

www.astesj.com 316

Chaos-Based Image Encryption Using Arnold’s Cat Map Confusion and Henon Map Diffusion

Anak Agung Putri Ratna1,*, Frenzel Timothy Surya1, Diyanatul Husna1, I Ketut Eddy Purnama2, Ingrid Nurtanio3, Afif Nurul Hidayati4,
Mauridhi Hery Purnomo2, Supeno Mardi Susiki Nugroho2, Reza Fuad Rachmadi2

1Department of Computer Engineering, Universitas Indonesia, Depok, 16424, Indonesia

2Department of Computer Engineering, Institut Teknologi Sepuluh November, Surabaya, 60111, Indonesia

3Department of Informatics, Universitas Hasanuddin, Makassar, 90245, Indonesia

4Department of Dermatology and Venerology, Universitas Airlangga, Surabaya, 60115, Indonesia

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 20 November, 2020
Accepted: 28 December, 2020
Online: 22 January, 2021

 This research designed an image encryption system that focused on securing
teledermatology data in the form of skin disease images. The encryption and decryption
process of this system is done on the client side using chaos-based encryption with
confusion and diffusion techniques. Arnold’s cat map is the chaotic map model used for
confusion, while the Henon map is used for diffusion. The initial values of both chaotic
maps are obtained from a 30-digit secret key that is generated using Diffie–Hellman key
exchange. During Arnold’s cat map generation, different p and q values are used for every
iteration. On the other side, the precision of the Henon map’s x and y values is 10–14. From
the tests that have been done, histograms of the encrypted images are relatively flat and
distributed through all the gray values. Moreover, the encrypted images have average
correlation coefficients of 0.003877 (horizontal), -0.00026 (vertical) and -0.00049
(diagonal) and an average entropy of 7.950304. According to the key sensitivity test, a
difference of just one number in the secret key causes big differences, as both results have
a similarity index of 0.005337 (0.5%). Meanwhile, in the decryption process, that small key
difference cannot be used to restore the encrypted image to its original form and generate
another chaotic image with average entropies of 7.964909333 (secret key difference) and
7.994861667 (private key difference).

Keywords:
Image encryption
Confusion
Diffusion
Chaotic map
Arnold’s cat map
Henon map

1. Introduction

Today, most of the information on the Internet is in the form of
images, which may contain confidential information, such as
patients’ medical records. In daily life, clinics or public health
centers sometimes find it difficult to determine patients’ disease,
and they need the help of hospitals or more experienced medical
experts for analysis and diagnosis. Therefore, images of patients’
medical records must be sent from the clinic/public health center
to the destination hospital. The problem is patients’ medical
records are confidential and contains sensitive data. There are also
regulations and legal protection of medical records. For example,
Indonesia’s medical records regulation can be seen in [1]. So there
has to be a way to maintain the security of patients’ medical
records, which can be done by performing image encryption [2].

Basically, image encryption is a technique that is performed
with the aim of protecting the content conveyed therein. This
encryption is done by transforming the image into another form so
that it does not contain meaningful information and cannot be
understood visually or statistically. In general, there are two types
of image encryption: traditional encryption and chaos-based
encryption. Traditional encryption uses common encryption
algorithms, such as the Data Encryption Standard (DES),
International Data Encryption Algorithm (IDEA), or Advanced
Encryption Standard (AES). Chaos-based encryption uses a
sequence of (pseudo-)random numbers called chaotic maps as a
key for encrypting images. Of these two types, chaos-based
encryption is more suitable for use with images because the image
consists of information (i.e., image pixels) with high redundancy
and correlation, and the resulting encrypted image will be random
and have low correlation between pixels. In contrast, traditionally

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Anak Agung Putri Ratna Name, Universitas Indonesia,
anak.agung@ui.ac.id

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021)

www.astesj.com

https://dx.doi.org/10.25046/aj060136

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060136

A.A.P. Ratna et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021)

www.astesj.com 317

encrypted images have more patterns, so they are more vulnerable
to attack. In this study, two chaotic map models will be used:
Arnold’s cat map for confusion or shuffling pixel positions and the
Henon map for diffusion or changing gray values [3, 4].

To generate a chaotic map, there are several parameters that
can be described as the key to the encryption and decryption
process in this system. The generated chaotic map is influenced by
these values, so the encryption and decryption process must use
exactly the same parameter values. The slightest change to this
value will result in a different output matrix, so there must be a
mechanism that ensures the encryption and decryption process
uses the same parameter values. In [4], author use the shared-key
cryptography with Diffie-Hellman method to secure the key
exchange process [5].

2. Literature Review

Chaos-based image encryption, commonly known as a chaotic
system, is an approach to encrypting an image that involves chaotic
maps, which are rows of random numbers generated by a
mathematical calculation with certain initial values. This system is
widely used in image encryption for several reasons: (1) it sensitive
to initial values, (2) the resulting numbers are random, and (3)
there are no patterns in the random number sequence, so it is
difficult to predict [3, 6].

In general, there are two techniques that can be performed with
chaos-based image encryption: confusion and diffusion. [6]
Confusion involves shuffling the pixel positions that make up an
image, while diffusion involves changing pixels’ gray values. In
encryption, both techniques should be used; the use of just one can
reduce the power of the encryption. In [7], the author used chaotic
system, the chaotic map plays a major role in both the confusion
and diffusion processes. One of the chaotic map models that can
be used for confusion is Arnold’s cat map (ACM), and one of the
chaotic map models that can be used for diffusion is the Henon
map, which is a mathematical model of the discrete-time dynamic
system.

2.1. Arnold’s Cat Map

ACM is a chaotic map model that is used to randomize the pixel
positions in an image. It was first introduced by Vladimir Arnold
as a way to shuffle an image of a cat. Mathematically, this concept
works by stretching and distorting a square shape and then
reassembling it into the same shape [8, 9].

Since it was introduced, ACM has been intended to randomize
the pixel position of an image so that it does not look the same,
which is a confusion technique. ACM works by scrambling a
pixel’s position without changing the value of the pixel itself. This
can be done using the following formula [8,9]:

 �
𝑥𝑥𝑛𝑛′
𝑦𝑦𝑛𝑛′� = 𝐴𝐴 �

𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (1)

 �
𝑥𝑥𝑛𝑛′
𝑦𝑦𝑛𝑛′� = �1 𝑝𝑝

𝑞𝑞 𝑝𝑝𝑝𝑝 + 1� �
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (2)

Although ACM is a chaotic map, if iterations are repeated
many times, it is possible that the original image will be rearranged
because the ACM concept relies on position randomization only.
According to researchers, up to 3N iterations may be needed to
return to the original image, where N is the dimension of the image
[10].

