHz Intel i7 processor. The entire decoding complexity is 
equal to the complexity of IT decoding plus that of GE decoding if 
short cycles exist. This is mainly determined by the efficiency of 
the first stage of IT decoding; the better the performance of the IT 
decoding, the less the complexity and thus the time of the improved 
HB decoding. During the decoding process, IT decoding is first 
applied on the parity check matrix. If the IT decoding fails, GE 
decoding is activated to solve the remaining systems with a 
complexity less than the complexity of decoding the original 
matrix. 

 

(a) 
(b) 

(c) (d) 
Figure 2. The average error rate for different group sizes: (a) n = 25; (b) n = 49; (c) n = 121; (d) n = 169 using the PEG-based method under the improved HB 
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Table 1. Comparisons of missing recovery capabilities of the PEG-based method under the improved HB decoding algorithms with other extended grouping methods 

Parameter Methods 
Largest number of missing 

identifiers which can be 
recovered within 0% error rate 

Parameter Methods 
Largest number of missing 

identifiers which can be 
recovered within 0% error rate 

(25, 3, 5) 

[2] 3 (121, 3, 5) [2] 1 
[3] 5  [3] 5 

[4] 5  [4] 5 
PEG-based method 
under GE decoding 

6  PEG-based method 
under GE decoding 

64 

PEG-based method 
under HB decoding 

6  PEG-based method 
under HB decoding 

64 

(25, 4, 5) 

[2] 5 (121, 4, 5) [2] 6 
[3] 7  [3] 13 

[4] 9  [4] 15 
PEG-based method 
under GE decoding 

12  PEG-based method 
under GE decoding 

87 

PEG-based method 
under HB decoding 

12  PEG-based method 
under HB decoding 

87 

(49, 3, 5) 

[2] 1 (169, 3, 5) [2] 1 
[3] 5  [3] 5 

[4] 5  [4] 5 
PEG-based method 
under GE decoding 

23  PEG-based method 
under GE decoding 

93 

PEG-based method 
under HB decoding 

23  PEG-based method 
under HB decoding 

93 

(49, 4, 5) 

[2] 3 (169, 4, 5) [2] 1 

[3] 7  [3] 9 
[4] 8  [4] 16 

PEG-based method 
under GE decoding 

32  PEG-based method 
under GE decoding 

126 

PEG-based method 
under HB decoding 

32  PEG-based method 
under HB decoding 

126 

 
Two experiments are conducted: 

1) Decoding time measurements when IT decoding fails 
and thus GE is required. This is the worst case from a 
decoding point of view.  

2) Decoding time measurements as a function of the 
number of missing tags to compare two cases, one where 
IT decoding is successful and the other where IT 
decoding fails and GE is needed.  

5.2.1. Decoding Time when Gaussian Elimination is 
Required (Worst Case) 

Figure 3 illustrates the decoding time during the GE process 
of the improved HB decoding for a group of 49 and 169 tags 
where j = 3. By changing the number of missing tags, the resulting 
average simplified system size changes, which affects the 
decoding time. The figure illustrates this time as a function of the 
simplified system size and the related histogram. The region 
where IT decoding recovers some missing tag identifiers is only 
considered in this analysis. However, in the second region, where 
IT decoding cannot recover any missing tag identifiers, GE 
decoding time is equal to that of full systems. The improved 
algorithm efficiently decreases the average decoding time of GE 

decoding, because the complex GE decoding is only utilized when 
required over a simplified system resulting from IT decoding. For 
a group of 49 tags, the histogram demonstrates that the maximum 
decoding time remains below 2 ms related to an average decoding 
time of 1.8 ms. When the group size increases to 169 tags, the GE 
decoding time also increases, following a O(n3) law. It can clearly 
be seen that the maximum decoding time remains below 13 ms 
related to an average decoding time around 12 ms. In contrast, GE 
decoding on full systems, as illustrated in Figures 5 and 6 
(presented in the next section), is slower, especially for a large 
group of tags. For a group of size 49 and 169 where j = 3, it is 
evident that the decoding time lasts on average 2 and 15 ms, 
respectively. 

