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 In this paper first discussion approach will stress out the integration of model predictive 
control in maximum power point tracking MPPT and as progressing a second approach 
identified as fuzzy logic controller FLC and perturb & Observe P&O algorithms are 
analyzed. All are interrelated to MPPT model for a photovoltaic module, PVM, to search 
for and generate the maximum power; in this case what’s called Pmax. As per the first 
technique the focus is on the optimal duty ratio, D, for a series of multi diverse types of 
converters and load matching. The design of the MPPT for a stand-alone photovoltaic 
power generation system is applied where the system will consist of a solar array with 
nonlinear time varying characteristics, and a converter with appropriate filters. The 
integration of model predictive control will be addressed first in this paper. The second fold 
will implement an MPPT system that use the FLC and compare it with a P&O) algorithm 
through the utilization of Simulink. 
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1. Introduction 

It has been obvious that maximum power point tracking algorithm 
is currently playing a vital role to enhance the efficiency of the 
solar panel as less than 40% of energy incident is being converted 
into electrical energy. Due to the growing dependency and the 
increasing need in acquiring electricity, and due to the limitations 
in supply and the uprising prices of conventional sources (such as 
the continuous increase in electrical bills, generation, distribution, 
and maintenance of the electrical plants, fluctuating petroleum 
prices, etc.), photovoltaic (PV) energy vitality turns into a 
promising option as it is inescapable, openly accessible, 
environmentally promising, and has less operational and upkeep 
costs. Along these lines, the interest of PV era systems is by all 
accounts expanded for both standalone and grid-connected modes 
of PV systems. As a result, an efficient maximum power point 
tracking (MPPT) technique is vital for tracking the MPP at all 
environmental conditions and then push forward the PV system to 
functionally be operable at that MPP point. Undesirably, 
photovoltaic generation systems have two note-worthy issues: the 
conversion efficiency in electric power generation is somehow 
low (normally below 17 percent particularly under low irradiation 

conditions), and the amount of electric power generated by solar 
arrays changes persistently with climate conditions. Numerous 
MPPT methodologies have been recommended in the literature; 
the Perturb and Observe (P&O), the Incremental Conductance 
(IC), the Artificial Neural Network, and the Fuzzy Logic methods, 
etc.  It has been noticed that the efficiency of the PV is influenced 
by the following two parameters: the panel’s irradiance and 
temperature which are stochastic and unpredictable. In any PV 
module a DC/DC converter is accountable for transferring 
maximum power to the load.  

Unfortunately and since the MPP point must be sought, this 
can be achieved in either computation models or search 
algorithms. Figure 1 illustrates an MPPT module diagram.  

 
Figure1.MPPT module diagram 
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We have to stress out that the voltage across the power 
conditioning unit (DC-DC converter) is fed to get an isolated load. 
The input-output (I/P-O/P) voltage relationship for converter 
conduction mode is given by duty cycle. As a result, the 
forthcoming of this paper is an extension of a previous research 
outcome that was originally presented in the International 
Conference on Smart Systems and Technologies (SST 2016) to 
recompense for the parametric variations that took place due to 
the effect of temperature and irradiance variations, where a 
controller was utilized to be adaptive to environmental changes. 
The extension of the already published paper will be expanded 
towards proposing an innovative fuzzy logic controller (FLC) for 
DC–DC converters that yield to an effective element of MPPT 
system so that it integrate itself into enhancing the photovoltaic 
modules to work under changeable operating conditions as well 
as dealing with the nonlinear properties of DC-DC power 
converters [1]. 

2. Overview of model predictive control 

MPC is a model in view of line control approach with the 
following accompanying modules: a prediction horizon, a 
receding horizon procedure, and a regular update of the model and 
re-computation of the optimal control input [2,3,4,5]. A block 
diagram of MPC system is shown in Figure. 2. A process model 
is used to predict the current values of the output variables. The 
residuals, the differences between the actual and predicted outputs, 
serve as the feedback signal to a Prediction block. The predictions 
are utilized as a part of two types of MPC calculations that are 
performed at each sampling instant: the first is the set-point 
calculations and the second is the control calculations.  

The set points for the control calculations, which are called 
targets, calculated from an economic optimization based on a 
steady-state model of the process, conventionally, a linear model. 
In MPC the set points are customarily computed each time the 
control calculations are conducted. 

