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Enrolment figures have been expanding in South African institutions of higher-learning,
however, the expansion has not been accompanied by a proportional increase in the percent-
age of enrolled learners completing their degrees. In a recent undergraduate-cohort-studies
report, the DHET highlight the low percentage of students completing their degrees in the
allotted time, having remained between 25.7% and 32.2% for the academic years 2000 to
2017, that is, every year since 2000, more than 67% of the learners enrolled did not complete
their degrees in minimum time. In this paper, we set up two prediction tasks aimed at the
early-identification of learners that may need academic assistance in order to complete
their studies in the allocated time. In the first task we employed six classification models to
deduce a learner’s end-of-year outcome from the first year of registration until qualifying in
a three-year degree. The classification task was a success, with Random Forests attaining
top predictive accuracy at 95.45% classifying the “final outcome” variable. In the second
task we attempt to predict the time it is most likely to take a student to complete their degree
based on enrolment observations. We complete this task by employing six classifiers again
to deduce the distribution over four risk profiles set up to represent the length of time taken
to graduate. This phase of the study provided three main contributions to the current body
of work: (1) an interactive program that can calculate the posterior probability over a
student’s risk profile, (2) a comparison of the classifiers accuracy in deducing a learner’s
risk profile, and (3) a ranking of the employed features according to their contribution in
correctly classifying the risk profile variable. Random Forests attained the top accuracy in
this phase of experiments as well, with an accuracy of 83%.

1 Introduction

The benefits that can be drawn from institutions of higher-learning
extend beyond the degree holder. A study conducted on the relation-
ships between the quality of life, human capital, and universities,
revealed that valuable consumption amenities that enhance an areas
quality of life are positively correlated with both the local level of
human capital (measured by proportion of degree holders in an area)
and the number of institutions of higher-learning in a region [1].

The higher-education system is one of great benefit to enrolled-
individuals, the economy, and society, however, an inefficient sys-
tem with high dropout rates and low throughput rates carries harsh
costs and consequences for the individual student as well as the
society financing the cost of service delivery [2]. The South African

Human Science Research Council (HSRC) found that on average,
70% of the university drop-outs they surveyed came from families
in the “low economic status civilian” category [3]. Students that
belong in this category heavily depend on government study grants
and subsidies to supplement the funding they receive from their
parents or guardians. It is clear that student debt accumulation, or
alternatively, costs to the government without a return on investment
will be the outcome when these learners struggle and dropout. This
was the case in 2005, where the national treasury reported R4.5
billion lost to student grants and subsidies that resulted in no gradu-
ates [3]. There is a student attrition problem in South Africa, as the
expansion of enrolments has not come with a significant increase in
the percentage of students completing their degrees [4].

Noting the value and possible severe-costs associated with in-
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Table 1: This table introduces categories for the different features associated with student performance as discussed in Section 2. The features are divided into four groups,
namely, "Socioeconomic Factors" (SEF), "Psycho-Social Factors" (PSF), "Pre & Intra-College Scores" (PICS), and "Individual Attributes" (IA). It is also important to take
note of the colour coding scheme developed here for later reference to the four categories, [5](sic).

Socioeconomic Factors (SEF) Psycho-Social Factors (PSF) Pre & Intra-College
Scores (PICS)

Individual Attributes (IA)

Family income Academic self-efficacy Mathematics Age at first year

Parents education Stress and time pressure English Work status

Head of house occupation Class communication Admission Point Score Home language

Dwelling value College activity participation Accounting Home province

Dwelling location (rural/urban) Organization and attention to study Economic studies Home country

Financial support Sense of loneliness Statistics major Interest in sports

stitutions of higher-learning, we see the clear need to explore the
activities influencing student success or failure to solve the problem
of student attrition and avoid the severe costs and consequences that
it brings. Furthermore, we seek to develop advanced systems for
the early-identification of vulnerable learners that may benefit from
academic support systems.

In this research, we investigate the influence of biographical
and enrolment observations on student success. This research was
conducted through two published studies referred to as “phases of
the current study” throughout this paper [5, 6]. In the first phase, we
employ six machine learning models to predict three target variables
that describe a learner’s end-of-year outcome, namely, “first-year
outcome”, “second-year outcome”, and “final outcome” [5]. The
first phase of this research contributes to the current body of work by
showing that various classification models can be used to predict a
learner’s end-of-year outcome from the first year of registration until
qualifying in a three-year degree. We argue that if we can predict the
academic trajectory of a student, early-assistance can be provided
to students who may perform poor in the future, remediating their
performance and promoting student success.

The second phase of this study involved the prediction of a “risk
profile” variable, a variable that categorises the time taken by a
student to graduate in a three-year degree by four values, namely:
“no risk”, where the student completes the degree in three years;
“low risk”, where the student completes the degree in more than
three years; “medium risk”, where the student fails/drops-out in
less than three year; and “high risk”, where the student takes more
than three years to drop out [6]. We used six machine learning
algorithms to predict the “risk profile” variable for a student based
on biographical and enrolment observations. The second phase of
this study contributes to the current body of related literature in
three ways: (1) a comparison of six different classifiers in predicting
the risk profile of a learner; (2) a ranking of the features employed
according to their contribution when deducing the “risk profile”; and
(3) an interactive program which uses Random forests classifier to
deduce the distribution over a learner’s risk profile. The contribution
made by this research implies institutions of higher-learning can use
machine learning techniques for the early-identification of learners
that may benefit from academic assistance initiatives.