Arnold’s cat map is commonly used for image encryption by
shuffling the image pixels but actually it can be used to encrypt
other form of multimedia data. In [11] and [12], there are good
examples of audio encryption using Arnold’s cat map for securing
voice communication. Arnold’s cat map can also be used to
watermark an image or video, which is useful for tamper detection.
In [13] and [14], there are some good examples of image
watermarking, and [15] for video watermarking using Arnold’s cat
map.

2.2. Henon Map

The Henon map is one of the most commonly studied discrete-
time dynamic system models, and it has chaotic properties. It was
first introduced as a simplification of the Lorenz model. It is
formed by using a point (xn, yn) to map the next point using the
following equation [16].

 𝑥𝑥𝑛𝑛+1 = 1 − 𝛼𝛼 𝑥𝑥𝑛𝑛2 + 𝑦𝑦𝑛𝑛 (3)

 𝑦𝑦𝑛𝑛+1 = 𝛽𝛽 𝑥𝑥𝑛𝑛 (4)

In equations (3) and (4), xn and yn are the current point
positions, while xn+1 and yn+1 are the next point positions. In the
initial conditions, the values of xn and yn become initial values that
will determine the next points. The slightest change in xn and yn in
the initial conditions can have a big impact on the map that is
formed [4, 17, 18].

The classic Henon map uses values of 𝛼𝛼 = 1.4 and 𝛽𝛽 = 0.3,
which causes the results to be chaotic. Changes in both values can
result in changes in the nature of the resulting map, which may not
even be chaotic anymore [17, 18].

In image encryption, the Henon map model is often applied as
a key stream generator for diffusion techniques or changing pixel
values in images. To create this chaotic map, two initial values are
needed, namely, the initial x and y values (x0 and y0). These are the
key to establishing chaotic maps that will be used in both
encryption and decryption processes [4, 17, 18].

Chaotic maps are formed by calculating the Henon map
formula with m × n × bpc iterations (m × n represents the
dimensions of the image, and bpc represents the number of bits in
each pixel. For each iteration, a new 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 value is obtained
and then converted to a bit value (0 or 1) using a threshold value
which will later be converted to gray values for each pixel until the
chaotic map is sized 𝑚𝑚 × 𝑛𝑛 . In [18] Previous research [19]
concluded that the cut-off value should be set at 0.3992 so that the
sequence of numbers produced using the Henon map will be
balanced. Thus, the decimal value xn obtained at each iteration will
be converted into binary form using a threshold value of 0.3992
based on the following equation:

 𝑍𝑍𝑖𝑖 �
0 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0.3992
1 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 > 0.3992 (5)

2.3. Diffie–Hellman Key Exchange

The Diffie–Hellman key exchange (DH) is a method created for
safe key exchange through public channels. It addresses the
challenges that exist in a symmetrical cryptographic system, which
uses only one key for encryption and decryption. Without using
this method, key exchanges on symmetric cryptographic systems
are performed outside the system, generally conventionally, to
avoid key exchanges via public channels such as the Internet. [20]

http://www.astesj.com/

A.A.P. Ratna et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021)

www.astesj.com 318

DH offers the possibility of using both public and private keys
for actual key exchange. The two keys are not related to the
encryption process that will be carried out, but only serve to
produce the actual key. Each client has a private key that only they
known. From this private key, a public key can be generated
through equation (6) [5, 20]:

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 (6)

where p is the prime value and g is the value of the agreed-upon
generator. The resulting public key can be given to other people
because it plays a role in creating a secret key for the two clients.
To produce this secret key, the sender must perform a
mathematical computation involving their private key and the
recipient’s public key using equation (7) [5, 20]:

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 (7)

Likewise, when the recipient engages in decryption, the
recipient must compute their private key and sender’s public key
to produce a secret key that will be used in the encryption process.
[20]

3. Proposed Model

In general, the system involves three parts: sender, receiver, and
server. However, the implementation in this research only covers
the client side; server settings have not been determined. The
sending and receiving client side is where the Chaos-Based Image
Encryption Program was run. The clinic/public health center, as
the sending client, performs the encryption function, and the
hospital, as the receiving client, performs the decryption function.
The architecture of the whole system can be seen in Figure 1.

Figure 1: Encryption and decryption architecture

According to this architecture, in order to carry out encryption
and decryption, two types of inputs are required: keys and images.
Two keys—a private key and a public key—are needed to produce
a secret key that will be converted into initial values when making
the chaotic map. After the image is encrypted, the image will be
saved to the server so that it can be retrieved by the receiver for
decryption. There are three stages of encryption: reshaping,
confusion, and diffusion. Likewise, there are three stages of
decryption: undiffusion, unconfusion, and crop border.

This research uses chaos-based encryption with a combination
of confusion and diffusion methods. The choice of chaos-based
image encryption is based on the nature of the image, which

contains information (i.e., pixels) that have a high degree of
redundancy and correlation with each other. By applying this type
of encryption, the resulting image will be random, so it will have
low redundancy and correlation between pixels. Another factor
that reinforces the choice of chaos-based encryption is the nature
of the chaotic maps we used, which are sensitive to changes in
initial values or parameters. A slight change in the initial values
will result in chaotic maps or rows of random numbers that have
significant differences. This phenomenon is commonly referred to
as the butterfly effect. Thus, this type of encryption is used to
overcome statistical analysis attacks, which is more difficult with
chaotic-based encryption results because of the randomness of the
pixels making up the encrypted image [3, 21].

The combined use of confusion and diffusion is based on the
nature of confusion, which shuffles pixels but does not change
their values. This makes the image unrecognizable but still
vulnerable to most attacks. Therefore, we used diffusion to change
the pixel values of the randomized image. By using a combination
of confusion and diffusion, the encryption results become more
random and difficult to predict. In this encryption system, different
chaotic maps are used for confusion and diffusion; Arnold’s cat
map is used for confusion, while the Henon map is used for
diffusion. This is done to increase resistance to attacks because
each method uses a different mathematical model. In addition, we
chose them because they have many dimensions and are both two-
dimensional chaotic maps [21].