 
Figure 2.Block diagram for MPC 

3.  Nonlinear predictive control 

The basic principle of model predictive control is shown in 
Figure 3. At a denoted time (t) certain measurements are provided, 
which will trigger the controller to predicts the future dynamic 

behavior of the system over a prediction horizon Tp and 
furthermore determine (over a control horizon Tc≤ Tp) the input 
under the condition a predefined open-loop performance objective 
is optimized. 

 
Figure 3.Principle of model predictive control 

When neither disturbances exist nor mismatching model plant 
presence is evident, and if the optimization problem could be 
solved for infinite horizons, then we can apply the input function 
found at time t=0 to the system for all times t ≥ 0.As a matter of 
fact, this is not feasible generally. Because of the factors of 
disturbances and the stressing model-plant mismatch, the real 
system behavior is going to differ from the predicted behavior. To 
integrate a feedback scheme, the open-loop manipulated input 
function acquired will be ready for implementation as the next 
measurement becomes available. The time difference between the 
recalculation/measurements can vary, however often it is assumed 
to be fixed, i.e. the measurement will take place every δ sampling 
time-unit. Using the new measurement at time (t + δ), then the 
whole process for the  prediction and optimization is going to be 
repeated to find a new input function with the control and 
prediction horizons moving forward. Knowing that in Figure 3 the 
input is depicted as arbitrary function of time. For numerical 
solutions of the open-loop optimal control problem it is often 
necessary to parameterize the input in an appropriate way. This is 
normally achieved by employing a finite number of basic 
functions; as an example the input could be approximated as 
piecewise constant over the sampling time δ. The computation of 
the applied input (based on the predicted system behavior) permits 
the inclusion of constraints on states and inputs as well as the 
optimization of a given cost function. In general the predicted 
system behavior will differ from the closed-loop one; and thus 
further cautionary should be taken into account to achieve closed-
loop stability. 

We consider the stabilization problem for a class of systems 
described by the following nonlinear set of differential equations: 

                       𝑋̇𝑋(𝑡𝑡) =  𝑓𝑓�𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)�,      𝑋𝑋(0) =  𝑥𝑥0 ,            (1) 

subject to input and state constraints of the form: 

                   𝑈𝑈(𝑡𝑡) ∈  𝜇𝜇  ∀𝑡𝑡 ≥ 0   𝑥𝑥(𝑡𝑡) ∈ 𝑋𝑋, 𝜇𝜇  ∀𝑡𝑡 ≥ 0              (2) 

Where x (t) ∈ 𝑋𝑋 ⊆ ℝ𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢(𝑡𝑡) ∈ 𝜇𝜇 ⊆ ℝ𝑚𝑚 denotes the 
vector of states and inputs, respectively. The set of feasible input 
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values is denoted by X. In the simplest form 𝜇𝜇and X are given by 
box constraints of the form: 

                   𝜇𝜇: = {𝑢𝑢 ∈ ℝ𝑚𝑚|𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 ≤ 𝑢𝑢 ≤ 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈}                 (3) 

𝑋𝑋: = {𝑥𝑥 ∈ ℝ𝑛𝑛|𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 ≤ 𝑥𝑥 ≤ 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋}, 

Here umin, umax and xmin, xmax are given constant vectors. 

We assume that the purpose of the control object (1) is to 
ensure that the equalities 

  lim
𝑡𝑡→∞

‖𝑥𝑥(𝑡𝑡) − 𝑟𝑟𝑥𝑥(𝑡𝑡)‖ = 0; 

                                lim
𝑡𝑡→∞

‖𝑢𝑢(𝑡𝑡) − 𝑟𝑟𝑢𝑢(𝑡𝑡)‖ = 0                      (4) 
   

Where a given vector functions; 𝑟𝑟𝑥𝑥(𝑡𝑡) and 𝑟𝑟𝑢𝑢(𝑡𝑡) define a 
desired motion of the object. 

We introduce the concept of quality control, setting a 
functional to control the movement of the object (1). 

                𝐽𝐽0= 𝐽𝐽0 (𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡))                             (5)   

Any optimal control problem is to find such a control action 
of a given class (if the task takes into account the feasible set U), 
which ensures the achievement of goals (4) taking into account 
the constraints 𝑥𝑥(𝑡𝑡) ∈ 𝑋𝑋  and ∀𝑡𝑡 ∈ [0, ∞)  and minimizes the 
functional (5). 

 To explain the basic tenets of the theory of predictive control, 
along with a mathematical model (1) of the control object, a 
system of differential equations of the form: 

              𝑋𝑋�̇𝑖𝑖(𝜏𝜏) = 𝑓𝑓̅�𝜏𝜏, 𝑥̅𝑥(𝜏𝜏),𝑢𝑢�(𝜏𝜏)�𝑥̅𝑥�
.

