
www.astesj.com 617

Optimisation of Software-Defined Networks Performance Using a Hybrid Intelligent System

 Ann Sabih*, Yousif Al-Dunainawi, H. S. Al-Raweshidy, Maysam F. Abbod

Electronic and Computer Engineering Department, College of Engineering, Design and Physical Sciences Brunel University London,
United Kingdom

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 06 April, 2017
Accepted: 11 May, 2017
Online: 04 June, 2017

 This paper proposes a novel intelligent technique that has been designed to optimise the
performance of Software Defined Networks (SDN). The proposed hybrid intelligent system
has employed integration of intelligence-based optimisation approaches with the artificial
neural network. These heuristic optimisation methods include Genetic Algorithms (GA) and
Particle Swarm Optimisation (PSO). These methods were utilised separately in order to
select the best inputs to maximise SDN performance. In order to identify SDN behaviour,
the neural network model is trained and applied. The maximal optimisation approach has
been identified using an analytical approach that considered SDN performance and the
computational time as objective functions. Initially, the general model of the neural network
was tested with unseen data before implementing the model using GA and PSO to determine
the optimal performance of SDN. The results showed that the SDN represented by Artificial
Neural Network ANN, and optmised by PSO, generated a better configuration with regards
to computational efficiency and performance index.

Keywords:
ANN
Evolutionary Optimisation
SDN

1. Introduction

Over the past few years, upon entering the era of ‘big data,
there has been a change in the traditional internet traffic to a more
complex traffic form. This complexity has required the increased
flexibility and scalability of the modern data centre. In addition to
the utilisation of numerous device types within the same area and
an increase of advanced network applications, it is now possible
for a multitude of end-point devices to share and exchange
varying network traffic patterns. As a result, there is a need for a
change in the infrastructure of the current network in order to
modernise it in line with these differing network traffic patterns.
As such, a new approach has been proposed [1].

 In the recent years, hybridisation or combination of different
machine learning and adaptation techniques has been employed
for a large number of new intelligent system designs. The main

aim of integrating these techniques is to overcome individual
limitations and to achieve synergetic effects [2]. These
techniques including, Neural Networks (NNs), the Adaptive
Network Fuzzy Inferences System (ANFIS) are used for mapping
and modelling purposes. Whilst evolutionary based optimisation
approaches, such as

the Genetic Algorithm (GA) and Particle Swarm Optimisation
(PSO) have been applied widely to produce powerful and
optimised intelligent systems [3].

In many modern systems, artificial intelligence methods, such
as intelligent transportation, have taken on notable roles. This
adoption of new technology has encouraged the consideration of
improvements in the conventional computer networks. The SDN
paradigm’s abstraction concept and AI techniques have a complex
relationship that can be utilised to develop network elements with
adaptive behaviours that can also introduce contemporary
mechanisms that can overcome the common network issues as
well as new issues related to SDN [1].

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Ann Sabih, Electronic and Computer Engineering
Department, College of Engineering, Design and Physical Sciences Brunel
University London, United Kingdom, Email: Ann.Sabeeh@brunel.ac.uk

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 617-622 (2017)

www.astesj.com

Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj020379

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020379

A. Sabih et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 617-622 (2017)

www.astesj.com 618

Recently, with the fast development of the Internet, network
topology, and number of applications have been changed
gradually, which has led to be more complicated in structures and
functions. A network based on the traditional TCP/IP architecture
faces many challenges, especially the router, as the network core,
takes on too many efforts to deal with. As a result, the validity
and efficiency of data forwarding is being threatened. Hence, we
need to find a new kind of network architecture to solve the
existing problems. To this end, the study of future networks is
proceeding all over the world, and the Software Defined Network
(SDN) is one of them [4]. SDN is an architecture enabling rapid
innovation, while hiding much of the complexity of the
networking design. As such, it is a promising solution for network
virtualisation that decouples control from the forwarding or data
plane [5]. In doing so, it can provide the capability of remote and
centralised control of the network forwarding-plane through the
network control-plane.