This paper continues with Section 2 which presents the back-
ground knowledge around the problem. We then introduce the

procedure and system of methods applied in Section 3, followed by
the results in Section 4. The work is concluded on Section 5 and we
close this study with ideas of future work in Section 6.

2 Related Work
Predicting student performance is a multifaceted task that cannot
be easily completed using attributes discovered in student enrol-
ment records alone [4]. We therefore, set-out to explore the various
factors influencing student performance, aiming to discover and de-
velop an efficient methodology for solving the problem set up in this
research. We begin this chapter with the discussion and grouping of
the factors influencing student performance, followed by a brief pre-
sentation of the conceptual framework adopted for feature selection
in this research, and we close the chapter with a comparison of the
various methods of predicting student performance.

2.1 Factors affecting student performance

The South African Department of Higher Education and Training
(DHET) released a report with results that portray an increasing
number of first-time-entering university students, from 98095 stu-
dents in the year 2000 to over 150000 students in the 2017 academic
year [7]. This significant increase brings the idea that the various
attributes that describe a university student must be more varied
now than ever before, as more learners from different regions are
now enrolling for degrees. To accurately early-identify a member
of a given group of learners as successful or unsuccessful in their
studies, we must explore a wide range attributes that describe these
students, so that our decision is informed.

2.1.1 Socio-Economic Observations Determining Student Success

To determine an individual or their family’s measure of social and
economic position in the population, we explore the category of
socio-economic attributes as determinants of student success. Stud-
ies have shown that a correlation exists between socio-economic
status and academic achievement, furthermore, traditional measures
of socio-economic status have been revealed to usually correlate
strong enough with academic achievement to account for variations
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Figure 1: The graphical representation of the framework adopted to determine student success, [6](sic).

in a learner’s performance [8]. A study of the determinants of stu-
dent success also concludes that socio-economic factors contribute
significantly when predicting a learner’s performance [4]. The
socio-economic attributes investigated in the literature we reviewed
include; parents’ education, dwelling value, family income, and
parent/guardian’s occupation. Family characteristics and financial
support also form part of socio-economic factors revealed to explain
student performance, specifically drop-out behaviour in university
[2].

2.1.2 Psycho-Social Factors Affecting Student Performance

We seek to find more categories of factors that account for varia-
tions in a learner’s academic performance. We therefore, explore the
combined effects of a student’s thoughts, social factors, and general
behaviour at university on academic performance. Research con-
ducted at a South African university found that to predict a learner’s
academic performance and adjustment to higher-education, psycho-
social factor’s such as; help-seeking attitude, workload, perceived
stress, and self-esteem could be utilized as determinants [9].

Research on college students’ performance utilized six psycho-
social factors to predict first-year college student success [10]. The
six psycho-social attributes used for prediction were; stress and time
pressure levels, communication/participation in class, academic
self-efficacy (a learner’s belief in their ability to succeed academ-
ically), attention to study (measures time-management, planning,
and scheduling behaviour), stress levels, and lastly, emotional sat-
isfaction with academics. It was revealed that a strong correlation
exists between the six psycho-social factors and a learner’s GPA,
these findings align with other related work [11]. A separate study
also discovered that academic self-efficacy, student’s optimism,
commitment to schooling, and student health account for some of
the variations in a student’s performance, expectations and coping
perceptions [12].

2.1.3 Factors Available For This Study

The review literature centred around factors affecting student per-
formance revealed that a learner’s mindset, social surrounding, and
behaviour, explain significant variations in the performance of a

university learner. In this research, student biographical and enrol-
ment observations such as, majors enrolled for, age, pre-college
scores, province and country of origin, are available to build ma-
chine learning models for the prediction of academic performance.
We continue this chapter by introducing the framework we adopted
for the rationale behind predicting academic performance from
biographical and enrolment observations.

2.2 Conceptual Framework

We use the conceptual framework depicted in Figure 1 as a logical
basis to predict the academic performance of a learner from bio-
graphical and enrolment observations [13]. The framework develops
three categories of attributes contributing to student attrition (drop-
out behaviour), namely, background attributes, individual attributes,
and pre-college scores. The study reveals that these factors together
influence a learner’s goal and institutional commitment, which in
turn contributes to the drop-out decision of a student via academic
and social integration [13]. In this research, we partition back-
ground attributes further into socio-economic and psycho-social
factors. Table 1 presents the grouping of features discovered to
explain variations in academic performance during the review of
related literature conducted in this section.

2.3 Methods For Predicting Student Performance

Various authors have already accurately predicted student perfor-
mance utilizing machine learning. Table 2 compares the accuracies
obtained in the various literature reviewed in this research. Acquir-
ing the top accuracy position is a research based on the prediction
of the success of a second-year student using an Artificial Neural
Network (ANN) model [14]. The study uses individual attributes
(IA), pre & intra-college scores, and socio-economic factors as pre-
dictors, these inputs are utilized for almost every result presented in
the table [11, 17, 16].

3 Research Methodology
This research proposes an approach to the task of university-learner-
performance prediction involving the prediction of a learner’s end-
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of-year outcome from the first year they register for a three-year
degree until qualifying to graduate. We complete this task by em-
ploying six different machine learning algorithms to deduce the
outcomes in the first, second, and final year of study in a South
African university. This study extends further by attempting to pre-
dict a learner’s risk-profile based on the time it will take the student
to complete a three-year degree.

Table 2: The table compares the accuracy achieved by various authors using different
machine-learning models to predict academic performance in each case. The table
also illustrates for each case, the combination of features used as predictors, based
on the feature categories developed in Table 1, [5] (sic).