The encryption system designed and developed in this research
is based on several previous studies. Eko Hariyanto and Robbi
Rahim previously explained the use of Arnold’s cat map to encrypt
images using the confusion technique in a study entitled “Arnold's
Cat Map Algorithm in Digital Image Encryption.” In [9], author
explained how Henon maps could be used to encrypt images by
applying a combination of confusion and diffusion in a study
entitled “A Chaotic Confusion-Diffusion Image Encryption Based
on Henon Map” [22]. In addition, the author described the use of
Arnold’s cat map and the Henon map to encrypt images in a study
entitled “A Chaotic Cryptosystem for Images Based on Henon and
Arnold Cat Map” [4].

In terms of the methods and algorithms used, the encryption
method developed in [4] is the closest to the form of encryption
developed in this research. The difference is that, in this research,
the dimensions of the image are reshaped to form a square at the
beginning of the encryption process so that the image can be
processed as a whole. In previous studies, there was no such stage,
so the input image had to be square or some information would be
truncated. In addition, this study used initial values obtained
through a set of secret keys produced by calculating the
combination of the private and public keys with the DH algorithm.
In previous studies, there was no generation of a secret key that
was used as the initial values. Further, this study used different p
and q variables in each iteration of Arnold’s cat map following a
set of numbers taken from the secret key (more details will be
discussed in the next section).

3.1. Secret Key and Initial Value Generation

In this Chaos-Based Image Encryption System, several initial
value parameters are needed for the encryption and decryption
processes during both the confusion and diffusion stages.
Therefore, in this design, a random sequence of numbers will be
used as the initial value parameter. To decrypt the image perfectly,
it is necessary to use the same initial value parameters that are used

http://www.astesj.com/

A.A.P. Ratna et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021)

www.astesj.com 319

during the encryption process, so the keys used for encryption and
decryption must be the same. However, the use of the same key in
the encryption and decryption process has a weakness: it is
possible for the key to be obtained by a third party.

Therefore, to secure the key, this design uses the DH method
to produce the key that will be used as the initial values in the
encryption and decryption process. In this key exchange
mechanism with the DH method, each client has a private key and
a public key that are used to generate a secret key. A secret key is
needed to perform encryption/decryption, so the secret key
generation process must be carried out before running the
encryption/decryption process.

After the secret key is obtained, numbers are broken into
several parts to be used as initial values in the confusion and
diffusion stages. Two initial values are needed for the Henon map:
x and y. From this solution, the first 28 key numbers for the Henon
map will be broken into 14 digits each. After that, the 14 numbers
will be made into decimal fractions 0 < x < 1. The larger decimal
will be used as the value of x, and the smaller one will be used as
the value of y. In ACM, three parameters are used, namely, p, q,
and the number of iterations. The first half of the secret key is the
value of p, and the last half is the value of q. The number of
iterations is obtained from the sum of the last 6 digits of the secret
key. In this design, the p and q values used in each ACM iteration
will be different but still in accordance with the allocated value.
For example, in the first iteration, the values 30 and 60 are used,
then the second iteration uses the values 04 (or 4) and 03 (or 3),
and so on. The illustration of initial value generation can be seen
in Figure 2.

Figure 2: Illustration of initial value generation

3.2. Encryption Process

In this design, the image encryption mechanism consists of two
main stages, namely, the preparation and manipulation of pixels.
In the preparation stage, the image color model is converted to
RGBA (red, green, blue, alpha), and the size or dimensions of the
image are rectangular. For example, if the original image is 400 ×
600, the image will be changed to 600 × 600. The gap between the
initial size and the square size (referred to as the border) will be
filled with new pixels that have an alpha value of 254, while the
original pixel image has an alpha value of 255. Alpha is the
channel in the RGBA color model that determines pixel
transparency, with a value of 0 indicating transparency and a value
of 255 indicating non-transparency. The newly added pixels are
given a value of 254 in order to distinguish which pixels are the
original pixels in the image and which ones are the border during
the decryption process. The newly added pixels have randomly
generated values with a range of 0–255. At the pixel manipulation
stage, there are two phases: confusion and diffusion. In both

phases, several initial value parameters are used. The values for
these parameters are obtained through the secret key, as was
explained in the previous section.

3.2.1. Confusion Using Arnold’s Cat Map

Confusion is the first pixel manipulation process performed
using this image encryption system. Basically, the confusion
process involves shuffling or randomizing the position of the
pixels comprising the image so that it cannot be recognized
anymore. In this design, ACM is used as a chaotic map model to
determine the displacement of a pixel.

At the beginning of the formation of ACM, three parameters
are needed, namely, p, q, and the number of iterations, which are
all positive numbers. The values of the three parameters are
obtained from the secret key constituent numbers, as explained in
the previous section. The ACM formula is as follows:

 �
𝑥𝑥𝑛𝑛′
𝑦𝑦𝑛𝑛′� = �1 𝑝𝑝

𝑞𝑞 𝑝𝑝𝑝𝑝 + 1� �
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (8)

where p and q are parameters and N is the size or dimensions of
the image. Formula (8) produces a matrix containing 𝑥𝑥𝑛𝑛′ and 𝑦𝑦𝑛𝑛′,
which is the new position. For each time this calculation is
performed, the pixels in position (𝑥𝑥𝑛𝑛 , 𝑦𝑦𝑛𝑛) will be moved to
(𝑥𝑥𝑛𝑛′ ,𝑦𝑦𝑛𝑛′) . This calculation is carried out continuously until all
pixels are shuffled. The displacement of pixel positions in the
matrix can be performed more efficiently using the meshgrid,
which is one of the functions of Python NumPy. First, the meshgrid
will be made for x and y with a size of N × N to indicate the original
position of the pixels in the image. Then, from the two meshgrids,
two xmap and ymap matrices will be formed using formula (8),
indicating the new pixel position. Thus, the pixel value at its
original position (i.e., [x,y]) will be moved to a new position
according to (xmap,ymap). This process will continue to be
repeated as many times as the iteration parameter has been set. To
ensure that the resulting matrix is more random and difficult to
predict, in this design, the values of p and q will vary with each
iteration by taking two numbers from the overall values of p and q
obtained from the secret key.