 SDN, as a network platform, has been studied widely in the
literature and many researchers have proposed soft computing
methods to model and optimise the network. Yilan and et al. [6]
provided a genetic algorithm for solving the bandwidth-
constrained multi-path optimisation problem in the SDN. Gao and
et al. [7] contributed a Particle Swarm Optimisation algorithm to
solve the control placement problem that takes into consideration
both the latency between controllers and their capacities. Zhang
and Fumin [8] explored applications of the SDN technique in the
direction of the automation of network management, the unified
control of optical transmission and IP bearing, smooth switching
in a wireless network as well as network virtualisation and QoS
assurance. Risdianto and et al. [5] evaluated the performance of
an SDN-based virtual network on different virtualisation
environments, including operating system based virtualisation,
hardware-assisted virtualisation, and par virtualisation.
Sgambelluri and et al. [9] proposed novel mechanisms that have
been specifically introduced to maintain working and backup
flows at different priorities and to guarantee effective network
resource utilisation when a failed link is recovered. Ionita and
Victor-Valeriu identified a method of avoiding DDoS attacks in
the SDN environment. These scholars utilised a cyber defence
system to assess risk that was structured around the neural
network and the biological danger theory. This demo platform is
able to achieve full packet capture in the SDN in addition to
mitigating any attacks, providing it is considered necessary by the
central command component. The benefit of these packet captures
is that they can be utilised for forensic analysis to identify the
attacker [10].

A novel open flow controller, which was structured around the
intracerebral neural network was suggested by Wu and Huang in
order to generate a independent media handover with wireless
operation. As such, binary decisions are made by the controller
that are determined by the link control parameters. These are
instantly generated and gathered from the trained neural network,
which is reliant on the interactions between mobile speed and the
wireless link performance parameters. Using a mutated PSO,

these authors managed to train the fundamental controller
equation for the media independent handover that is interspersed
with the intracerebral neural network’s sigmoid and radial
activation functions [11].

 A hybrid intelligent system is proposed in this paper to
optimise the performance (i.e. throughput, delay) of the SDN. The
proposed system includes ANN to model inputs (flows of the flow
tables)-outputs (throughput and delay) of the network. After, the
evolutionary algorithms have been employed to find the optimal
set of inputs that maximise this performance. This method grants
to lessen the burden of SDN switch by making the network
controller adaptively providing the rules/flows to the switches
instead of making the switch suspends for the controller events
every period of time.

2. Software-Defined Networks

 It was previously noted that a software-defined network (SDN),
could be centrally organised around the principle of the
compartmentalisation of the control plane and data plane. The
SDN is a budding architecture that is promoted by the ONF due
to its ability in forwarding functions and network control
decoupling. This decoupling allows the direct programming of the
network control and the abstraction of the underlying
infrastructure for applications and network services. The
networking devices have their intelligence removed in this
architecture and positioned within a centralised controller, which
manages the functionality of the entire network. Software based
SDN controllers also have this centralised network intelligence
allowing them to maintain a global view of the network. This
allows the infrastructure devices to take on a forwarding role that
is able to process incoming packets. This role is determined by a
set of rules generated instantaneously by the controller within the
control layer that is based on some predefined program logic. A
remote commodity server is a usual manner in which these
controllers are run. A secure connection allows communication
with the forwarding elements utilising a standardised command
set. A high-level architecture for SDN is presented by Open
Networking Foundation ONF [12], that has three main layers,
application, control and infrastructure layers that are vertically
split as detailed in Figure 1

As demonstrated by [9], the SDN controller serves to maintain the
stream tables so as to engage in the management of every stream
that is conveyed through the system. Application layer service
requests are mapped by the SDN control layer into defined
commands and directives to data plane switches. The SDN control
layer then supplies applications with data plane topology and
activity information. As such, the control layer acts as either a
server or a collaborating set of servers, which are recognised as
SDN controllers.