Author(s) Factors considered Model used Predictive Accuracy

Abu-Naser et al. (2015)[14] IA, SEF, and PICS Neural Networks 84.60%

Osmanbegovic and Suljic (2012)[11] IA, SEF, PICS, and PSF Naïve Bayes 84.30%

Osmanbegovic and Suljic (2012)[11] IA, SEF, PICS, and PSF Neural Networks 80.40%

Osmanbegovic and Suljic (2012)[11] IA, SEF, PICS, and PSF Decision Trees (C4.5) 79.60%

Mayilvaganan and Kalpanadevi (2014)[15] IA and PICS Decision Trees (C4.5) 74.70%

Ramesh et al. (2013)[16] IA, SEF, and PICS Multi-layer Perceptron 72.38%

Abed et al. (2020)[17] IA, SEF, and PICS Naïve Bayes 69.18%

Abed et al. (2020)[17] IA, SEF, and PICS SMO 68.56%

Ramesh et al. (2013)[16] IA, SEF, and PICS Decision Trees (C4.5) 64.88%

In this section, we introduce the procedure and system of meth-
ods implemented for the purpose of this study. The study incorpo-
rates two phases and thus, we begin by giving a description of the
two phases, followed by subsection 3.2 giving a description of the
data-sets. We present the feature selection technique in subsection
3.3 and follow this by a brief description of the machine learning
models we used, closing the section with methods of evaluating and
validating our results.

3.1 Phases of the Study

This study was conducted in two phases. The first phase, named,
“Preliminary Phase”, involved generating preliminary results on a
synthetic dataset. In this phase we employed six different machine
learning models, namely, Decision tree (C4.5), Logistic Model Trees
(LMT), Multinomial Logistic Regression, naïve Bayes, Sequential
Minimal Optimization (SMO), and Random forests. The purpose of
the first phase was to reveal that machine learning models can be
utilized for the early prediction of a learner’s end-of-year outcome
from the first year of registration until qualifying in a three-year
degree, based on biographical and enrolment observations.

The second phase of this study, named, “Post-preliminary
Phase”, involved the prediction of the distribution over several risk
profiles that describe the time it will take for a university student
to complete a three-year degree. This phase is performed on a real
dataset which the synthetic dataset in the first phase was modelled to
resemble. In this phase we employed six different machine learning
models, namely, Decision tree (C4.5), Linear Logistic Regression,
Support Vector Machines (SVM), naïve Bayes, and Random forests.
This phase provides an interactive program which calculates the
posterior probability over a learner’s “risk profile” as the main con-
tribution o this study, and a ranking of features through Information
Gain Ranking (IGR), to determine the features most contributing to
student performance.

3.2 Data Description and Pre-Processing

Two sets of data were utilized in this study. We therefore, split the
description of the datasets, starting with Subsection 3.2.1 which
gives the synthetic dataset description, and Subsection 3.2.2 giving
a description of the real dataset.

3.2.1 The Synthetic Dataset Description

The dataset used for the preliminary phase of this study is a synthetic
dataset generated using Bayesian Network. The dataset was adopted
from a recent prediction modelling study aimed at improving stu-
dent placement at a South African university [17]. In this dataset,
conditional independence assumptions were implemented to portray
the relationships that exist between enrolment, socioeconomic, and
individual attributes found in student records.

Three target variables are investigated in the preliminary phase,
namely, “First Year Outcome” (FYO), “Second Year Outcome”
(SYO), and “Final Outcome” (FO). The SYO and FYO variables
contain two similar possible values: “proceed”, and “failed”, were
proceed is the outcome for a student who met the requirements to
proceed to the next year of study, and failed implies the student
failed to meet the minimum requirements to proceed. The FO vari-
able also has two possible values: “qualified”, and “failed”, were
qualified implies the learner met the minimum requirements to grad-
uate in a three-year degree, and failed implies the student failed to
meet the requirements to graduate.

Data pre-processing is a crucial step when employing machine
learning models. The pre-processing task incorporates, data prepa-
ration, data cleaning, data normalization, and data reduction tasks
[18]. The synthetic dataset originally contained 50 000 instances.
Three random samples (without feature replacement or bias to uni-
form class) containing 2000 instances were drawn from the raw
dataset and several experiments were conducted to make the sam-
ples more suitable for our machine learning models. The first set
of experiments focused on the detection and removal of outliers
or anomalies. This involved the evaluation of classification results
from different machine learning classifiers in an attempt to detect
and remove instances that display significant deviations from the
majority patterns. The second set of experiments conducted aimed
to prevent over-fitting. This was done by the implementation of Syn-
thetic Minority Oversampling Technique (SMOTE) which enforced
an equal number of training instances for each value in the class
variable. The third set of experiments conducted in the preliminary
phase is feature selection, where 20 features were selected from
each sample based on Information Gain Ranking (IGR) criterion.
Subsection 3.3 presents the set of features selected from each sample
and a discussion of how we arrived at this set.

3.2.2 The Real Dataset Description

The real data utilized for this study is from a research-intensive
university in South Africa. The dataset composes of enrolment
and biographical observations of learners enrolled in the faculty of
science at the university, from the year 2008 to the year 2018.

The target variable for the post-preliminary phase of this study
is “Risk Profile”, a nominal variable that tells us how long it will
take for an enrolled student to complete a three-year degree at a
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South African university. The risk-profile variable has four possi-
ble values, namely; “no risk”, where the student completes their
degree in 3 years (the minimum allotted time); “low risk”, where
the student completes the three-year degree in more than 3 years;
“medium risk”, where the student fails to complete the three-year
degree before the end of three years (student drops-out in less than
3 years’ time); and “high risk”, where the student fails to complete
the three-year degree after exceeding the 3-years period (student
drops-out after exceeding the allotted time).

