

www.astesj.com 169

Autonomous Robot Path Construction Prototype Using Wireless Sensor Networks

José Paulo de Almeida Amaro1, João Manuel Leitão Pires Caldeira2,*, Vasco Nuno da Gama de Jesus Soares2, João Alfredo Fazendeiro
Fernandes Dias3

1Instituto Politécnico de Castelo Branco, Castelo Branco, 6000-084, Portugal

2Instituto Politécnico de Castelo Branco, Instituto de Telecomunicações, Castelo Branco, 6000-084, Portugal

3IADE–Faculdade de Design, Tecnologia e Comunicação, Lisboa, 1000-041, Portugal

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 25 September, 2020
Accepted: 01 December, 2020
Online: 15 January, 2021

 The use of wireless sensor networks (WSN) can be a valuable contribution in disaster
situations or life-threatening exploration. Using wireless mobile robots, it is possible to
explore vast areas without human intervention. However, the wireless network coverage
that can keep mobile robots connected to the base station / gateway is a major limitation.
With this in mind it was created a prototype of an extensible WSN using mobile robot nodes
that cooperate amongst themselves. The strategy adopted in this project proposes using
three types of nodes: master node, static node, and robot node. Three different algorithms
were also developed and proposed: Received Signal Strength Indication (RSSI) Request;
Automovement; Robot Cooperation and Response to Static Node. The performance
evaluation of the prototype was carried out using a real-world testbed with each developed
algorithm. The results achieved were very promising to continue the evolution of the
prototype.

Keywords:
Wireless Sensor Network
Received Signal Strength
Indication
Robotic Path Construction
Autonomous Deployment
Prototype

1. Introduction
This paper is an extension of work originally presented in

conference 2020 15th Iberian Conference on Information Systems
and Technologies (CISTI 2020) [1].

Wireless Sensor Networks (WSNs) are composed by small
nodes spread in an area of interest to measure environmental
conditions such as temperature, sound, humidity, although they
have many other uses [2]. Each node can be seen as a small
computer, having processing, sensing and communication
capabilities. The nodes connect to each other wirelessly and can
cooperate in collecting information and routing it to an end user
[3].

The need for extensible WSNs is tied with monitoring
situations that require the deployment of a WSN. Situations such
as forest fires or fires is large buildings [4], determining the extent
of damage of earthquakes [5], nuclear disasters as in Fukushima,
Japan, rescue operations, exploratory operations, mapping
flooded caves, battlefield reconnaissance or planetary exploration
[6]. In some of these situations it is possible for a human operator
to deploy the nodes of the WSN. But in disaster situations, or any

situation where human life could be endangered, it is necessary to
use alternative methods of deployment, such as the use of mobile
robots.

With this purpose in mind a testbed was used, which serves
as a prototype for a WSN. The testbed used was composed of
three different types of nodes: master, robot and static nodes. The
master node is used so an end user can receive information from
the network and send commands to any node. The static nodes
serve as intermediate relays that connect the master node and the
robot nodes. The robot nodes serve to extend the network, having
mobility besides communication capabilities. The objective of
this project is to create an extensible wireless network, using
intermediate static nodes that connect a gateway to a moving robot
node.

This document is organized as follows. Section I introduces
WSNs and the goal of the project, Section II gives a review of
related literature, with examples of similarly deployed WSNs.
Section III describes the testbed and the libraries used for
programming the nodes. Section IV describes the algorithms
developed. Section V describes four scenarios used to evaluate the
performance of the testbed with the described algorithms and the

ASTESJ

ISSN: 2415-6698

*Corresponding Author: João Caldeira, Email: jcaldeira@ipcb.pt

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 169-177 (2021)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj060119

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060119

J.P.A. Amaro et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 169-177 (2021)

www.astesj.com 170

results achieved. Section VI discusses these results and Section
VII concludes the report and proposes future avenues of
exploration.

2. Related Work

There has been prior work on the problem of “as-you-go” or
impromptu deployment of a WSN. In [4] and [7] are proposed
algorithms for “as-you-go” deployment, in which an agent,
human or robot, measures link quality at equally spaced intervals
and makes placement decisions, while only moving forward along
a line.

Some works consider a purely autonomous deployment of a
WSN by mobile robots. In [6] is explored autonomous
deployment of a WSN with the goal of human detection, in case
of disaster situations, in which mobile robots perform
simultaneous localization and mapping. In [5] mobile robots carry
sensor nodes and measure the RSSI, to know when to deploy
sensor nodes to ensure communication or restore the network.

Many of the proposed systems measure link quality, using
communication metrics like RSSI or Packet Reception Ratio, and
decide when to deploy a new relay when the metric satisfies
predefined rules. In [8] such a system is used for dynamic
deployment of a WSN through a breadcrumb system for
firefighters. A breadcrumb dispenser is worn by firefighters and a
link estimator uses the previous mentioned metrics to decide when
to deploy breadcrumbs.