 The OpenFlow procedure can be regarded as an open SDN
specification that is constituted of a pair of foundational elements:
first, the OpenFlow switch and, second, the controller. The former
facilitates the execution of the data plane while the latter realises

http://www.astesj.com/

A. Sabih et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 617-622 (2017)

www.astesj.com 619

the control plane. It should be noted that the OpenFlow procedure
as a totality is employed by the interchange that takes place with
regard to the controller and the switches via a safe channel. The
OpenFlow switch and controller communicate via a safe channel
that is realised in the context of a distinctive practice and,
according to [10], this is also referred to as OpenFlow. The
controller transmits a Flow Table towards the OpenFlow switches
and each stream passage in the former element is constituted of a
regulation crafted from an organisation of fields, thereby
coordinating the approaching bundles. It is notable that this is an
activity that characterises the issue of how the coordinating
parcels can be prepared, for example, by transmitting on a specific
yield port.

In addition, a number of counters are employed in order to
collect information relating to the stream. In a similar way, each
passage can be linked to alternative information, one case of this
being the requirement level and the hard and idle timeout of the
pair of timing devices.

The bundle is captured and conveyed to the controller that
employs the safe channel in those instances where a switch
receives a parcel that is not engaging in the coordination of the
passages that have been introduced. Having captured the bundle,
the activity of the OpenFlow switch is regulated by the controller
as a result of the overhaul of its Flow Tables, thereby transmitting
the coordinating parcels to the end point [8]. One implication of
this is that the relative casings are not required to partake in the
controller another time as a result of the potential initiation of the
Flow Tables’ reformulation [3].

 Figure 1. The software-defined network’s architecture

3. Artificial Intelligence

3.1. Neural Networks
A branch of artificial intelligence, disseminated at a

considerable pace in recent times owing to its suitability with
regard to the modelling and forecasting ability it has in relation to
dynamic systems, is the artificial neural network (ANN). In light
of their promising potential, ANNs have emerged as a central
branch of research into artificial intelligence. The registration of
the input-output relationships of nonlinear and synthesis systems
have been identified as one of the key advantages offered by ANNs
and, notably, this relationship can be straightforwardly, rapidly,
and cost- and time-effectively discerned by lowering the error with
regard to the network output(s) and the actual output(s). A defining
feature is that, following the appropriate preparation of the
network, outputs can be estimated within a very short space of time
(namely, in a matter of seconds). Frameworks that centre on
artificial neural networks are currently seeing effective application
in a range of areas – a few examples being including adaptive
control, laser applications, nonlinear system identification,
robotics, image and signal processing, medical areas, pattern
recognition, error detection, process logging, and renewable and
sustainable energy areas – in order to surmount obstacles faced by
engineers [11]. The only appropriate connections in a feedforward
neural network structure are between the outputs and inputs of each
layer. As such, there are no connections between the outputs of one
layer and the inputs of the same or previous layers [13].

3.2. Evolutionary Algorithms
 Taking inspiration and motivation from natural processes and,

in addition, basing the developments on factors relating to iterative
and probabilistic processes, a range of evolutionary algorithms –
including genetic algorithms (GAs), particle swarm optimisation
(PSO), and simulated annealing – have been formulated in recent
years. The primary purpose of such developments is for
application in optimisation issues. Two multi-purpose and
frequently employed algorithms include GA and PSO, and these
are utilised in every domain [12].

• Genetic algorithm: Formulated by Holland (1975), GAs
are self-modifying global optimisation probability search
algorithms, the fundamental concept of which was inspired
by the genetic mechanisms that form the basis of the theory
of Darwinian natural selection and biological evolution.
GAs operate by simulating the biological processes that are
observed in the natural world as driving the phenomena of
genetic and evolutionary development; according to the
concept of natural selection, GAs provide solutions to deep
problems by employing code technique and reproduction
processes [13]. GAs has been extensively employed in a
variety of domains with considerable efficacy in recent
years, and this is primarily attributed to their almost
universal relevance and promising results. The difference
between the more traditional search algorithms and GAs[4]
is that the latter have numerous candidate solutions rather
than just one partial or candidate solution. With GAs, each
problem’s candidate solution is portrayed by a data