Since our aim is to perform an accurate classification task on
the dataset, pre-processing procedures had to be carried out before
training the chosen classifiers. We performed the same experiments
as those performed on the synthetic dataset to detect and remove
outliers. We then employed a sampling procedure similar to the one
we implemented in the preliminary phase of this study. Along with
applying SMOTE, a random sample (with no replacement of fea-
tures or bias to uniform class) of 200 instances was drawn from the
original dataset. In Subsection 3.3 we present the features selected
and the procedure followed to select them.

Table 3: A table providing the various features selected for input into the employed
classifiers. The table groups the features according to whether they were used for
the prediction of the learner’s first year outcome, second year outcome, or final year
outcome. The colour shading gives the category which the feature selected belongs
to according to Table 1, [5] (sic).

# Feature 1st Year 2nd Year Final Year

1 English Home Language
2 Plan Description
3 Quintile
4 Home Province
5 Year Started
6 Language
7 Progress Outcome YOS1
8 Home country
9 Aggregate YOS2
10 Rural or Urban
11 Second Year Outcome
12 Age at Third Year
13 Mathematics Literacy
14 NBTAL
15 Age at First Year
16 Computers
17 NBTQL
18 Age at Second Year
19 Life Orientation
20 NBTMA
21 Plan Code
22 English FAL
23 Additional Mathematics
24 Mathematics Major

3.3 Feature Selection

In this subsection we present the methodology behind the features
selected for both phases of the study. Subsection 3.2.1 provides the
features we utilized to generate the preliminary results and Subsec-
tion 3.2.2 provides the features selected for the post-preliminary
phase of the study.

3.3.1 Features for the Preliminary Phase

To select features for the purpose of predicting the three target vari-
ables investigated in this phase of the study we utilized Information
Gain Ranking (IGR) criterion, which involves deducing the contri-
bution of each feature when classifying an instance as a value of
the class variable. Table 3 presents the features selected in all cases
considered for the preliminary phase, based on the colour coding
scheme developed in Table 1.

Feature selection was performed on each of the 3 samples drawn
from the synthetic dataset. We investigated the contribution of 44
features using Information Gain (entropy). Through the entropy
values and repeated experimentation with different sets of features,
a total of 20 features were selected to predict the target variable in
each of the three samples.

The features presented in Table 3 are not arranged according
to IGR as there are significant differences in the entropy of most
features across predicting the three target variables. The features
selected align with our findings from the review of previous work,
and more importantly, the conceptual framework we adopt in this
research [13]. This is because for each target variable, there were
features selected from each of the three investigated categories of
features, namely, background (socio-economic) attributes, individ-
ual attributes, and pre-college scores.

3.3.2 Features for the second phase

To select features for the post-preliminary phase of this study,
we continued utilizing IGR alongside the conceptual framework
investigated in the related work section [13]. From the “indi-
vidual attributes” category, the following features were selected;
the National Benchmark Test (NBT) scores for academic literacy
(NBTAL), quantitative literacy (NBTQL), and mathematical lit-
eracy (NBTMA). These scores give a measure of the individual
learner’s proficiency and ability to meet the demands of university-
level work. To further determine an enrolled learner’s professional
career aspirations, we also considered the academic plan selected by
the learner. The “plan code”, “plan description”, and “streamline”
(Earth Science, Physical Science, Biological Science, or Mathemati-
cal Science) variables were selected for this task.

From the “background and family” category, the following fea-
tures were selected; the home-country and province of the student,
whether the school attended by the leaner is in the urban or rural
areas, the quintile of the school attended, and the age of the learner
at the first-year of registration. These variables combined give us a
description of the learner’s socio-economic status.

From the pre-college scores category, scores from the following
subjects were considered; Mathematics major, Mathematics Lit-
eracy, Additional Mathematics, Physical Science, English Home
Language, English First Additional Language, Computer studies,
and Life Orientation. We note that in this phase of the study, we did
not utilize college or university outcomes as inputs, these outcomes
were only utilized in the prediction of target variables set up in the
preliminary phase as indicated in Table 3. The features selected
for the post-preliminary phase of this study are presented ranked
according to entropy in Table 6.
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3.4 Classification Models

This study composed of two phases, each involving a classification
task. In total, we use nine off-the-shelf machine learning predictive
models to perform the classification tasks in this research. The mod-
els used are: Random forests, naïve Bayes classifier, Decision tree
(C4.5), Logistic Model Trees (LMT), Multinomial Logistic Regres-
sion, Linear Logistic Regression, Sequential Minimal Optimization
(SMO), Support Vector Machines (SVMs), and the K-Star (K*)
instance-based classifier. We continue this subsection by giving a
brief description of the selected models.

Sequential Minimal Optimization: SMO is an algorithm de-
rived for the improved (speed) training of Support Vector Machines.
SVMs previously required that a large quadratic-programming prob-
lem be solved in their implementation. Traditional algorithms are
slow when training SVMs, however, SMO completes the task much
faster by breaking the large quadratic programming problem into
a series of smaller problems which are then solved by analytical
methods, avoiding the lengthy numerical optimization required. The
SMO algorithm we use for the purpose of this study follows the
original implementation [19].