3.2.2. Diffusion Using the Henon Map

The main concept of this diffusion process is to perform XOR
operations on a matrix of image pixels generated by the confusion
process with a chaotic map matrix. This system uses the Henon
map as the chaotic map model.

At the beginning of the formation of the Henon map, two initial
values are needed, namely 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 . Just like in the confusion
stage, the two initial values are obtained from the secret key
constituent numbers, as explained in the previous section. In this
system, the values of 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 are between 0 and 1, with a
precision level of 10−14 . This means that changes in values as
small as 10−14 can affect the results of the diffusion. In addition to
𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 , there are other parameters, namely, 𝛼𝛼 and 𝛽𝛽. In this
system, the values of 𝛼𝛼 = 1.4 and 𝛽𝛽 = 0.3 are used so that the
resulting Henon map is chaotic.

To create a chaotic map, a Henon map formula is calculated
with an iteration of m × n × bpc times (m × n represents the
dimensions of the image, and bpc is the number of bits in each
pixel). For example, if the image to be processed is a 512 × 512 8
bpc image, then the iteration will be performed 512 × 512 × 8, or
262,144, times.

http://www.astesj.com/

A.A.P. Ratna et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021)

www.astesj.com 320

For each iteration, new 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 values (𝑥𝑥𝑛𝑛+1 and 𝑦𝑦𝑛𝑛+1) are
obtained. From these results, the value of 𝑥𝑥𝑛𝑛+1 will be converted
to a bit value (0 or 1) using a threshold value of 0.3992 according
to the results of [19]. In other words, if the value of 𝑥𝑥𝑛𝑛+1 is greater
than 0.3992, it will produce a value of 1, but if it is smaller or equal
to 0.3992, it will produce a value of 0. Then, the bit will be inserted
into the bit sequence. The 𝑥𝑥𝑛𝑛+1 and 𝑦𝑦𝑛𝑛+1 values generated in the
current iteration will be x_n and y_n for the next iteration. At each
bpc iteration of a certain multiple, the resulting bit sequence will
be converted into a decimal form that will represent the gray value
of a pixel. For example, in the 8 bpc image, the bit sequence will
be changed to a decimal in the 8th, 16th and 24th iterations, and so
on. After all the iterations are finished, a chaotic map will be
produced with dimensions m × n.

After the chaotic map is formed, bitwise XOR operations will
be performed between the image pixels generated by the confusion
process with the chaotic map at the bit level. The results of the
XOR operation are stored in a new matrix and become the results
of the diffusion process. Diffusion is the last process carried out in
this series of encryption processes, so the results are the result of
this image encryption system.

3.3. Decryption Process

The flow of decryption is the opposite of encryption, which is
divided into undiffusion, unconfusion, and crop border phases. The
undiffusion and unconfusion processes involve manipulating
image pixels that aim to return the encrypted image pixels to their
original values and positions. In both phases, several initial value
parameters are used. The values for these parameters are obtained
through the secret key, as explained in the previous section. To
decrypt the image into its original form, the initial value
parameters used in the undiffusion and unconfusion processes
must be the same as those used in the diffusion and confusion
processes during encryption. Differences in values can cause the
image to not be decrypted.

After going through the undiffusion and unconfusion phases,
there is one more phase that must be completed, namely, the crop
border process. In this phase, the original image has been seen, but
the dimensions of the image are still not in accordance with the
original due to changes in the image dimensions in the encryption
process. Therefore, a crop border is performed to remove the pixels
added during the encryption process so that the image returns to its
original dimensions.

3.3.1. Undiffusion using the Henon Map

The undiffusion process is the opposite of the diffusion process
performed at the time of encryption. If diffusion involves changing
the value of the pixels that make up the image, the undiffusion
process restores encrypted image pixels to their original values.
The approach is the same as that carried out during the diffusion
process: one makes chaotic maps and then performs a bitwise XOR
operation. This can be done with an XOR operation because of its
reversible characteristics. The only difference between the
diffusion and undiffusion processes is the operand. During the
diffusion process, an XOR operation is performed between the
confusion matrix and the chaotic map, whereas in the undiffusion
process, an XOR operation is performed between the encrypted
matrix and the chaotic map. To restore encrypted image pixels to
their original values, the chaotic map used in undiffusion must be
the same as that used during the diffusion process. Chaotic map

mismatch will cause the pixel values to change from the original
values, so the image will not be successfully decrypted.

The unconfusion process is the opposite of the confusion
process during encryption. In the confusion process, the original
image’s pixel positions are randomized, so the pixel positions in
the encrypted image are not the same as in the original image. As
for the unconfusion process, the pixel positions in the encrypted
image, which have been scrambled, will be returned to their
original positions. The formula used for unconfusion is as follows:

 �
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛� = �1 𝑝𝑝

𝑞𝑞 𝑝𝑝𝑝𝑝 + 1� �
𝑥𝑥𝑛𝑛′
𝑦𝑦𝑛𝑛′�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (9)

By using formula (9), the original position of a pixel is obtained
(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛). Each time this calculation is performed, the value of a
pixel at position (𝑥𝑥𝑛𝑛′,𝑦𝑦𝑛𝑛′) will be returned to its original position
(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛). The calculation is carried out continuously until all the
pixels return to their original positions.

The displacement of pixel positions in the matrix can be
performed more efficiently by using a meshgrid, as in the
confusion process. First, a meshgrid for x and y of N × N size will
be created to indicate the pixel position in the encrypted image.
Then, from the two meshgrids, two xmap and ymap matrices will
be created using formula (9), indicating the new pixel position.
Thus, the pixel at the position of [xmap, ymap] will be moved to
the position of [x, y]. This transfer is the reverse of that performed
in the confusion process because the purpose of the unconfusion
process is to return the pixels in the encrypted image to their
original positions. This process will be repeated as many times as
the number of iterations that has been set. The number of iterations
carried out in the unconfusion process must correspond to the
number of iterations performed during the confusion process.
Mismatch in p, q, or the number of iterations will cause the pixels
in the image to not return to their original positions. Just like in the
confusion process, the p and q values in the unconfusion process
change with each iteration, but inversely; the p and q values used
in the last iteration in the confusion process will be the p and q
values of the first iteration in unconfusion, and so on.