http://www.astesj.com/

A. Sabih et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 617-622 (2017)

www.astesj.com 620

structure that is termed an ‘individual’. There are two parts
to each individual; these are the chromosome and the
fitness. An individual’s chromosome is constructed from
genes with each value assigned to the gene being referred
to as alleles. These individuals combine to form a
population, the size of which remains constant for the
duration of the search for most GAs. Out of the current
population, a number of ‘parent’ individuals are selected,
based on their fitness, which are allowed to create
offspring. Individuals with above average fitness have a
higher than average chance of selection for parenting.
Following selection, the parents are subjected to a number
of reproductive operators, such as crossover and mutation.
Those subjected to crossover have a copy of their genes
taken to create an offspring’s chromosome. This is
comparable to the creation of living organisms that are
created from a genetic mixture of both parents from sexual
reproduction. However, only one parent is required for
mutation. In this manner, the offspring is often an almost
exact replica of the parent but with a few altered genes.
Following the generation of the offspring, their represented
candidate solutions can be evaluated, and the offspring’s
fitness is determined. As the population size remains
largely static, before the offspring can be incorporated into
the population, it is necessary for some individuals in the
current population to be removed, or die. Removal of
individuals is often decided from their fitness with those
individuals with a below average fitness being more likely
to be selected for removal than those with an average or
above average fitness. Again, this is reminiscent of the
evolution of living organisms and is termed natural
selection. As such, those individuals that display better
fitness are allowed to procreate and live longer.
Interestingly, this process of fitness selection means that the
original population does not need to be very good. Indeed,
it is often the case that each individual in the initial
population represents a randomly generated candidate
solution; however, the repetitive application of natural
selection and reproduction allows GAs to generate rapid
and efficient solutions [13].

• Particle Swarm Optimisation: First developed by
Kennedy and Eberhart (1995) [14] and built on by the
researchers several years later (Ibid, 2001) [15], PSO
algorithms have been applied with enormous success in
optimising a broad range of applications [16]. PSO operates
by locating all individuals and particles (usually in the
range of 10-100) in randomised positions and, following
this, intending that each particle engages in random motion
in a determined direction in the search space. Following
this, the direction of each particle is incrementally modified
in order to proceed according to the optimal previous
positions, thereby identifying more favourable positions on
the basis of specifications or an objective function (i.e.
fitness). The original particle speed and location are chosen
randomly and, in turn, the velocity formula presented
below is used to provide updates:

)()(22111 iiiic xGbRCxPbRCwVV
i

−×+−×+=+ (1)

Contrastingly, the new particle is computed by
summing the new velocity to that which precedes it, as
presented below:

11 ++ +=
icii Vxx (2)

Where: 𝑉𝑉𝑉𝑉 denotes the particle’s velocity; X
denotes the particle’s position; R1 and R2 are independent
random variables uniformly distributed in [0, 1]; C1 and C2
are the acceleration coefficients, and w represents the
inertia weight. The particle’s new velocity can be
calculated by employing Eq. 13, and the information
required includes the previous velocity, the distance of the
particle’s present position from its optimal position (Pb),
and the global best position (GB). Following this, on the
basis of Eq. 14, the particle is conveyed to a new location
in the search space and, notably, the way in which every
particle performs is evaluated in relation to a predetermined
objective function known as the performance index.