Works such as [9] also make use of mobile robots to deploy
a WSN but focus on how these robots can help with problems such
as coverage holes or collection of redundant sensors. They
achieve this by using permanent grid-based deployment, with
cluster concepts to reduce packets used in creating and
maintaining the grid structure. Furthermore, they consider the
communication range to be at least twice of the sensing range.

Cooperation between multiple agents is seen as an important
problem to be explored. In [4] and [7] it is pointed the need for
algorithms where two or more robots cooperate to deploy a WSN.
While [6] calls for field test using two mobile robots and to
address the communication issues that arise from coordination
between multiple robots. These and more issues of multi-robot
systems, such as reduction in network traffic, routing approaches
and sensor data processing are pointed as areas that need
appropriate operational methods by [5]. The study of
communication metrics, such as RSSI, in various environments,
to allow setting different parameters that could optimize the
system, is called for by [8].

In the present study the aim is to use the communication
metric of RSSI to know when a new node should be deployed and
integrate this metric with cooperation between two mobile robot
nodes. The RSSI metric has been used in studies such [10], [11]
and [12] to locate the robot nodes, triangulating the robot node
and static nodes for navigation and helping the robot node avoid
obstacles and reach a goal. But these approaches require that the
static nodes be placed before the robot node starts its action, and
to locate the robot need a lot of deployed static nodes. The
proposal presented in this paper gives a different approach to this
problematic by promoting the static nodes deployment using

mobile robots. The RSSI value was used to decide the positions
to deploy static nodes.

3. Wireless Sensor Network Robot Path Construction
Proposal

The goal of this project was to build a prototype of
autonomous WSN deployment by a mobile robot. In light of
literature requests, it was decided to consider two mobile robots
and develop algorithms that ensure the coordination between
them as the WSN is deployed. In order to build an extensible
network, it is necessary for the robots not only to cooperate each
other but also respond to the deployment of static nodes. Using
static nodes allows to maintain communication between mobile
robots and gateway even when the mobile robots leave the
network coverage area of gateway.

In this section firstly will be described the hardware used to
create the testbed, namely the master node, robot nodes and static
nodes. Then will be described the libraries and methods used to
achieve the WSN behavior and obtain a communication metric
from each node, the RSSI. The RSSI metric was considered due
to the limited resources of the hardware platform used.

Figure 1: Photo of Master Node connected to a laptop.

3.1. Hardware Description

As mentioned before three types of nodes were used: a master
node, static nodes and robot nodes. Master node and static nodes
are composed by D1 mini pro boards with a wireless antenna Wi-
Fi ESP8266, and a power supply. In the case of the master node
the power supply was the PC it was connected to, in the case of
static nodes a power banks were used.

Figure 1 is a photo of the master node used, connected to a
laptop where the end user could send commands and received
information from the network. Figure 2 is a photo of a static node
used, which served the purpose of acting as a relay and extending
the network.

The robot nodes were two wheeled mobile robots composed
by a NodeMCU 1.0 board also with an ESP8266 module, a L293
Motor Driver Shield, two rubber wheels with Micro DC geared
motors and a power bank, that served as a power supply. The

http://www.astesj.com/

J.P.A. Amaro et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 169-177 (2021)

www.astesj.com 171

robots are completely similar in terms of hardware with just small
differences in how the boards were mounted as can be seen in
Figure 3 and Figure 4, which are photos of the first and second
Robot Nodes used respectively.

Figure 2: Photo of a Static Node.

Figure 3: Photo of the first Robot Node used.

Figure 4: Photo of the second Robot Node used.

All the boards in each node were programmed using the
Arduino programming language and respective Arduino IDE. The
Arduino programming language makes use of two functions that
are always present: setup and loop. Setup runs once when the
board is connected to an energy supply. Loop runs continually
after the setup, as long the board is connected to an energy supply.
Future mentions to setup and loop, while explaining the code,
refer to these two functions. The robots need to perform several
tasks periodically, such as measuring the RSSI or moving. To
achieve this behavior the Task Scheduler library was used.

3.2. Wireless Sensor Network Implementation

To manage creation of the wireless sensor network and
communication between nodes the painlessMesh library was used
[13]. This library uses the esp8266 hardware present in the boards
to create a mesh network. The painlessMesh library does not use
the Arduino WiFi libraries, due to performance problems, but the
native esp8266 libraries [13]. The library allows us to make the
nodes to communicate with each other, in a prototype of a WSN,
without concern about how to structure or manage the network.
The great advantage of using this library is that any operational
nodes will automatically self-organize into a functional mesh
network.

The messages between nodes are all JSON objects, which
makes them human readable and facilitates integration with
frontends and other applications. The mesh does not use or create
a TCP/IP network, rather each node is identified by a 32bit chipId
obtained through the esp8266 native SDK. As a result, every node
will have a unique id, that can be used to communicate
specifically to that node. Broadcast messages to all nodes in the
mesh are also possible [13].