Multinomial Logistic Regression: This model derives and ex-
tends from the binary logistic regression. It does so by allowing
categories of the outcome variable to exceed two. This algorithm
utilizes the Maximum Likelihood Estimation (MLE) to predict cat-
egorical placement or the probability of category membership on
a dependent variable [20]. Multinomial Logistic Regression re-
quires the careful detection and removal of outliers for accurate
results, however, the model does not assume or require linearity,
homoscedasticity, or normality [20]. An example of a four-category
model of this nature, with one independent variable xi can be given

by: log( π
(s)
i

π
(0)
i

) = η
(s)
0 +η

(s)
1 xi, s = 1,2,3,4. Where; η

(s)
0 and η

(s)
1 are

the slope and intercept respectively, given the probability of cate-
gory membership in “s” can be denoted by π

(s)
i , and the selected

reference category by π
(0)
i . The Multinomial Logistic Regression

implementation in this research follows the implementation by other
authors before the current study [21, 22].

Naïve Bayes Classifier: The naïve Bayes model is a simplified
example of Bayesian Networks. The model achieves learning with
ease by assuming that features employed are all independent given
the class variable.

Figure 2: The diagrams (a) to (d) illustrate various examples of a Bayesian network
model. The arrows travelling between nodes represent conditional dependencies
among the features x1,x2, ...,x5,C. Where C, represents the class variable and the
models differ based on the existence of a statistical dependence between the predic-
tors (x1, ...,x5) [18].

The diagram (a) in Figure 2 is an illustration of the naïve Bayes
model. This is because the features, x1, ...,x5 are conditionally
independent given the class variable, C. The naïve Bayes inde-
pendence assumption can be stated as the distribution: P(C|X) =

∏
n
i=1 P(xi|C), where X = (x1, ...,xn) is a feature vector and C is

the class variable. In application, naïve Bayes often performs well
when compared to more sophisticated classifiers, although it makes
a generally poor assumption [23]. The naïve Bayes model imple-
mentation in this research follows other similar implementations in
related studies explored; [24, 23].

K* Instance-Based Classifier: The K-Star algorithm classifies
instances using training instances that are similar to them alongside
a distance function that is based on entropy. The use of an entropy
based function provides consistency in the classification of instances
in our experiments that may be real-valued or symbolic.The K* im-
plementation utilized for the purpose of this research followed the
implementation by [25].

Support Vector Machines:The (SVMs) classification model
separates classes of the training data with a hyper-plane. The test
instances then get mapped on the same space with their prediction
based on the side of the hyper-plane they belong after splitting.
This task is performed by incorporating the training dataset into
a binary linear classifier that is non-probabilistic. SVMs can be
scaled through the one-versus-all partitioning, for various types
of classification problems including high-dimensional and nonlin-
ear classification tasks. The SVM model implementation in this
research follows the implementation in other related work [26].

Linear Logistic Regression: The Linear Logistic Regression
model utilizes additive logistic regression with simple regression
functions as base learners of the algorithm [27].The implementation
of this model followed in this research follows that of related work
conducted in the past [28, 29].

Decision Tree: This model uses a decision support system to
build a classification function that predicts the value of a dependent
variable given the values of independent variables, through tree-like
graph decisions and their possible after-effect, including costs of
resources, chance results, and utility [30]. There are different al-
gorithms for generating decision trees; C4.5, Random forest, and
LMT are the tree-models selected for the purpose of this research.

The C4.5 algorithm uses information gain to build a decision
tree, selecting features based on entropy and utilizing the ID3 algo-
rithm recursively to build the tree. We follow the original structure
and implementation of the C4.5 algorithm in this study [31].

LMT builds a single tree from a combination of logistic re-
gression models and a tree structure. This model accomplishes
the combination by using the Classification and Regression Tree
(CART) algorithm to prune after building the regression functions
through the LogiBoost algorithm. The LMT method used in this
study follows from the original implementation [28].

Random Forests are a combination of decision tree predictors
dependent on the value of a random vector, where the value also
governs the growth of each tree in the generated forest. This algo-
rithm involves utilizing the training data to generate an ensemble
of decision trees and allowing them to decide on the most-popular
class. Implementing this technique has several advantages, includ-
ing that, the procedure abides by the Law of Large Numbers to
prevent over-fitting, it is relatively robust to noise or outliers in
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data, and the model achieves accuracy as good as similar techniques
such as, Adaboost, Bagging, and Boosting, while still training faster
than them [32]. The Random forest model implementation in this
research is based on the original model [32].

3.5 Prediction and Evaluation

In this research, the dataset contains the dependent attribute and the
values of the classes are known, we therefore have a classification
task set up. This subsection provides the measures and techniques
utilized to complete this task.

3.5.1 Evaluation and Validation

10-fold cross-validation procedure is applied to evaluate each model
employed in this research. In this validation procedure, the train-
ing dataset is partitioned such that a portion (testing data) of it is
not provided to the algorithm during training, but is used for the
validation. The partition remaining for training is further split into
10 partitions (folds). Interchangeably, each of the 10-folds serve
for validation while the remaining 9 are used for training until all
10-folds serve as the validation fold once.

3.5.2 Confusion Matrix

We use confusion matrices to illustrate classification outcomes. Ta-
ble 4 provides an example of the format of a confusion matrix.

Table 4: This table depicts the structure of a confusion matrix. We denote “negative”
and “positive” by -ve & +ve respectively. Where TP are the true positives (correctly
classified positives), FP the false positives, FN are false negatives, and TN are the
true negatives (correctly classified negatives).