𝜏𝜏 = 𝑡𝑡 = 𝑥𝑥(𝑡𝑡)               (6) 

Is considered, where𝑋𝑋� ∈ 𝐸𝐸𝑛𝑛  - the state vector, 𝑢𝑢� ∈ 𝐸𝐸𝑚𝑚 - the 
vector control, 𝜏𝜏 ∈ [𝑡𝑡,∞). We assume that the function 𝑓𝑓h̅as the 
same properties as the function 𝑓𝑓 and vectors,𝑋𝑋�and𝑢𝑢� taking the 
value of the admissible sets,𝑋𝑋and 𝑢𝑢respectively. 

In addition, let us assume that the function  𝑓𝑓 ̅ is set in such a 
way that for any admissible control𝑢𝑢�(𝜏𝜏) ≡ 𝑢𝑢(𝜏𝜏) vector functions  
𝑥𝑥(𝜏𝜏)  and   𝑥̅𝑥(𝜏𝜏), satisfy the system (1) and (6) respectively; and 
are close to each other at a rate for each  𝜏𝜏 ∈ [𝑡𝑡, ∞) . 

The system of differential equations (6) is called predictive 
model in relation to the mathematical model (1) of the control 
object. 

A practical view of photovoltaic energy conversion station is 
presented in Figure 4, where the source of energy, represented by 
the solar array PHVS with filter C delivers power to DC-DС 
power converter, such as buck, boost or buck-boost converters; 
which depends on specific architecture of the entire system to 
select one of the above-mentioned types. For instance, if PHVS is 
considered to supply power to a DС distribution network (i.e. a 

space station power network) than power interface will provide 
conditioned DС power. In case the main utilization was for smart-
home application with AC power distribution network then 
independently controlled DС-АС inverter with built in PWM 
control may be used. The interface links between PHVS and the 
consumer grid may include other elements such as energy-storage 
devices (i.e. batteries or super capacitors), which require specific 
controllers to run “charge-discharge” mode of operation. We have 
to bear in mind that control designs for interfaces devices are 
ignored. 

The objective of DС-DС converter on PHV station MPPT 
system is to regulate the output voltage 𝑉𝑉0  (Figure 4) under wide 
range of operations and PHV nonlinearity characteristics, caused 
by existing atmospheric conditions and load variation. The 
controller task is to deliver output signal D (Figure 4) to follow 
MPPT [6] and constraints of the circuit. 

DС-DС boost converter schematic is in a view of lumped 
parameter circuits used for control design and represented in 
Figure 5.  

The coil non-linearity’s is neglected, and the switch is also 
considered ideal. At each switching instant, the stray inductor and 
parasitic capacitor are also neglected. After this assumptions the 
lumped parameter switched model 𝑋𝑋𝑙𝑙  represent the linear 
inductance value associated to the coil L, which losses are 
accounted for 𝑟𝑟𝑙𝑙 , 𝑥𝑥𝑐𝑐  , 𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟с represent capacitance and equivalent 
series resistor of C. 

Output load presented by resistor 𝑅𝑅0.  The switching stages of 
the converter are formalized through the switch S, representing 
the dual operated semiconductor component [7]. The converter 
operation characterizes by switching period 𝑇𝑇𝑠𝑠 (corresponding 
frequency𝑓𝑓𝑠𝑠).  

The DС component of the output voltage regulated through 
the duty cycle D[k], (Figure. 4), which is defined by: 

                                D[k] =𝑡𝑡1[𝑘𝑘]
𝑇𝑇𝑠𝑠

                            (7)                                                      

Where 𝑡𝑡1[𝑘𝑘 ] represents the time interval during the kth 
switching period;𝑇𝑇𝑠𝑠  during which S is in the position 1 for the 
boost converter, connecting to the supply 𝑈𝑈𝑠𝑠. 