Some functions of the library are used in the setup of every
node, namely init, which initializes the mesh, and the functions
that set up callbacks, such as onReceive(&receivedCallback) and
onNewConnection(&newConnectionCallback). The functions
given as arguments: receivedCallback and
newConnectionCallback, are present in every node as well. They
execute when a message is received by the node and when a new
node connected to the network, respectively.

Other functions used at setup are setRoot for the master node
and setContainsRoot, for all others. The purpose of these is to
avoid the creation of submeshes during mesh formation. It makes
sure all nodes know the gateway is the master node and a node
once connected to the master node will not disconnect. This is
necessary because of a limitation during mesh formation, namely
that each node can only connect to another one node at any given
moment. Because of this, nodes will try to randomly connect and
disconnect until a full mesh is formed. This solution works but
may create submeshes. The functions above aim to solve this
problem. Another consequence of the “each node can only
connect to one other node at a time” will be that usually only node
of the mesh will be available to connect to other nodes.

A library function used in the loop of every node is the
function update, which runs maintenance tasks and is required for
the mesh to work. In the master node it is also used the
subConnectionJson function, which allows to print the mesh
topology in JSON format. All nodes use the sendSingle and

http://www.astesj.com/

J.P.A. Amaro et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 169-177 (2021)

www.astesj.com 172

sendBroacast functions. The former allows to send a message to
a node using its chipId, the latter sends a message to all nodes in
the mesh.

Task Scheduler

The Task Scheduler library allows for periodic task
execution. It is possible to specify execution period, in
milliseconds or microseconds, and number of iterations, be they
finite or infinite. The reason for needing to use this library is that
the boards used cannot launch several threads at a time, hence
cannot multitask with recurring to external libraries.

It works by first creating a scheduler using the Scheduler
class. Then creating tasks using the Task class, and specifying the
execution period, number of iterations and the actual function that
will define the task behavior. Then at setup each task is added to
the scheduler. From there on it is possible to enable or disable
tasks as required [14]. The two main tasks used by the robot nodes
are the RSSI Task and the Moving Robot Task.

The RSSI Task’s main purpose is to measure the RSSI value.
It will always do this if the scan for Wi-Fi networks is successful.
Then depending on flags active it might just send this value to the
master node or check if this value is lesser or equal to the RSSI
threshold. If it is smaller, meaning more negative because the
RSSI value is usually a negative integer, then it will send the RSSI
value to the master node along with a request to place a new node.
If the RSSI value is not smaller the robot can move further, and
so it will call the appropriate movement function, disable the RSSI
task and enable the Robot Moving task.

The Robot Moving Task’s main purpose is to time the
movement of the robot and send the RSSI value to the master node
once a movement is finished. It is also used to create the robot
node auto movement, as will be explained below.

The RSSI value is the most important metric in the prototype
because it is based on it that the robot nodes will decide when a
new node should be placed. Therefore, it regulates the extension
of the WSN. It will also be used later both in the cooperation
between robot nodes and in their response to deployment of new
static nodes.

RSSI Request

It is useful to measure the value of the RSSI to understand
how it changes, particularly due to growing distance from the
master node. With this purpose in mind was created a way to
simply have the master node send a request to a robot node and
have the robot measure the RSSI and send its value back to the
master node, to be printed and made available to the user.

The laptop connected master node expects user info from the
serial monitor of the Arduino IDE. If the input received is the,
case insensitive, string “RSSI” it will send a RSSI Request to all
nodes. This request is simply a message that will prompt each
node to enable the RSSI Task, which will make it measure the
RSSI value, and then send this value back to the master node. The
master node will print the value and an identifier of the node that
sent it. Algorithm 1 represents the algorithm behind RSSI
requests.

In terms of number of messages exchanged within the
network, they are at least 2 ∗ (𝑛𝑛 − 1), where 𝑛𝑛 is the total number
of nodes in the network. The reason for this number is that the
master node will send a broadcast message upon being prompted
by the user with an RSSI Request, so it will send a message to all
nodes except itself, 𝑛𝑛 − 1. Every node will then measure the RSSI
and respond to the master node, so this number is doubled.
Depending on the extension of the network this number will
increase because the message may need to hop between nodes
before reaching the master node.