4. Equation Simulation and Results

4.1. SDN Simulation
SDN simulation has been performed using the Mininet

platform which is the common emulation for SDN which is used
by researchers to collect all datasets of inputs and outputs. Mininet
has the ability to imitate various types of system components, for
example, have, layer-2 switches, layer-3 switches, and interfaces.
In addition, simulation experiments were carried out using POX
controller with OpenFlow 1.0 and monitoring of the flows was
required for all events. Regarding which, in order to build the
learning system, the SDN controller gives the orders to SDN
switch to monitor the flows, and the switch keeps on monitoring
them to detect the events. When the flows are monitored, the entire
events whether they occur only frequently or periodically are
stored in the database to be used in the ANN learning system. The
flows/inputs include the rules coming from the controller. In turn,
the output will be represented by the system throughput and the
network delay. Consequently, the data which are collected from
the ANN learning system is considered as being an efficient input
to the optimisation algorithms. This paper presents a new method
to minimize the load of the SDN switch by making it changing
adaptively by the controller, instead of wait for the event all the
time.

4.2. SDN Identification
When the ANN training started, the dataset had been

preprocessed by normalising them into the range between -1 and
1. The dataset of the inputs and outputs was divided randomly into
three subsets: a training set, valediction set and testing set. The first
subset was for establishing the gradient as well as updating the
network weights and biases. The error regarding the second subset
was observed during the training development. The validation
error is usually reduced in the initial training phase, as is the
training set error. Nevertheless, when the network overfits the data,
the error in the validation set invariably starts to rise. In the current
case, the network parameters were saved at the minimum of the
validation set error.

http://www.astesj.com/

A. Sabih et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 617-622 (2017)

www.astesj.com 621

 Input values need to be normalised in the range [-1, 1], which
corresponds to the minimum and maximum actual values.
Subsequently, testing the ANN requires a new independent set
(test sets) in order to validate the generalisation capacity of the
prediction model. A multilayer feedforward network was
implemented to estimate the performance of the SDN. In order to
obtain a maximum accuracy of prediction, the network was trained
in different topologies. For each network architecture, the training
was run ten times for various random initial weights and biases
using the Levenberg Marquardt algorithm (LMA). After
investigating the performance of different architectures using the
exhaustive search method, the best trained ANN with one hidden
layer was found to consist of 17 neurons in this hidden layer, which
gives the comparably better performance of MSE, with 2.488 ×10-
8, see Figure.. 2. While, Figure 3 shows the performance of the
network as a mean square error (MSE) versus the network
architecture for the single hidden layer. Also, Figures 4 and 5 show
the simulated and predicted SDN performance for both the training
and test sets. It is noticed that the ANN model is efficiently
accurate and the network is accepted as a general model to be
integrated, as the next step, with GA or PSO so as to produce the
proposed intelligent hybrid system.

 Figure 2. the progress of the ANN performance.

 Figure 3 Performance of a single hidden layer ANN

Figure 4 Comparing predicted with actual SDN performance for the training
sets

Figure 5 Comparing predicted with actual SDN performance for the testing sets

4.3. SDN Optimisation

GA and PSO were integrated separately with the trained ANN
model to select the optimal set of inputs that make the network
work as efficient as possible. Figure 6 shows the architecture of the
system including the trained general ANN model as well as PSO
and GA as an optimizer.

 Figure 6 The architecture of the proposed method

0 5 10 15

Epochs

2.488 e-8

1

10

M
ea

n
Sq

ua
re

d
Er

ro
r

(m
se

)

Train

Validation

Test

Best

http://www.astesj.com/

A. Sabih et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 617-622 (2017)

www.astesj.com 622

TABLE I. PERFORMANCE AND COMPUTATION TIME COMPARISONS FOR GA
AND PSO

Optimisation
method

SDN Performance
%

Computation
Time (min)

PSO 96.321 3.23

GA 94.846 6.75

 Figure 7 Convergence comparison of GA and PSO

 The simulation experiments were carried out by MATLAB
platform. PSO was employed to find the optimal structure of the
network, and the best operational parameters of this and the GA
algorithm were chosen after extensive simulations, which were set
as follows:

• Size of the population or swarm: 50
• Maximum iterations or generations (max) :100
• Cognitive acceleration (C1): 1.2
• Social acceleration (C2): 0.12
• Momentum or inertia (w): 0.9

 A comparison of the results of the SDN performance is provided
in Table 1 and Fig. 7. PSO has outperformed GA regarding the
performance, and computational time, the convergence is faster
with fewer iterations, and the obtained fitness is higher. However,
the results provided were obtained after running PSO/GA 20 times.