 
Figure 4.Photovoltaic station model predictive control block diagram 
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Figure 5 Lumped parameter model of the boost converter 

x (t) = [𝑖𝑖𝑙𝑙(𝑡𝑡)   𝑢𝑢𝑐𝑐(𝑡𝑡)]𝑇𝑇              (8) 

as the state vector, where 𝑖𝑖𝑙𝑙(t) is the inductor current  and 𝑢𝑢𝑐𝑐(t) is 
the capacitor voltage, and with a given duty cycle  D[k] for the 
kth period, the systems can be described by the following 
continuous-time state-space equations: 

𝑥̇𝑥(t)=𝐺𝐺1x(t)+𝑔𝑔1𝑢𝑢𝑠𝑠(𝑡𝑡),      k𝑇𝑇𝑠𝑠≤ t < (k + D[k]) when S=1      (9)   

𝑥̇𝑥(t) =𝐺𝐺2x(t)+𝑔𝑔2𝑢𝑢𝑠𝑠(𝑡𝑡)(k + D[k]) 𝑇𝑇𝑠𝑠 ≤ t < (k+1)𝑇𝑇𝑠𝑠when S=0 

Where 𝐺𝐺1 ,𝐺𝐺2 ,𝑔𝑔1,𝑔𝑔2are given by: 

                      𝐺𝐺1 = �
𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22�  For the boost converter.    (10)                        

Output of the converter  𝑢𝑢𝑜𝑜  is equal to 

                        𝑢𝑢𝑜𝑜(𝑡𝑡) =𝐵𝐵1𝑇𝑇x(t),   k𝑇𝑇𝑠𝑠≤ t< (k + D[k])𝑇𝑇𝑠𝑠, 

                        𝑢𝑢𝑜𝑜(𝑡𝑡) =𝐵𝐵2𝑇𝑇x(t),  (k + D[k])𝑇𝑇𝑠𝑠≤ t<(k +1)𝑇𝑇𝑠𝑠    (11) 

                                               𝐵𝐵1=� 0    𝑟𝑟0  𝑟𝑟2
𝑟𝑟0+𝑟𝑟𝑐𝑐

�
𝑇𝑇
                        (12) 

                                               𝐵𝐵2 =� 𝑟𝑟0  𝑟𝑟2
𝑟𝑟0+𝑟𝑟2

𝑟𝑟0  
𝑟𝑟0+𝑟𝑟𝑐𝑐

�
𝑇𝑇
            (13) 

4.    Fuzzy logic controller approach for photovoltaic Station  

A standout amongst the most noteworthy problems in PV 
module and MPPT effectiveness is DC-DC converter. As of late, 
there has been expanding eagerness for the advancement of 
proficient control procedures to enhance dynamic conduct of DC–
DC converters by utilizing conventional PID based controllers 
and fuzzy logic controller (FLC), and other well dealt and known 
controllers which have been utilized to control buck, boost, and 
buck–boost converters. 

Carrying out, many leaders in this domain have additionally 
proposed to utilize the FLC in circumstances where it could be 
valuable in (1) there is no exact mathematical model for the plant 
and (2) there are experienced personnel whom they can control a 
plant and give subjective control rules in regards to vague and 
fuzzy instances. The tracking of the maximum power point is of 
twofold: (a) through rough search, with a major move to improve 
the response of the MPPT controller, (b) the fine phase where the 

step is small, thus ensuring the system stability and decrease the 
maximum oscillations around the MPP [8]. 

 

As we move towards the components of fuzzy logic controller 
we need to address the three major components of FLC which are 
Fuzzification (input variables) that encompass transforming crisp 
values into grades of membership for linguistic terms of fuzzy sets; 
Fuzzy Inference which is involved in the transformation from a 
given input to an output using fuzzy logic inference rules; and  
Defuzzification which  converts the degrees of membership of 
output linguistic variables into numerical values [9]. A general 
view of fuzzy inference system is shown below in figure 6. 

 

 
 

 
Figure 7 demonstrates the block diagram of fuzzy logic controller 
that is intended to control the DC-DC power converter with 
respect to MPPT of a photovoltaic system.   Referring to Figure. 
7 the inputs (error (e) and the difference in error (de) of the system 
are defined as follows [10] : 

 
Figure 7.Fuzzy logic controller diagram 

 
           de(k) = e(k) - e(k-1)                          (15)  

 
Knowing that U ref = reference output voltage, U0= DC–DC 

converter actual output voltage (at kth sampling time). 
 
The fuzzy logic controller (FLC) output is considered as a 

change in duty ratio; du (k). 
 
Where, duty ratio d (k), is expressed at the kth sampling time 

as follows: 
                                     d(k) = d(k-1) + du(k)             (16) 
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A more detailed structuring of a fuzzy logic controller is 
shown below in figure 8. 

 

 
 

 
5.    Simulations and results for FLC and P&O MPPT 
techniques  
 

A new adaptation and simulation of a PV system using fuzzy 
logic controller with an MPPT is addressed. As shown in figure.8, 
the input variables (E, CE)  of the fuzzy controller are resulting 
from the actual signals (e, ce) through applying a  product term in 
consequent scale gains (SE, SCE), which get converted in the form 
of linguistic variables utilizing  fuzzy subset. 