Algorithm 1: RSSI Request
Result: The Master Node will print the RSSI values for all
nodes in the network in its serial monitor
Initialization;
while Master Node on do
 Expects user input;
 if User input = RSSI then
 Send RSSI

Request;

 Nodes send
RSSI values;
Print RSSI
values;

 end
end

4. Testbed Deployment

With the testbed ready it is possible to start developing
algorithms that will create us a prototype for an autonomous,
extensible WSN. With this in mind, firstly it is necessary to
develop ways of having the robot node move on its own and
request new nodes for the network once a RSSI threshold is hit,
which was called AutoMOV. Furthermore, ways of having two
robot nodes cooperate with each other, to further extend the WSN,
were developed, which was called RCoop. Finally, there was a
need to develop ways for the robot nodes to know when a new
static node was deployed and respond accordingly, extending the
network if possible, which was called ReStatic. In this section the
aim is to present each of these algorithms and explain how they
were implemented using the testbed.

4.1. Automovement Algorithm (AutoMOV)

In the first implementation of the WSN prototype the robot
node moved by commands sent from the master node by user
input. But the goal was autonomous movement and deployment
of an extensible WSN. To achieve this the robot nodes need to
move autonomously, not prompted by user input, so an algorithm
for robot node automovement was developed, hereinafter referred
to as AutoMOV. All movement at this point occurs along a line.

An auto movement request is made if the Master Node
catches a string that starts with ‘A’ or ‘M’. This calls the function
AutoMOVRequest. This function will print if the request is to start
auto movement (A) or to stop auto movement and go back to
manual (M). It will also send the given string to the robot node by
method sendMessage. The method sendMessage uses the
communication functions from the Painless Mesh library,

http://www.astesj.com/

J.P.A. Amaro et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 169-177 (2021)

www.astesj.com 173

sendSingle or sendBroadcast, but with arguments to choose
between them.

The robot node responds to this sendMessage with the call-
back routine receivedCallback. In the case of ‘A’ it will turn the
movement type to ‘F’, which will make the robot move forward,
this is the case because all movement occurs along a line at this
point. Later it should decide the movement type based on sensor
information.

 It will also activate an AutoMOV flag and enable the RSSI
Task. In the case of ‘M’ it turns off the AutoMOV flag and stops
movement.

Algorithm 2: Automovement (AutoMOV)
Result: Robot Node performs discrete movement until it hits
its RSSI Threshold
Initialization;
while Master Node on do
 Master Node expects input
 if User input = M do
 AutoMOV Stop Request;
 Robot Node stops;
 else if User input = A do
 AutoMOV Start Request;
 while Current RSSI <= RSSI Threshold do
 Robot moves;
 end
 end
end

The RSSI Task will then be responsible for making the robot
always move unless the current RSSI is equal or below the
threshold, which would make AutoMOV stop and the robot node
to send a request to the master node, for placement a new static
node. Otherwise it enables the Moving Robot Task. This last task
has an extra ‘if’, to deal with auto movement, that basically says:
if one movement was completed and the AutoMOV flag is on, then
it will enable the RSSI Task again. This creates a loop between
the two tasks. Algorithm 2 represents the algorithm behind
AutoMOV requests.

4.2. Robot Cooperation Algorithm (RCoop)

Coordination between multiple robots, cooperating in
deployment or exploration, is seen as an important concern by
current WSN literature [3-6]. With this purpose in mind there is a
necessity for algorithms that allow multiple robots to cooperate
and for field tests involving more than one robot [4][6][7].

The goal then was to develop an algorithm that allows two
robots to cooperate in a prototype of WSN deployment based on
communication metrics, namely the RSSI. Hereinafter this
algorithm will be referred as RCoop.

The two robot nodes were named Robot One (R1) and Robot
Two (R2) to help differentiate between them. The only real
distinction between robot nodes is that R1 will be the first to
move. All movement described occurs along a line.

R1 will be sent a signal from the user and start movement.
Each robot movement is time limited to ten seconds. After these
ten seconds of movement it will measure the RSSI and based on

this value decide to stop or move again. While the RSSI is above
a certain threshold it will continue to perform discrete ten second
movements. If the RSSI is found below the threshold it will stop,
ask for the deployment of a static node and send a message to R2.
Deployment of static nodes is done by human agents at this point.
The reaction of robot nodes to the deployment of static nodes will
discussed later. Here the main concern is about how the robots can
cooperate.

R2 after receiving the message from R1 will know the first
robot has reached the RSSI threshold and so commence its own
movement. The message sent by R1 basically functions as R1
‘calling’ R2. R2 will mimic the behavior of R1 and move until it
has reached the RSSI threshold. When R2 reaches the threshold,
it will send a message to R1. This will prompt R1 to update its
own threshold and start moving again. The goal here is to extend
the network as much as possible using the two robot nodes.

The way this works in terms of code is that R1 will first be
sent an AutoMOV request by the master node. It will normally
follow AutoMOV until the threshold is reached. When it reaches
the threshold, it will call AutoMOVRequest, which will send a
message to R2. R2 will expect a message with this format via the
callback routine receivedCallback and will activate its own
AutoMOV because of it. R2 will then perform AutoMOV, as
explained above, until it reaches its threshold. When at the
threshold will send a message to R1 via sendMessage, informing
it R2 is at the threshold. R1 will then decrement the rssiThreshold
variable and turn its AutoMOV own again, and so move further
until it reaches the new threshold value. Algorithm 3 represents
the algorithm that deals with robot cooperation (RCoop).