3.3.2. Unconfusion using Arnold’s Cat Map

The unconfusion process is the opposite of the confusion
process performed during encryption. In the confusion process, the
original image’s pixel positions are randomized, so the pixel
positions in the encrypted image are not the same as in the original
image. As for the unconfusion process, the pixel position in the
encrypted image, which have been scrambled, will be returned to
their original positions. The formula used in the unconfusion
process is as follows:

 �
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛� = �1 𝑝𝑝

𝑞𝑞 𝑝𝑝𝑝𝑝 + 1� �
𝑥𝑥𝑛𝑛′
𝑦𝑦𝑛𝑛′�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (10)

By using formula (9), the original position of a pixel is obtained
(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛). Each time this calculation is performed, the value of a
pixel at position (𝑥𝑥𝑛𝑛′,𝑦𝑦𝑛𝑛′) will be returned to its original position
(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛). This calculation is carried out continuously until all the
pixels return to their original positions.

The displacement of pixel positions in the matrix can be
performed more efficiently by using a meshgrid, as in the
confusion process. First, a meshgrid for x and y of N × N size will
be created to indicate the pixel position in the encrypted image.
Then from the two meshgrids, two xmap and ymap matrices will

http://www.astesj.com/

A.A.P. Ratna et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021)

www.astesj.com 321

be created using formula (9), indicating the new pixel position.
Thus, the pixel value at the position of [xmap, ymap] will be
moved to the position of [x, y]. This transfer is the reverse of that
performed in the confusion process because the purpose of the
unconfusion process is to return the pixels in the encrypted image
to their original positions. This process will be repeated as many
times as the number of iterations that has been set. The number of
iterations carried out in the unconfusion process must correspond
to the number of iterations performed during the confusion
process. Mismatch in p, q, or the number of iterations will cause
the pixels in the image to not return to their original positions. Just
like in the confusion process, the p and q values in the unconfusion
process change with each iteration, but inversely; the p and q
values used in the last iteration in the confusion process will be the
p and q values of the first iteration in unconfusion, and so on.

4. Test and Analysis

4.1. Image Encryption Testing Using Confusion

In this test, encryption was performed on 30 images with only
confusion, using ACM as the chaotic map. An example of the
encryption result can be seen in Figure 3.

Figure 3: (a) Original image and (b) image encrypted using confusion

From the results of this test, we can see that the image does not
show the characteristics of the original image because the pixel
positions have been shuffled. However, the colors in the encrypted
image are the same as the colors in the original image because no
pixel values were changed during encryption; new pixels were
only added to reshape the image into a square.

In terms of pixel distribution, the histogram generated from 30
encrypted images has the same pixel distribution trend as the
original image’s histogram. A comparison between the histograms
of the original image and the encrypted image can be seen in Figure
4. Although the trends shown by the two images look similar, it
should be noted that the number of pixels is different. In the
original image, there are several pixels with a value of 0, whereas
in encrypted images there are none. This happens because, during
the encryption process, new pixels with random values are added
to reshape the image into a square. Thus, the number of pixels
considered in the histogram increases. Confusion does not change
the pixel values at all, so it does not change the distribution of pixel
values in the image. Thus, it can be concluded that the confusion
method is not safe enough by itself.

Then, analysis of the correlation between pixels is performed
by calculating the correlation coefficients between the neighboring
pixels horizontally, vertically, and diagonally. Correlation
coefficient values range from -1 to 1, where 1 indicates perfect
correlation, 0 indicates no correlation at all, and -1 indicates
negative correlation. This calculation is performed three times for
each channel (red, green, and blue), and then the average value is
calculated. A comparison of the average correlation coefficients of
the original image and the encrypted image can be seen in Table 1.

Figure 4: Histogram of (a) the original image and (b) the image encrypted using

confusion

Based on the average correlation coefficient, the neighboring
pixels in the original image have a strong linear correlation, with
correlation coefficients close to 0. By contrast, in the encrypted
image, the correlation coefficients between neighboring pixels are
close to 0. This shows that the confusion method successfully
weakens the correlation between neighboring pixels in an image.

Table 1: Comparison of average correlation coefficients of the original image
and the image encrypted using confusion

Correlation coeff. Horizontal Vertical Diagonal
Original image 0.984251 0.981887 0.974224
Encrypted image -0.08009 -0.0462 0.084784

After that, entropy analysis is performed to calculate the level
of uncertainty of the pixel values in the encrypted image. The ideal
entropy of encrypted image is log2(256) , which equals 8. A
comparison of the average entropy of the original and encrypted
images can be seen in Table 2.

We can see that images encrypted with confusion have higher
entropy than the original image, with an average entropy value
above 7. In theory, confusion should not change the entropy value
of the image because there is no change in the pixel value.
However, in this test, a greater entropy value was obtained
because, during the encryption process, new pixels with random
values are added to change the shape of the image into a square.
The addition of these random pixels makes the entropy value
increase from 6.912776 to 7.401581. Even so, the encrypted image
with this entropy value is not secure enough and is still predictable.
Encrypted images are considered to be safe if they have an entropy
value close to 8, which indicates that the pixels in the image are
difficult to predict.
Table 2: Comparison of the average entropy of the original image and the image

encrypted using confusion

 Entropy
Original image 6.912776
Encrypted image 7.401581

4.2. Image Encryption Testing Using Diffusion

In this test, encryption was performed on 30 images with only
diffusion, using the Henon map as the chaotic map. An example of
the encryption results can be seen in Figure 5.

We can see that the image does not represent the original color,
but instead consists of a variety of random colors. This is a result
of changing the image’s gray values during encryption.
Nevertheless, even though it is very vague, the object or shape
depicted in the original image is still visible because no
randomization of pixel positions was performed during encryption.

(a) (b)

(b) (a)

http://www.astesj.com/

A.A.P. Ratna et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021)

www.astesj.com 322

Figure 5: (a) Original image and (b) image encrypted using diffusion

In terms of pixel distribution, the histogram of encrypted image
is very different from the original image. When viewed as a whole,
30 histograms of encrypted images have the same characteristics;
every possible gray value is fairly diffused to all image pixels due
to the use of a diffusion method that changes pixel values. An
example of a comparison of the original and encrypted images’
histograms can be seen in Figure 6. This is because of the nature
of the Henon map, which produces a sequence of random numbers
that produces very diverse gray values when an XOR operation is
performed on the pixels of the original image.