5. Conclusion

This paper has presented a novel hybrid intelligent system for
the modelling and perfecting of the Software Defined Network
(SDN). This involved the training of an artificial neural network
(ANN), which had a single layer in the hidden zone, to map the
inputs and network performance. An acceptable MSE was shown
by the network that was demonstrated as being below 2.466x10-8.
The application of unseen data as a test set to the trained ANN
model proved its generality; this ANN model was then coordinated
with evolutionary algorithms (EAs) to create the presented
intelligent hybrid system. In order to optimise the EA, PSO and
GA were utilised in order to identify the optimal input set for the
SDN. This optimisation was based on the fitness function of the
individuals. The comparison results showed that PSO was a more
effective option in terms of computational time, convergence and
performance.

References

[1] M. Latah and L. Toker, “Application of Artificial Intelligence to Software
Defined Networking: A Survey,” Indian J. Sci. Technol., vol. 9, no. 44, Nov.
2016.

[2] Y. Al-Dunainawi and M. F. Abbod, “Hybrid Intelligent Approach for
Predicting Product Composition of Distillation column,” Int. J. Adv. Res. Artif.
Intell., vol. 5, no. 4, pp. 28–34, 2016.

[3] D. Ruan and P. Wang, “Intelligent hybrid systems: fuzzy logic, neural
networks, and genetic algorithms”. Springer, 1997.

[4] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A Survey on Software-
Defined Networking,” IEEE Commun. Surv. Tutorials, vol. 17, no. 1, pp. 27–
51, 2015.

[5] A. C. Risdianto and E. Mulyana, “Implementation and analysis of control and
forwarding plane for SDN,” in 2012 7th International Conference on
Telecommunication Systems, Services, and Applications (TSSA), 2012, pp.
227–231.

[6] Y. Yilan Liu, Y. Yun Pan, M. Muxi Yang, W. Wenqing Wang, C. Chi Fang,
and R. Ruijuan Jiang, “The multi-path routing problem in the Software
Defined Network,” in 2015 11th International Conference on Natural
Computation (ICNC), 2015, pp. 250–254.

[7] C. Gao, H. Wang, F. Zhu, L. Zhai, and S. Yi, “A Particle Swarm Optimization
Algorithm for Controller Placement Problem in Software Defined Network,”
Springer International Publishing, 2015, pp. 44–54.

[8] Z. F. Zhang Shunmiao, “Survey on software defined network research,” Appl.
Res. Comput., vol. 30, pp. 2246–2251, 2013.

[9] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,
“OpenFlow-Based Segment Protection in Ethernet Networks,” J. Opt.
Commun. Netw., vol. 5, no. 9, p. 1066, Sep. 2013.

[10] I. Mihai-Gabriel and P. Victor-Valeriu, “Achieving DDoS resiliency in a
software defined network by intelligent risk assessment based on neural
networks and danger theory,” in 2014 IEEE 15th International Symposium on
Computational Intelligence and Informatics (CINTI), 2014, pp. 319–324.

[11] Q. Wu, J. Huang, and O. Yang, “An Open Flow Controller Based on the
Intercerebral Neural Network for Media Independent Handover,” Int J Swarm
Intel Evol Comput, 2014.

[12] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[13] M. Jamshidi and A. Zilouchian, ”Intelligent control systems using soft
computing methodologies”. CRC Press, 2001.

http://www.astesj.com/

	2. Software-Defined Networks
	3. Artificial Intelligence
	3.1. Neural Networks
	3.2. Evolutionary Algorithms

	4. Equation Simulation and Results
	4.1. SDN Simulation
	4.2. SDN Identification
	4.3. SDN Optimisation
	Figure 7 Convergence comparison of GA and PSO

	5. Conclusion
	References