Algorithm 3: Robot Cooperation (RCoop)
Result: The two robots will extend the network
Initialization;
R1 AutoMOV;
if R1 RSSI <= RSSI Threshold do
 R2 AutoMOV;
 if R2 RSSI <= RSSI Threshold do
 R1 expands Threshold;
 R1 AutoMOV;
 end
end

4.3. Response to Static Nodes Algorithm (ReStatic)

The other thing that is required to attain the goal of having an
extensible WSN is that the network responds autonomously to the
deployment of static nodes. To elicit this behavior, a
communication metric is used again, the RSSI.

When a static node is placed it connects to the network
normally, then it will measure its RSSI. It will send this value to
the mobile robots connected. Then each robot will use this value
to decide whether it should start movement or not. This decision
is based on if the difference between its own RSSI and the static
node RSSI is lesser than the value of the RSSI threshold. If the
difference between RSSIs is lesser than the threshold then it
means the static node is closer to the master node and hence the
network can be safely extended, so the robot will move.

http://www.astesj.com/

J.P.A. Amaro et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 169-177 (2021)

www.astesj.com 174

But if a new node connects it usually will connect as a
subnode to the nodes already there, so how to solve this problem?
The answer was to force a reorganization of the network. If the
robot concludes by the above described method that the static
node is closer to the master node then, before it initiates
movement, it will reset its own board. The result of this is that
when the robot reconnects to the network it will now be a subnode
of the newest static node in the network topology. The value of
the robot’s threshold is saved in the master node, via a message
sent by the robot before it resets. When the robot node reconnects
the master node sends this value to the robot again, the later will
update its threshold and reinitiate movement.

In terms of code this is achieved by using the RSSI Task in
the static nodes as well. It will activate and measure the RSSI
value as soon as the static node is turned on. Then it will send this
value to the master node which will in turn send it to the robot
nodes, via sendMessage. As usual the way to prompt behavior in
a certain node, the node is made to expect a string formatted a
certain way, via the receivedCallback, and if that string is received
the desired behavior occurs. So, in that same way, when the robot
nodes received the value of RSSI prefixed with the string “(mesh
node)” they will first extract the RSSI value from that string.
Then, they will check if the deployed static node can be
considered closer to the master node, calculating if the difference
between their RSSI value and the RSSI value of the static node is
greater than their RSSI threshold (currentRSSI - meshRssi >
rssiThreshold). If so, the robot node will expand its threshold and
send it to the master node. The master node will save this value
and send a message back to the robot node signaling the robot can
now restart, with the purpose explained above. The robot node
will then restart by esp8266 native function, ESP.restart, which
will restart the board. The master node will expect a robot node
connection via the newConnectionCallback, which is a callback
routine that executes each time a new node connects the network.
In case there is a saved RSSI threshold value for the robot node
that connected then it will send this value to the robot that just
connected. The robot will use this value to update its threshold
and turn the AutoMOV on, thus extending the network. Algorithm
4 represents the response to static nodes algorithm described
above. This algorithm will be known as ReStatic.

Algorithm 4: Response to Static Nodes (ReStatic)
Result: Robot Nodes extend network if possible
Initialization;
Static Node Deployed;
Send RSSI to Robot Nodes;
if RSSI – Static RSSI > Threshold do
 Expands Threshold and save it;
 Robot Node reset;
 Robot Node receives threshold;
 Robot Node AutoMOV;
end

5. Performance Evaluation

It was then time to put the algorithms to test to verify if the
intended behavior of an extensible WSN could be achieved, take
measurements, find potential faults or avenues for improvement.
For these purposes four scenarios were developed, each
progressively testing each one of the developed algorithms, first

separately, then in conjunction. As the presented work is still in
its initial proposal, some RSSI issues were considered out of the
scope. All demonstration scenarios considered an open space area
with no obstacles and, as much as possible, a linear variation of
RSSI.

The measurements were conducted in an open space indoor
area. The master node was connected to a laptop via the USB port
and will collect RSSI data. The laptop is placed on a wooden
support that measures 31 cm in height. Time and distance are
collected by the testers, while RSSI values are registered by the
master node.

Firstly, it was important to study the variation of RSSI based
on the distance between a robot node and a master node. This
would serve to understand how it naturally variates without
accounting for any robot node movement and illustrate the
relationship between distance and the RSSI value. It makes use of
and proves the functionality of the RSSI Request.

The robot node was placed at several distances of separation
to the master node, always one meter apart from 0m to 13m. At
each distance, the user would elicit the RSSI value through RSSI
Request. After collecting ten samples at that distance of separation
an RSSI average was calculated. Figure 5 shows the RSSI
averages for the various distances of separation to the master
node.