Predicted Class +ve Predicted Class -ve
Actual Class +ve TP FP

Actual Class -ve FN TN

3.5.3 Accuracy

We extract precision and recall metrics from the confusion matrix
in order to measure the accuracy of the employed machine learning
models. “Precision” represents the correctly real-positive propor-
tion of predicted positives, while “Recall” represents the correctly
predicted proportion of the real positives. We calculate precision
and recall as follows:

Precision =
T P

T P+FP
(1)

Recall =
T P

T P+FN
(2)

The accuracy follows directly, calculated as:

Accuracy =
T P+T N

T P+T N +FP+FN
(3)

This representation of accuracy has been used in other related work
[17], [33]. Other measures of accuracy explored include the Re-
ceiver Operating Characteristic (ROC) curve. This curve plots recall
(the true positive rate) against the false positive rate (ratio between

FP and the total number of negatives), and the area under the ROC
reflects the probability that prediction is informed versus chance
[34]. We desire the ROC-area to lie above 0.5, anything below 0.5
implies the prediction was guesswork and not informed. Another
accuracy measure utilized is the F-beta measure (F1 score), which
calculates a test accuracy as the weighted harmonic mean of preci-
sion and recall. The optimal value for the F-measure is 1 (indicating
perfect precision and recall), and the worst value is 0.

4 Results and Discussion

This study was conducted in two phases. The first phase involved
generating preliminary results on a synthetic data-set, while in the
second phase, a similar set of experiments are performed on a real
data-set, leading to conclusions and implications about the perfor-
mance of the trained machine learning models in classifying the
problem at hand, furthermore, the results drawn from the second
phase provide a ranking of the employed features according to en-
tropy, together with an interactive program which calculates the
posterior probability over the students’ risk profile so that support
initiatives and programs can be focused on them.

4.1 Preliminary Results

This Subsection presents the results of six of the nine prediction
models discussed in Section 3, namely; Decision tree (C4.5), Logis-
tic Model Trees (LMT), naïve Bayes Classifier, Sequential Minimal
Optimization (SMO), Multinomial Logistic Regression, and Ran-
dom Forests. We present first the prediction outcomes through a
table comparing predictive accuracy of the models as determined by
Equation 3. This will be followed by an evaluation of the model’s
performance through F-measure and Receiver Operating Character-
istic (ROC) curve.

4.1.1 Prediction Outcomes

Six different machine learning models were utilized to solve our
classification problem. The predictive accuracy achieved by each
model is recorded and presented in the Table 5.

Table 5: Predictive accuracy as calculated by Equation 3. After 10-fold cross-
validation, all of the models utilized achieved an accuracy above 80%, with Random
Forests achieving top accuracy in all three cases considered, [5](sic).

Predictive Accuracy

Model used 1st Year Outcome 2nd Year Outcome Final Year Outcome

Random Forest 94.40% 93.70% 95.45%

LMT 91.90% 91.75% 93.15%

Decision Trees (J48) 87.55% 86.20% 91.45%

Multinomial Logistic 87.80% 86.20% 90.70%

SMO 87.25% 84.45% 89.20%

Naïve Bayes 83.95% 83.40% 84.40%
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4.1.2 Model Performance Evaluation

A study based on evaluating classification results argued for the use
of Precision, Recall, F-Measure, and the ROC curve, as accurate
measures of a machine learning model performance [34]. We utilize
these measures to evaluate results presented by Figure 3, 4, and 5.
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Figure 3: The set of confusion matrices resulting from the prediction of first-year
outcome. Evaluation of the accuracy by class reveals that the weighted average
of both precision and recall lies above 0.84 for all six models trained in our study.
Further observations reveal that the f-measure of accuracy is more than 0.83 for
all models, this value aligns with our accuracy as determined by Equation 3 in the
Table 5. The test accuracy obtained in the table is further supported by the ROC
curve obtained for all six models, as the weighted average of the ROC area for
each model is more than 0.84 implying the models trained were making informed
decisions in classifying the problem and not simply guessing.
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Figure 4: The confusion matrices obtained when classifying the second-year out-
come variable. When we evaluate the detailed accuracy by class for each model, we
find that the weighted average of both precision and recall measures is above 0.83,
furthermore, the f-measure of test accuracy aligns with our findings in Table 5 with
a value of more than 0.83 for all six models considered. The ROC curve obtained
for all six models also aligns with our accuracy as determined by f-measure of test
accuracy and Equation 3, as the weighted average of the area under the ROC curve
lies above 0.85 implying the models trained are not attaining the great predictive
accuracy through guess-work, but they are making informed predictions.
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Figure 5: Confusion matrices obtained when classifying the third-year outcome
variable with the six trained machine learning models. Evaluating the detailed
accuracy by class results, we find that the weighted average of both precision and
recall measures is more than 0.89 for all models except the naïve Bayes classifier
which scored 0.85 for precision, and 0.84 for recall. The underperformance of the
naïve Bayes model with respect to other trained classifiers can be explained by
the naïve feature-independence assumption it makes. Results also show that the
weighted average of the area under the ROC curve for each model is in alignment
with our test accuracy measures, as it lies above 0.89, implying each model is
making informed predications and not simply guessing the outcome.

4.2 Main Results (Post-preliminary)

The preliminary phase of this study revealed that we can utilize
machine-learning models to accurately predict a learner’s outcome
from the first year of registration until qualifying in a three-year
degree. The preliminary results confirmed our initial hypothesis
but furthermore, revealed the kind of model we should utilize with
such a wide variety of models available for use, but few fitted to the
problem set up in this study. Evaluating the preliminary results, we
note that Random Forests achieved top accuracy and performance
as measured by all our model performance and accuracy evaluators,
across all three test cases.