To illustrate the impact of the proposed early stopping 
criterion on decoding time, Figure 4 shows iteration numbers 
which are taken for various missing amounts to be compared to 
those of the conventional IT decoding depicted in Figure 1. One 
can observe that the proposed stopping criterion greatly reduces 
the average number of iterations in the region where IT decoding 
is not successful. Figure 4 shows that undecodable blocks need at 
most 17 and 33 iterations, respectively, when recovering more 
than 15 and 70 missing tags from a group of 49 and 169. 
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(a) 

 
 

(b) 

 
Figure 3. Histogram of GE decoding time with respect to the simplified system size for different group sizes: (a) n = 49; (b) n = 169 where j = 3 for the PEG-based 

method 

 
(a) 

 
(b) 

 
Figure 4. The enhanced iteration numbers required for decoding different group sizes: (a) n = 49; (b) n = 169 where j = 3 for the PEG-based method 

5.2.2. Decoding Time of the Improved Hybrid Decoding  

Figures 5 and 6 show the average decoding time as a function 
of the number of missing tags for different values of n where j is 
equal to 3 and 4 under the IT, GE and improved HB decoding 
algorithms. It is obvious that the decoding time depends on the 
missing amounts experienced. With small numbers of missing 
tags, the decoding time of the improved HB decoding is fast and 
is similar to that of IT decoding. This is clear in a region where IT 
decoding is successful. As the number of missing tags increases, 
the decoding time of the improved HB decoding also 
progressively increases, because GE decoding is more and more 
often required. This can be seen in the curves: after the successful 
region of IT decoding, the average decoding time of HB decoding 
increases progressively, since IT decoding turns out to be 
ineffective, and the size of the simplified system increases 
accordingly. Then, above a certain threshold which depends on 
the missing recovery capabilities of IT decoding, the decoding 

time of the improved HB decoding gradually approaches the full 
GE decoding. Since the entire decoding time of the improved HB 
decoding is equal to the decoding time of IT decoding plus that of 
GE decoding, the improved HB decoding algorithm can easily be 
tailored to satisfy operational requirements. More precisely, the 
IT decoding phase can be avoided when the aforementioned 
condition is met, to save HB decoding time. It is clear that the n 
and j parameters also have major impacts on the decoding time. 
As n or j increase, the improved HB decoding time increases too. 
This is due to specific phenomena. The complexity of IT decoding 
depends on the number of XOR operations, which is determined 
by the number of variables in each equation, whereas the 
complexity of the GE decoding depends on the number of linear 
equations and the number of variables. Therefore, by increasing n 
or j, the number of operations required by the IT and GE decoding 
algorithms is increased accordingly. If decoding time is an issue 
with a large n value, choosing a smaller j value is possible. If the 
HB decoding time is compared with the GE decoding time for 
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(a) 

 
 
 
 

(b) 

 
(c)  

(d) 
 

Figure 5. The average decoding time for recovering missing tag identifiers from different group sizes: (a) n = 25; (b) n = 49; (c) n = 121; (d) n = 169 where j = 3 for the 
PEG-based method under the IT, GE and improved HB decoding algorithms 

 

 
(a) 

 
(b) 

IT decoding completely fails 
to recover any missing tags  

 IT decoding recovers 
some missing tags 

  

Successful region 
of IT decoding 
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(c) 

 
(d) 

 
Figure 6. The average decoding time for recovering missing tag identifiers from different group sizes: (a) n = 25; (b) n = 49; (c) n = 121; (d) n = 169 where j = 4 for the 

PEG-based method under the IT, GE and improved HB decoding algorithms 

the full system, it can be concluded that the HB decoding is faster 
for small to medium numbers of missing tags even when GE 
decoding is required. 

6. Conclusions and Future Work 

This paper has focused on optimizing the decoding 
complexity of the PEG-based method using a hybrid 
iterative/Gaussian elimination decoding algorithm. The hybrid 
decoding is improved by including an early stopping criterion to 
avoid unnecessary iterations of iterative decoding for 
undecodable blocks and thus saving decoding time. Simulation 
results have been presented showing that the improved hybrid 
decoding algorithm achieves the optimal missing recovery 
capabilities of full Gaussian elimination decoding, since the 
remaining systems of iterative decoding containing short cycles 
are solved with Gaussian elimination decoding. This recovery 
performance significantly increases with an increase in the group 
size of tags. It has been shown that the proposed stopping criterion 
greatly reduces the average number of decoding iterations for 
undecodable blocks and therefore reduces decoding time when 
compared to the conventional IT decoding algorithm. The 
improved algorithm is very efficient in decreasing the average 
decoding time of Gaussian elimination decoding for small to 
medium amounts of missing tags up to a certain threshold which 
depends on the missing recovery capabilities of IT decoding. This 
makes the improved hybrid decoding a promising candidate for 
decoding the PEG-based method for extended the grouping of 
RFID tags.  

For future work, more investigation is needed into the joint use 
of the two decoding algorithms according to missing amounts and 
group sizes. 
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