A sample of fuzzy rules are shown in table 1 and used to 
control the buck converter in a form to reach the maximum power 
point MPP of the photovoltaic PV generator, where the entries are 
a sort of  fuzzy sets in the form of error (E), change of error (CE) 
and change of duty ratio (ΔD) to the converter.     

Table 1. Fuzzy rules 

  E 
CE 

NB NS ZO PS PB 
NB ZO ZO NB NB NB 
NS ZO ZO NS NS NS 
ZO NS ZO ZO ZO PS 
PS PS PS PS ZO ZO 
PB PB PB PB ZO ZO 

 

Figure 8 shows an approach for a main PV model structure 
composed of PV array, a DC-DC converter in the form of buck or 
step down converter along with MPPT controller which is 
connected to a load. This setup is manipulated inside the 
Matlab/simulink setting. Sunntech STb134.12/Tp represented the 
PV and its technical data is showing in table 2. Six PV modules 
connected in series formed the PV array which its total capacity 
is 810 W.  The 105v DC input voltage was stepped down to 48v 
to fit the battery voltage level using a buck converter [11-14]. 

In addition, and to implement the fuzzy logic controller FLC, 
FL toolbox in Matlab/Simulink will be selected and the simulation 

of fuzzy logic controller for MPPT to be conducted and as we 
progress an evaluation comparison with a Perturb & Observe 
(P&O) for MPPT controller was performed.     

Table 2.PV module specs 

 
 

Figure 8a. Simulink implementation of the stand-alone PV system 

 
Figure 8b. FLC MPPT algorithm 

Figure 9 demonstrates the outcome of the simulation result of  
PV generator O/P power, operating current & voltage, and 
eventually the duty ratio “D” through the use of a buck converter 
and these results were obtained at a standard test conditions (STC) 

Electrical 
specifications Values 

Open-circuit voltage 22.3 V 
Short-circuit voltage 8.20A 
Optimum operating 
voltage (Vmpp) 17.5 V 

Optimum operating 
current (Impp) 7.71A 

Maximum power at 
STC (Pmax) 135W 

Current temperature 
coefficient of Isc (0.055 ±0.01) %K 
Voltage temperature 

coefficient -(75±10) 𝑚𝑚𝑚𝑚/𝐾𝐾 
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among the fuzzy logic controller “FLC” and the P&O based 
MPPT. To take the discussions a step forward obviously the 
outcome of the FLC MPPT had reduced clearly the response time 
of the PV system. On the other hand as we compare the above to 
P&O MPPT system P&O showed an impact of energy losses.  
Figure.9b is derived from comparing the MPPT signals at a 
frequency of 10HZ “STC”. As we used the P&O technique there 
was an evidence of a continuous oscillation at the operation point 
and this was due to the incessant perturbation that took place at 
the operating voltage to reach the maximum power point “MPP”. 
As compared to the FLC technique such oscillation wasn’t 
existing in FL based MPPT technique, whereas the signals of the 
other parameters which were namely the power “P”, voltage “V”, 
current “I”, and duty ratio “D” continued to stay constant, which 
would cause an impact on the reduction of power loss. 

 
Figure 9a. Comparing P&O and FL signals 

Figure 11 displays the simulation of the increase in cell 
temperature from “25°C” to “50°C” which was taking place at a 
“2 sec” time period.  

 
             Figure 9b.Comparing MPPT methods at 10Hz frequency at the         
             (STC) condition 
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         Figure 10. FL and P&O methods at fast increasing irradiation  

From the simulation results we can clearly see that irradiation 
stayed constant on a 1000w/m2 value. In nutshell, Figure 11 
shows that the output power with a decreased linearity as we 
applied both MPPT algorithms namely the fuzzy logic and Perturb 
and Observe. At the same time P&O MPPT method resulted in 
low deviation from the maximum power point MPP. 

6.    Conclusion 
The employment of MPPT for PV stations and their 

applications were addressed in the form of two schemes; a first 
scheme was an adaptation of a model predictive control (MPC) 
for a PV station that is considered to be a promising technique to 
maximize the efficiency of the power utilization. 

 
Figure 11. FL and P&O methods at fast increasing temperature 

The second scheme of the paper was focusing on the 
implementation and simulation of fuzzy logic controller for 
MPPT to seek the maximum power point and comparing it to 
P&O. From the simulation results, FLC provided a reliable 
response as compared to the P&O controller in regards to main 
performance of MPPT. 
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