Figure 6: Histogram of (a) the original image and (b) the image encrypted using

diffusion

Then, the correlation analysis between pixels is performed by
calculating the correlation coefficients between the neighboring
pixels horizontally, vertically, and diagonally. This calculation is
performed 3 times for each channel (red, green, and blue), and then
the average value is calculated. A comparison of the average
correlation coefficient of the original image and the encrypted
image can be seen in Table 3.

From the average correlation coefficient, it can be seen that the
neighboring pixels in the image encrypted with diffusion have
almost no correlation at all. Indeed, the coefficients are very close
to 0, which are even smaller than those for the image encrypted
with confusion.
Table 3 Comparison of average correlation coefficient of the original image and

the image encrypted using diffusion

Correlation coeff. Horizontal Vertical Diagonal
Original image 0.984251 0.981887 0.974224
Encrypted image 0.000195 -0.00035 -0.00107

After that, entropy analysis is performed to calculate the level
of uncertainty of the encrypted image. A comparison of the
average entropy of the original and encrypted images can be seen
in Table 4. Using the entropy calculation, we can see that
encrypted images with diffusion have a much higher entropy than
the original image, with an average entropy of 7.950477, which is
very close to 8. The entropy value produced in this test is even
greater than the entropy value of the image encrypted with
confusion in the previous test. This happens because diffusion
changes the pixel values, which makes the distribution of pixel
values in the image more random. The entropy value of 7.950477

indicates that the pixels in the encrypted image with diffusion are
random and difficult to predict.
Table 4 Comparison of the average entropy values of the original image and the

image encrypted using diffusion

 Entropy
Original image 6.912776
Encrypted image 7.950477

4.3. Image Encryption Testing Using a Combination of
Confusion and Diffusion

In this test, encryption was performed on 30 images with a
combination of confusion and diffusion, using ACM and Henon
map as the chaotic maps. An example of the encryption results can
be seen in Figure 7.

Figure 7: (a) Original image and (b) image encrypted using a combination of

confusion and diffusion

We can see that image does not represent the original color
because the pixel value has been changed at the time of encryption
during the diffusion stage. On the other hand, the characteristics of
the original image are not visible because the encryption process
is done by randomizing the position of the pixel image during the
confusion stage.

In terms of pixel distribution, the histogram produced in this
test is the same as histogram in test B (diffusion only), although
the method used in this test is a combination of confusion and
diffusion. An example comparison of the histogram of the original
image and the encrypted image can be seen in Figure 7. This can
occur because confusion does not change the pixel value, and the
value of the pixel changes at only the diffusion stage.

Just like the results of the histogram in test B, all histograms in
this test have the same characteristics; every possible gray value is
fairly diffused to all pixels in the image due to the use of a diffusion
method that changes pixel values. An example comparison of the
original and encrypted image histograms can be seen in Figure 8.
This is because the Henon map produces a sequence of random
numbers, so that very diverse gray values are produced when an
XOR operation is performed on the pixels of the original image.

Figure 8: Histogram of (a) the original image and (b) the image encrypted using

a combination of confusion and diffusion

Then, correlation analysis between pixels is performed by
calculating the correlation coefficients between the neighboring

(a) (b)

(b) (a)

(a) (b)

(b) (a)

http://www.astesj.com/

A.A.P. Ratna et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021)

www.astesj.com 323

pixels horizontally, vertically, and diagonally. This calculation is
performed three times for each channel (red, green, and blue), and
then the average value is calculated. A comparison of the average
correlation coefficient of the original image and the encrypted
image can be seen in Table 5.

Based on the average correlation coefficient, which is very
close to 0, the neighboring pixels in the image encrypted with only
diffusion have almost no correlation at all.
Table 5: Comparison of the average correlation coefficients of the original image

and the image encrypted with a combination of confusion and diffusion

Correlation coeff. Horizontal Vertical Diagonal
Original image 0.984251 0.981887 0.974224
Encrypted image 0.003877 -0.00026 -0.00049

After that, entropy analysis is performed to calculate the level
of uncertainty of the encrypted image. A comparison of the
average entropy values of the original and encrypted images can
be seen in Table 6. Based on the entropy calculation, the images
encrypted with diffusion have a much higher entropy value (an
average of 7.950304, which is very close to 8) than the original
image. The entropy value produced in this test is even greater than
the value of the image encrypted with only confusion, and it is
more or less the same as the value of the image encrypted with only
diffusion. This happens because diffusion changes the pixel
values, which makes the distribution of pixel values in the image
more random. The entropy of 7.950304 indicates that the pixels in
the image encrypted with diffusion are random and difficult to be
predicted.
Table 6: Comparison of average entropy of original and encrypted images using

confusion and diffusion combined

 Entropy
Original image 6.912776
Encrypted image 7.950304

4.4. Image Encryption Testing Using Modified Secret Keys

In this test, IMG_0130 (a photo taken by the clinic) and
ISIC_0024306 (a dataset image) are encrypted using the secret
key, 646286328968294135017954110561, producing the image
shown in Figure 9. This is the original key that will be used for
comparison in a key sensitivity analysis. After that, the encryption
test was performed again using the 30 modified secret keys. In this
system, the secret key is not actually known by the client because
it is the result of DH, but to discover the sensitivity of the key used
as the initial values for encryption in this test scenario, an
encryption test will be performed using a modified secret key.

Figure 9: Encrypted image: (a) IMG_0130 and (b) ISIC_0024306, which used

the original secret key

In each test, the modified secret key is one number different
from the original secret key, starting from the largest number
(1029) to the smallest (100), while the other 29 numbers are the

same as the original numbers. Variations of the secret key in this
test can be seen in Table 7.

Table 7: Modified secret keys

Trial no. Modification
precision Secret key

1 1029 54628632896829413501795
4110561

2 1028 63628632896829413501795
4110561

.

.
.
.

.

.

29 101 64628632896829413501795
4110551

30 100 64628632896829413501795
4110560

In this test, an analysis is performed by calculating the
similarity index (SSIM) to determine the level of similarity
between the image encrypted using the original secret key and the
one encrypted using the modified secret key. The SSIM index has
values ranging from 0 to 1, with 1 meaning that the images are
identical or entirely the same. The results of SSIM calculations of
the original encryption and encryption with the modified key can
be seen in Table 8.