Figure 5: Robot Node RSSI variation with distance from the Master Node.

5.1. Scenario 1: One Robot Node

This first scenario intends to verify how much it was possible
to extend the network simply using two nodes: the master node
and a robot node. It will also illustrate the functionality of the
robot node AutoMOV algorithm.

The robot node is place on the floor at a 0 meters distance from
the master node. It will be sent a signal from the master node
which will start the AutoMOV. Then, the robot node will perform
discrete 10 second movements along a line while measuring the
RSSI. When its current RSSI value is below a certain threshold it
will stop and request the placement of a new static node. Figure 6
represents the end state for this scenario.

-34

-54 -52 -53

-63
-71 -71

-75
-70 -71

-75
-81 -79

-84

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

dB

meters

RSSI variation with distance

http://www.astesj.com/

J.P.A. Amaro et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 169-177 (2021)

www.astesj.com 175

Figure 6: End state for Scenario 1 composed of Master Node and a Robot Node.

After ten trials an average of the values of time since
AutoMOV started till robot node stoppage, distance traversed by
robot node and last RSSI recorded is calculated. Table 1 holds the
recorded values for this first testing using a robot node.
Table 1: Averages of time, distance and RSSI for 1 Master Node 1 Robot Node.

Time 54’’

Distance 4m 83cm

RSSI -68 dB

5.2. Scenario 2: Two Robot Nodes

The second scenario intends to extend the WSN using two
robot nodes. This scenario uses two robot nodes and the master
node and is meant to demonstrate the functioning of the RCoop
algorithm.

Both robot nodes are placed next to one another at a 0m
distance from the master node. Then the user enters ‘A’ into the
serial monitor of the master node in the Arduino IDE. This is the
signal that will set the AutoMOV of robot node named R1 on. All
other network extending behavior is autonomous. Figure 7
represents the end state for this scenario.

Figure 7: End state for Scenario 2 composed of Master Node and two Robot

Nodes.

The last RSSI values of both R1 and R2 are recorded by the
master node. The distance of both robot nodes to the master node
after both robot nodes stop is recorded. The duration from the time
the signal is sent until both robot nodes stop is also recorded. After
ten trials an average of RSSI, distance and time was calculated.

Table 2 holds the recorded values for this first test with the two
robot nodes.

Table 2: Averages of time, distances and RSSIs for 1 Master Node, 2 Robot
Nodes.

Time 3’ 01’’

R1 Distance 7m 12cm

R2 Distance 5m 11cm
R1 RSSI -71 dB
R2 RSSI -64 dB

5.3. Scenario 3: One Robot Node, One Static Node

This third scenario intends to extend the WSN, by
guaranteeing the robot nodes will respond to the deployment of
new static nodes. So, it serves to test the functionality of the
ReStatic algorithm. It does so by using the master node, one static
node and only one robot node.

The robot node will be placed at a 0m distance from the
master node. Robot node AutoMOV will be turned on by user
input and then it will move until it reaches its RSSI threshold.
Then, a static node will be place at this threshold. The robot node
will respond to this placement autonomously and move again till
it reaches a new threshold, extending the network. Figure 8
represents the end state for this scenario.

Figure 8: End state for Scenario 3 composed of Master Node, a Static Node and a

Robot Node.

The last RSSI value before robot node stoppage is recorded
by the master node. Time until robot node stoppage and maximum
distance from static node are recorded by human users. After ten
trails an average of these values is calculated. Table 3 holds the
values for this first test that uses a static node.

Table 3: Averages of time, distance and RSSI for 1 Master Node, 1 Robot
Nodes, 1 Static Node.

Time 3’ 40’’

Distance 7m 1cm

RSSI -73 dB

5.4. Scenario 4: Two Robot Nodes, One Static Node

Finally, the fourth scenario allies the RCoop algorithms and
the static node response algorithm. For this last scenario a master
node, two robot nodes and one static were used.

http://www.astesj.com/

J.P.A. Amaro et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 169-177 (2021)

www.astesj.com 176

Figure 9: End state for Scenario 4 composed of Master Node, a Static Node and

two Robot Nodes.

The procedure is similar to the two robot nodes test except
that a static node is place at the R2 threshold when both robot
nodes and stopped. So, both robot nodes are placed at 0m distance
from the master node. A signal is sent to R1 by the user from the
master node. Then, robot node AutoMOV and RCoop occur
autonomously. Finally, a static node is placed at the R2 threshold
and the robots will identify it and move again to new thresholds.
Figure 9 represents the end state for this scenario.

The last RSSI values before robot node stoppage for both
robot nodes are recorded by the master node. The time from signal
sent to R1 till the network stops extending is recorded by a tester.
Final distances of each robot node to the master node are also
recorded by a tester. After ten trials an average of RSSIs, distances
and time was calculated. Table 4 holds the values for this final test
that incorporates all the node types: master node, robot node and
static node.