In this subsection, we present the results obtained when utiliz-
ing machine learning models to classify a learner into the four risk
profiles (“No Risk”, “Low Risk”, “Medium Risk”, and “High Risk”)
defined in Section 3, as the preliminary phase has confirmed this
task can be completed. The classification problem set up in this
phase is parallel to that in the prelim-phase in several ways, as the
preliminary phase utilizes a synthetic data-set modelled to resemble
the relationships that exist within the student enrolment data utilized
for the second phase.

Subsection 4.2.1 presents the selection and ranking of features
utilized, we follow this by a presentation of the classification out-
comes and close the section with the presentation of an interactive
program that can be utilized to calculate the posterior probability
over a student’s risk profile.

4.2.1 Selection and Ranking of features

We selected 20 features to predict the class variable. The features
were selected using Information Gain Ranking (IGR) to deduce
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the contribution of each feature in classifying the instances. The
feature selection findings are illustrated through Table 6 with three
columns below. The first column determines the rank of the features
among the input set, the second column gives the amount of entropy
attained by the feature, and the third column has the name of the
feature associated with the ranking and entropy.

Table 6: A ranking through information gain (entropy) of the set of features selected
to predict the student risk profile, ranked from the most contributing feature to the
least contributing feature. The top seven features that are highlighted indicate an
entropy greater than 0.1, [6] (sic).

Rank Entropy Feature Name
1 1.21960228 PlanCode
2 1.15086266 PlanDescription
3 0.59886383 Streamline
4 0.29582771 Year Started
5 0.20836689 AgeatFirstYear
6 0.18695721 SchoolQuintile
7 0.14234042 MathematicsMatricMajor
8 0.12166049 Homeprovince
9 0.06417526 isRuralorUrban
10 0.0568866 LifeOrientation
11 0.04978826 PhysicsChem
12 0.02780914 EnglishFirstLang
13 0.01253064 Homecountry
14 0.00550434 AdditionalMathematics
15 0.00000902 MathematicsMatricLit
16 < 0.00001 NBTAL
17 < 0.00001 NBTMA
18 < 0.00001 NBTQL
19 < 0.00001 ComputerStudies
20 < 0.00001 EnglishFirstAdditional
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Figure 6: A graphical illustration of how the information gain (entropy) level varies
across the chosen feature input set. The x-axis indicates the feature rank, and the
y-axis indicates the information gain from utilizing the corresponding feature, [6]
(sic).

The use of IGR also has implications on the contribution made
by a feature relative to others within the chosen input set of fea-

tures. We investigate the behavior of entropy as you move between
subsequent features and present the findings through a graphical
illustration in Figure 6, showing the monotonically decreasing be-
havior of the entropy function plotted versus rank. We see that
the loss in entropy between each subsequent point (feature rank) is
logarithmically decreasing, furthermore, we highlight the same top
seven features from the IGR Table 6.

The highlighted features on Figure 6 illustrates their relative
importance in forecasting the success of a learner. We note that the
set of factors most contributing to a learner’s success includes, “the
plan-code and plan description” (combined, these two variables give
a precise description of what the student is studying), “streamline”
(mathematical, life, or physical science), “the year started”, “school
quantile”, “age at first-year", and “the student’s matric mathematics
score”.

4.2.2 Classification Outcomes

This section presents the results obtained from the classification
algorithms trained to predict the class variable (risk profile). Six of
the nine classification procedures discussed in Section 3 were em-
ployed for the post-preliminary phase of the study: Decision trees
(C4.5), naïve Bayes Classifier, Linear Logistic Regression model,
Support Vector Machines (SVMs), K*, and Random Forests.

Figure 7 (a) – (f) illustrates the results of each trained classifier
after 10-fold cross-validation. Evaluating the performance of each
model relative to other models employed, we note that the Random
forests classifier attains the highest accuracy (83%) of all the models
trained for the post-preliminary phase. This result aligns with our
findings from the preliminary phase of the study as Random forests
attained the highest accuracy among the selected models for both
phases of the study.

We note further that the SVM classification model was revealed
to be the least suited for the problem set up in this study. At 52%,
SVMs attained the lowest predictive accuracy in this study, fur-
thermore, SVMs took the longest time to train. When discussing
training and testing times, it is also important to note that the K-star
model took the least time to implement in this study.

Overall, the classification task was a success, with five of the
six models employed attaining a predictive accuracy above 75%.
Noting that Random forests was the most accurate in predicting
the class variable for both phases of this study, this section contin-
ues by providing a web application utilizing the Random forests
classifier to predict the risk-profile of a learner based on enrolment
and academic factors. Severity of misclassified instances was also
evaluated and taken into account to determine Random forests as the
most suited model for the task, for example, the 27% of “No Risk”
instances incorrectly classified by SVM as “Medium Risk” is far
more severe and misleading than the misclassification of 5% “No
Risk” instances as “Medium Risk” by Random forests classifier.