The images encrypted using the original secret key and
modified secret key have very significant differences, as indicated
by the very small similarity index. In the first 28 trials, which had
modification precision of (1029) to (102), the similarity index
results were only around 0.005, or about 0.5%. In contrast, for the
secret key modification of the last two numbers, which had levels
of precision of (101) and (100), the similarity index is around 0.12,
or 12%, as the Henon map (diffusion) uses only the first 28
numbers as initial values. Thus, the secret key used to determine
the initial values in the encryption process is very sensitive to
changes; even the slightest change in the smallest number can
generate a completely different image.
Table 8: Similarity index between encrypted image using original secret key and

modified secret key

Modification
precision

Similarity index (SSIM) Average IMG_0130 ISIC_0024306
1029 0.00485 0.00556 0.005205

.

.
.
.

.

.
.
.

102 0.00497 0.00628 0.005625
101 0.09249 0.1496 0.121045
100 0.09231 0.14984 0.121075

Total Average 0.005337

4.5. Image Decryption Testing Using Modified Keys

Two kinds of tests are conducted. The first is decryption of the
encrypted image in Figure 9b using 30 secret keys, as shown in
Table 7. These secret keys are modifications of the actual secret
key (646286328968294135017954110561). The second test is
decryption of the encrypted image in Figure 9b using a public key
and a private key. This test was conducted 30 times using 30
private keys, as shown in Table 9. These private keys are
modifications of the actual private key
(885733484466402526888140697877). The public key used in the
tests is always the same (203798914001523740619069244784).

(a) (b)

http://www.astesj.com/

A.A.P. Ratna et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021)

www.astesj.com 324

The first test is carried out to determine the secret key’s
sensitivity to the resulting encrypted image, while the second test
is more like a simulation of image decryption in real circumstances
by an attacker (not the actual recipient). This is done because in the
image encryption program designed in this research, the user must
enter their private key and the sender’s public key to be able to
decrypt the image. Therefore, the second test in this test scenario
is intended to determine the sensitivity of the private key to the
encrypted image that is generated.

Table 9: Modified private keys

Trial no. Modification
precision Private key

1 1029 78573348446640252688814
0697877

2 1028 87573348446640252688814
0697877

.

.
.
.

.

.

29 101 88573348446640252688814
0697867

30 100 88573348446640252688814
0697876

From the results of the tests that have been carried out, no
image has been successfully decrypted to its original form, but in
the last two trials of the decryption test with secret key
modifications, the decrypted images represent the colors of the
original image, which can be seen in Figure 10.

Figure 10: The last two trials of the decryption test using the modified secret
keys

Figure 11: Histograms of the decryption results obtained using modified secret

keys (1st, 28th, 29th, and 30th trials)

This section analyzes the decryption results with histogram and
entropy analysis. Histograms for the decryption test using
modified secret keys can be seen in Figure 11. Overall, the
histograms show uniform pixel distribution, except for the 29th
and 30th trials. This type of pixel distribution is caused by
differences between the initial Henon map values used in the
encryption and decryption processes. When the initial values used
in the decryption process are not the same as those in the
encryption process, an entirely different chaotic map is generated
rather than restoring the pixels to their original values. In the 29th
and 30th experiments, because the initial values of the Henon map
used for decryption were the same as the values used for
encryption, the trend of pixel distribution matches the original
image, indicating that the encrypted pixel values have returned to
their original values. Meanwhile, in the ACM, the initial values

were not the same, so the pixels in the image did not return to their
original positions.

Histograms for the decryption test performed using modified
private keys can be seen in Figure 12. From these histograms, we
can see that all the trials—both those using the Henon map and
ACM—failed to decrypt the image to its original form.

Figure 12: Histograms of the decryption results obtained using modified private

keys (1st, 28th, 29th, and 30th trials)

Next, entropy analysis was performed to prove that the decryption
results are random and difficult to predict. The results of entropy
calculations can be seen in Table 10. The failed decryption trial
makes the entropy value greater, which means that the image is
more random and more difficult to predict. Indeed, the overall
entropy is above 7.99, which is very close to 8. However, in the
29th and 30th trials of the secret key modification test, the entropy
values of only around 7.54.

Table 10: Entropy of decryption results obtained using modified keys

Trial
no. Image

Entropy
Modified secret

keys
Modified

private keys
1 IMG_0130 7.99484 7.9948
.
.

.

.
.
.

.

.
28 ISIC_0024327 7.99468 7.9948
29 ISIC_0024328 7.54545 7.99492
30 ISIC_0024329 7.54545 7.99486

Of the two tests that were carried out, the scenario in the second
test, in which the encryption system is designed to use both a
public key and a private key as well as a secret key that is a
combination of both, is more likely to occur in real life. However,
it is also possible for the attacker to use direct brute force on the
secret key that is generated. Key space analysis is needed to prove
that the keys are secure enough.

Both the secret key and the private key in this design consist of
decimal numbers with a length of 30 characters. Thus, there are
1030 permutations. Key spaces of this length can overcome brute
force attacks.

4.6. Algorithm Complexity Analysis

There are three stages of encryption that are carried out
sequentially, namely, reshaping, confusion, and diffusion. During
the reshaping phase, the image is converted into a square, adding
new pixels to fill in the blanks. Therefore, in this section a random
number of N × N is filled in, where N is the largest dimension of
the original image. If calculated using Big-O notation, it is O(N2).
Then, confusion is performed with several operations:

1) Generate a meshgrid of N × N size, calculated as O(N2).
2) Loop as many as I iterations, calculated as O(I).
3) Take p and q from the secret key, calculated as O(2×1).
4) Generate an xmap and ymap by calculating the ACM of the

values in the meshgrids x and y, calculated as O(2×N2).

http://www.astesj.com/

A.A.P. Ratna et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021)

www.astesj.com 325

5) Move pixels from position (x, y) to position (xmap, ymap),
calculated as O(N2).

Throughout this calculation, the constant Big-O notation can
be removed from the calculation because of its very small effect
compared to O(N2). Therefore, from this confusion stage, we
obtain a complexity calculation of O(N2) + O(I) × O(3N2) = O(N2)
+ O(I × 3N2).