Table 4: Averages of time, distances and RSSIs for 1 Master Node, 2 Robot
Nodes, 1 Static Node.

Time 4’ 33’’

R1 Distance 11m 50cm

R2 Distance 6m 76cm

R1 RSSI -82 dB

R2 RSSI -71 dB

6. Discussion

First, it is important to have an idea of how to expect the RSSI
to change with growing distance from the master node, this is the
purpose of the RSSI – distance test. It is expectable that RSSI
value decreases with distance from the master node, seeing as at
0m the RSSI value is -34dB and at 13m distance the RSSI is -84m.
But this variation is not linear, so it must be assumed that there
are other factors contributing to RSSI change besides distance.

Distance reached by the robot nodes is a key factor in
knowing if the purpose of the algorithms was fulfilled and the
WSN is extending. If only the number of nodes used is
considered, it is expected the distance from the master node will
increase with the increase in the number of nodes used, as the
WSN can extend itself further. In this case the one robot test
would give us the least distance, with just one node used, and the
two robot nodes and one static node test would give us the furthest
distance, with three nodes used. Figure 10 shows us the distances
obtained according to the numbers of nodes used. It is then

verified that the network is extending itself through the
programmed behavior of the robot nodes.

Time was considered of less importance at this point in
testing. Still it is noted a big increase, going from an average 54
seconds with one node to 4 minutes 33 seconds with three nodes.
The way of reorganizing the mesh network, by resetting a robot
node when a suitable static node is detected, should be reviewed.
The current solution causes a lot of overhead.

Using a communication metric such as the RSSI gives rise to
some problems. First off, must be said that when considering the
RSSI threshold as the point where a robot node should stop and
request a static node, this is a virtual limit. It is not exploring the
actual hardware limit of the communication module, the wireless
antenna Wi-Fi ESP8266. Explorations on RSSI variations using
ESP8266 modules have used distances of up to 140m between a
station and an AP and still reach acceptable values for RSSI [15].
These experiments were performed outdoors whereas the ones
here were indoors, but they give an idea of the distances that could
be reached if the limits of the hardware were explored. The aim
here however was to develop algorithms that could generate the
intended behavior on the prototype, namely the creation of an
extensible WSN. Although it is legitimate to consider that testing
the present proposal at the hardware limits would be interesting
and closer to a live deployment scenario.

Figure 10: Variation of distance from the Master Node with number of nodes

used in the WSN.

Finally, it is important to consider how the problems in
expanding the RSSI threshold to make the robot nodes move
further. Firstly, there is a need to find a better way to judge the
distance of the static nodes when deployed. Deployment of
several static nodes in proximity, or the same static node
disconnecting from the network and then connecting again, might
impress false information on the robot node, prompting it several
times to move further. Secondly, saving the current threshold of
the robot nodes in the master node when it resets could be
problematic if the robot node disconnects from the network more
than one time. This problem also arises from the method of
reorganizing the network through resets of robot nodes. Even as
it stands there might be a better way for the robot node to judge
its threshold from the network topology and its own RSSI
measurements, instead of receiving it from the master node.

4.83

7.11

11.5

0
2
4
6
8

10
12
14

1 2 3

M
et

er
s

Number of Nodes

Distance From Master Node by Number of Nodes

Meters Linear (Meters)

http://www.astesj.com/

J.P.A. Amaro et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 169-177 (2021)

www.astesj.com 177

7. Conclusion and Future Work

WSNs are ever more prevalent in modern living. Many
applications, such as in disaster situations, require impromptu
deployment of a WSN. Therefore, it is important to explore ways
of WSN deployment. The usage of mobile robots to aid in this
development is also important because it avoids the necessity of
human agents. Coordination between mobile robots is essential in
deployment and exploration tasks.

With this in mind a prototype of a WSN aimed at creating an
extensible wireless network and proved it possible, within certain
assumptions, using cooperation between mobile robots and
responsiveness to the deployment of static nodes.

As for future work it should be interesting to test the solution
proposed here with the actual hardware limits of the ESP8266
wireless module. Also, there is a need to develop a better way to
manage network connections, even if that means foregoing the
painlessMesh library and using the native ESP8266 SDK. Within
the solution here, a better way to manage the RSSI thresholds of
the robot nodes might also be a good avenue for new
developments. Testing the WSN prototype with sensors able to
capture environmental data would also prove interesting and open
new avenues of exploring, such as how to effectively route
sensing data.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This work is funded by FCT/MCTES through national funds
and when applicable co-funded EU funds under the project
UIDB/50008/2020. The authors would like to acknowledge the
company InspiringSci, Lda for the interest and valuable
contribution to the successful development of this work.