4.2.3 Main Contribution of The Study

In this subsection we provide an interactive program which can
calculate the posterior probability over a student’s risk profile uti-
lizing the Random forests model employed in Section 4.2.2. This
automated system makes predictions about a student’s risk of fail-
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(a) A confusion matrix resulting from the prediction of a student’s “Risk Profile” uti-
lizing the C4.5 classification model. The C4.5 algorithm achieved 79% accuracy, fur-
thermore, 634 instances were correctly classified and 166 instances were incorrectly
classified by the model.
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(b) A confusion matrix detailing the performance of the K* classifier when predicting
a student’s “Risk Profile” (class variable). The lazy K-Star algorithm achieved 75%
accuracy, furthermore, 603 instances were correctly classified and 197 instances were
incorrectly classified by the model.
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(c) A confusion matrix detailing the performance of the naïve Bayes classifier when
predicting a student’s “Risk Profile” (class variable). After 10-fold cross-validation the
naïve Bayes classifier achieved 80% accuracy, furthermore, 645 instances were correctly
classified and 155 instances were incorrectly classified by the model.
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(d) A confusion matrix resulting from the prediction of a student’s “Risk Profile” uti-
lizing the SVM classification algorithm. The SVM algorithm achieved 52% accuracy,
furthermore, 416 instances were correctly classified and 384 instances were incorrectly
classified by the model.
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(e) A confusion matrix resulting from the prediction of a student’s “Risk Profile” uti-
lizing Random Forests classifier. After 10-fold cross-validation the random forests
model achieved 83% accuracy, furthermore, 662 instances were correctly classified and
138 instances were incorrectly classified by the model.
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(f) A confusion Matrix detailing the performance of the linear logistic regression clas-
sifier when applied to a dataset of biographical and enrolment observations. The linear
logistic regression model achieved 78% accuracy, furthermore, 629 instances were cor-
rectly classified and 171 instances were incorrectly classified by the model.

Figure 7: A set of confusion matrices obtained when classifying the "Risk Profile" variable. We provide the accuracy of each classification model as determined by Equation
(*****) along with a count of the correctly and incorrectly classified instances by each model, [6] (sic).

ure based on the conceptual framework developed in a “drop-out
from higher education” study [13]. The conceptual framework
connects dropout decision to categories of input features, namely,
background (family) attributes, individual attributes, and pre-college
scores. This framework is better depicted in the Figure 1 provided
under the related work section.

The web application depicted in Figure 8 provides a practical
tool which university student support programs can utilize for early
detection of learners in need of academic support. We argue that the
early detection and assistance of students at risk of failure is likely
to lead to improved academic performance and eventually higher
pass-rates, which translate to increased throughput rates.

The example depicted in Figure 8 illustrates the calculation
of the risk profile of a learner based on biographical and enrol-
ment observation. The program predicts the posterior distribution
over the four “Risk Profiles”, namely, “No Risk”, “Medium Risk”,
“High Risk”, and “Low Risk” using the Random forests classifier.
The learner in the example is from an urban quantile 3 school in
Kwazulu-Natal South Africa, furthermore, individual attributes are
provided as follows; scores of 48%, 50%, and 55% for the quanti-
tative, academic, and mathematical literacy National-Benchmark-

Tests (NBT) respectively. The learner also completed pre-college
courses with scores of; 50% for both core Mathematics and Life
Orientation, and 60% for English Home Language. The output
presented at the bottom of Figure 8 illustrates that hypothetically the
student is 10% likely to complete their degree in 3 years (No Risk),
50% likely to complete their degree in greater than 3 years (Low
Risk), 35% likely to drop-out before the end of 3 years (Medium
Risk), and 5% likely to drop-out in greater than 3 year (High Risk).
With the output obtained, students support-program-coordinators
can then decide what assistance will prove most beneficial to the stu-
dent in the example as the learner posses a high chance of struggling
to complete their degree in the allocated time (50% Low Risk).

5 Implications and Conclusions

The expansion of enrolments in South African universities has not
been accompanied by a proportional increase in the percentage of
learners graduating. In this study, we took on the task of early
prediction of a learner’s academic trajectory, aiming at identifying
those who may struggle in universities, so that proactive learner
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Figure 8: The graphical user interface for the at-risk program, [6](sic).

remediation to promote success may be provided to them.

This paper contributes to the current body of knowledge firstly
by introducing an approach involving the prediction of a learner’s
outcome from the first year of registration until qualifying in a three-
year degree. We argue for the early prediction of a learner’s entire
academic trajectory with the aim to detect those who are likely to
benefit from student academic support initiatives. We trained six
machine learning models to predict first, second, and final year out-
comes from a synthetic data-set. After 10-fold cross-validation this
task was completed with great success as all six models attained an
accuracy above 83%. Furthermore, an evaluation of the F-measure
of accuracy and ROC-curve reveal that these models are making
informed-accurate decisions and not simply guessing, therefore,
leading to our second contribution involving a real data-set from a
research-intensive university in South Africa.

The second contribution of this study is a ranking (through
entropy) of features according to their contribution in correctly pre-
dicting a learner’s “risk profile” (class variable). The ranking of
features according to entropy reveals which features are stronger
determinants of student success relative to others employed and,
in this study, we highlight the seven top-ranked features, namely,
“plan code”, “plan description”, “year started”, “age at first year”,
“streamline”, “school quantile”, and “Matric Mathematics major”.

The third and main contribution made by this study is an inter-

active program which can predict the distribution over a learner’s
risk profile utilizing biographical and enrolment observations. The
interactive program proposed in this paper can be utilized for early
identification of university learners who are most likely to benefit
from student support initiatives aimed at improving academic perfor-
mance. The implication of this study is that university learners can
be assisted early in their academic journey increasing their chances
of success. Furthermore, the early detection and assistance of learn-
ers in need of academic support will result in an improved and
enriched learning experience beyond what the student would have
experienced if support initiatives were implemented after failure has
been detected.

6 Future work
To continue with the work done in this paper, future work may
involve: (a) incorporating into our models features from categories
not considered such as the “psycho-social attributes category”, (b)
exploring what courses offered in university possess high failure
rates and how good the set of features we employed predict success
in these courses, or (c) approaching the problem from a different per-
spective by attempting to predict which courses are students likely
to struggle completing so that support initiatives may be focused on
the specific courses.
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