References

[1] J. Amaro, I.D.L.T. Diez, M.L.P. Joao, S. Vasco, J. Galan-Jimenez,
“Protótipo de uma Rede de Sensores Sem Fios para Implantação Robótica
de Percurso : A Prototype of a Wireless Sensor Network for Robotic Path
Construction,” Iberian Conference on Information Systems and
Technologies, CISTI, 2020-June, 20–25, 2020,
doi:10.23919/CISTI49556.2020.9141080.

[2] S. Stage, P. Report, S. Kumar, R. No, C. Science, “Design and deployment
of Wireless Sensor Networks,” 313–325, 2017.

[3] Y. Sankarasubramaniam, E. Cayirci, others, I.A.. Su, “A survey on sensor
networks,” IEEE Communications Magazine, 40(8), 102–116, 2002.

[4] A. Chattopadhyay, A. Ghosh, A. Kumar, “Asynchronous Stochastic
Approximation Based Learning Algorithms for As-You-Go Deployment of
Wireless Relay Networks Along a Line,” IEEE Transactions on Mobile
Computing, 17(5), 1004–1018, 2018, doi:10.1109/TMC.2017.2750147.

[5] T. Suzuki, R. Sugizaki, K. Kawabata, Y. Hada, Y. Tobe, “Autonomous
deployment and restoration of Sensor Network using mobile robots,”
International Journal of Advanced Robotic Systems, 7(2), 105–114, 2010,
doi:10.5772/9696.

[6] G. Tuna, V.C. Gungor, K. Gulez, “An autonomous wireless sensor network
deployment system using mobile robots for human existence detection in
case of disasters,” Ad Hoc Networks, 13(PART A), 54–68, 2014,
doi:10.1016/j.adhoc.2012.06.006.

[7] A. Chattopadhyay, M. Coupechoux, A. Kumar, “Sequential Decision
Algorithms for Measurement-Based Impromptu Deployment of a Wireless
Relay Network Along a Line,” IEEE/ACM Transactions on Networking,
24(5), 2954–2968, 2016, doi:10.1109/TNET.2015.2496721.

[8] H. Liu, J. Li, Z. Xie, S. Lin, K. Whitehouse, J.A. Stankovic, D. Siu,

“Automatic and robust breadcrumb system deployment for indoor firefighter
applications,” MobiSys’10 - Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, 21–34, 2010,
doi:10.1145/1814433.1814438.

[9] R. Soua, L. Saidane, P. Minet, “Sensors deployment enhancement by a
mobile robot in wireless sensor networks,” 9th International Conference on
Networks, ICN 2010, 121–126, 2010, doi:10.1109/ICN.2010.29.

[10] N. Zhou, X. Zhao, M. Tan, “RSSI-based mobile robot navigation in grid-
pattern wireless sensor network,” Proceedings - 2013 Chinese Automation
Congress, CAC 2013, 497–501, 2013, doi:10.1109/CAC.2013.6775785.

[11] O.M. Elfadil, “Navigation algorithm for mobile robots using WSN,”
Proceedings - 2013 International Conference on Computer, Electrical and
Electronics Engineering: “Research Makes a Difference”, ICCEEE 2013,
554–559, 2013, doi:10.1109/ICCEEE.2013.6634000.

[12] A.C. Jiménez, S.J. Bolaños, J.P. Anzola, “Decentralized model for
Autonomous Robotic Systems based on wireless sensor networking,” ARPN
Journal of Engineering and Applied Sciences, 11(19), 11378–11382, 2016.

[13] painlessMesh / painlessMesh · GitLab, Jul. 2020.
[14] GitHub - arkhipenko/TaskScheduler: Cooperative multitasking for Arduino,

ESPx and STM32 microcontrollers, Aug. 2020.
[15] Yoppy, R.H. Arjadi, H. Candra, H.D. Prananto, T.A.W. Wijanarko, “RSSI

Comparison of ESP8266 Modules,” 2018 Electrical Power, Electronics,
Communications, Controls and Informatics Seminar, EECCIS 2018, 150–
153, 2018, doi:10.1109/EECCIS.2018.8692892.

http://www.astesj.com/

	2. Related Work
	3. Wireless Sensor Network Robot Path Construction Proposal
	3.1. Hardware Description
	3.2. Wireless Sensor Network Implementation
	Task Scheduler

	4. Testbed Deployment
	4.1. Automovement Algorithm (AutoMOV)
	4.2. Robot Cooperation Algorithm (RCoop)
	4.3. Response to Static Nodes Algorithm (ReStatic)

	5. Performance Evaluation
	5.1. Scenario 1: One Robot Node
	5.2. Scenario 2: Two Robot Nodes
	5.3. Scenario 3: One Robot Node, One Static Node
	5.4. Scenario 4: Two Robot Nodes, One Static Node

	6. Discussion
	7. Conclusion and Future Work
	Conflict of Interest
	Acknowledgment

	References