Diffusion is performed as follows:

1) Loop as many as N × N × 8 iterations, calculated as O(8N2).
2) Calculate xN and yN with the Henon map formula, calculated

as O(2×1).
3) xN and yN become x and y values for the next iteration,

calculated asO(2×1).
4) Convert xN to binary bit by using a threshold. In the worst-

case scenario, there are four operations that must be
performed, so it is calculated as O(4×1).

5) Insert binary bits into the bit sequence, calculated as O(1).
6) Check whether the current iteration is a multiple of 8,

calculated as O(1).
7) If it is a multiple of 8, convert the bit sequence into decimal

form, empty the bit sequence, and then insert the decimal
value into the chaotic matrix. All of these operations are
counted as O(3×1).

8) After all the iterations are finished, perform an XOR
operation between the chaotic matrix and the image matrix
for each channel, calculated as O(3×8N2) = O(24N2).

From this confusion phase, we obtain a complexity calculation
of O(8N2) × (O(2) + O(2) + O(4) + O(1) + O(1) + O(3)) + O(24N2)
= O(132N2). When combined, the entire encryption algorithm has
a complexity of O(N2) + O(N2) + O(I × 3N2) + O(132N2), or
O(3I+134)N2, where I is the number of iterations at the confusion
stage and N is the largest dimension of the original image. Based
on the complexity notation, the performance and time needed to
run the encryption process are influenced by the large number of
iterations that must be done at the confusion stage as well as the
largest dimension of an image. Of these factors, the largest
dimension of the image has the most influence on performance and
the time needed to carry out the encryption/decryption process, as
indicated by the notation in the form of quadratic time.

The decryption process has more or less the same complexity
as the encryption process. The undiffusion and unconfusion stages
of decryption perform similar numbers and types of operations to
the diffusion and confusion stages of the encryption process, so the
complexity calculation is the same. The only difference between
decryption and encryption leis in the reshape phase; in the worst-
case scenario, the process of returning the image to its original
form (crop border) has an operating complexity of O(2N+3N2).
Thus, the overall complexity of the decryption algorithm is
O(2N+3N2) + O(N2) + O(I × 3N2) + O(132N2), or O(2N + 136N2

+ I × 3N2).

Overall, there is not much difference between the complexity
of encryption and decryption. Similar to the encryption process,
the performance and time required to carry out the decryption
process are affected by the large number of iterations that need to
be performed at the unconfusion stage as well as the length/width
of the image to be decrypted. The length/width of the image is the
factor with the biggest influence.

5. Conclusions

There are several conclusions that can be made based on the
tests conducted in this research:

1. Chaos-based image encryption using only the confusion
method is not secure enough, as evidenced by the fact that the
pixel distribution trend is similar to the original image and the
average entropy value is 7.401581.

2. Chaos-based image encryption using only the diffusion
method is secure enough based on the distribution of pixels on
the histogram, the average correlation coefficient (which is
very close to 0), and the average entropy (7.950477).
However, the characteristics of the original image are still
vaguely visible.

3. Chaos-based image encryption using a combination of
confusion and diffusion methods is the most secure encryption
method based on pixel distribution on the histogram, the
average correlation coefficient (which is very close to 0), and
the average entropy (7.950304). Implementing two methods
is more secure because there are two layers of security.

4. Implementation of ACM in the confusion phase with different
p and q values in each iteration makes pixel positions more
random and difficult to predict.

5. The initial values of the Henon map have a sensitivity level of
at least 10−14.

6. A difference of just one number in the secret key during the
encryption process results in a significant difference in the
encrypted image, as evidenced by the average similarity level
of around 0.5%. This indicates that changes in the initial
values of the ACM or Henon map can make a big difference
in the encryption results.

7. A difference of just one number in the secret key during the
decryption process causes the image to not be restored to its
original shape and produces a stronger random image with
entropy values closer to 8.

8. A 30-character numeric key has a high level of security
because there are 1030 permutations that might be generated.

9. The largest dimension of an image (length/width) is the factor
with the most influence on the performance and time involved
in running the encryption/decryption process.

Acknowledgment

This research is supported and funded by Directorate of Research
and Community Service, Deputy for Strengthening Research and
Development, Ministry of Research, Technology / National
Research and Innovation Agency of the Republic of Indonesia
under the grant of Penelitian Konsorsium Riset Unggulan
Perguruan Tinggi 2020, contract number: Nomor:
2115/PKS/ITS/2020.
References

[1] S.S. Alwy, KONSIL KEDOKTERAN INDONESIA, 2006.
[2] D. Desai, A. Prasad, J. Crasto, “Chaos-Based System for Image Encryption,”

3(4), 4809–4811, 2012.
[3] S. Fadhel Hamood, M.S. Mohd Rahim, O. Farook Mohammado, “Chaos

image encryption methods: A survey study,” Bulletin of Electrical
Engineering and Informatics, 6(1), 99–104, 2017, doi:10.11591/eei.v6i1.599.

[4] A. Soleymani, M.J. Nordin, E. Sundararajan, “A chaotic cryptosystem for
images based on Henon and Arnold cat map,” Scientific World Journal, 2014,
2014, doi:10.1155/2014/536930.

[5] Diffie-Hellman Protocol -- from Wolfram MathWorld, Dec. 2019.
[6] L. Kocarev, “Chaos-based cryptography: A brief overview,” IEEE Circuits

and Systems Magazine, 1(3), 6–21, 2001, doi:10.1109/7384.963463.

http://www.astesj.com/

A.A.P. Ratna et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021)

www.astesj.com 326

[7] Y. Kumar, S. Mamta, “A Review Paper on Image Encryption Techniques,”
International Journal for Research in Applied Science & Engineering
Technology, 5(4), 169–172, 2014, doi:10.22214/ijraset.2017.8023.

[8] N.A. Abbas, “Image encryption based on Independent Component Analysis
and Arnold’s Cat Map,” Egyptian Informatics Journal, 17(1), 139–146, 2016,
doi:10.1016/j.eij.2015.10.001.

[9] E. Hariyanto, R. Rahim, “Arnold’s Cat Map Algorithm in Digital Image
Encryption,” International Journal of Science and Research (IJSR), 5(10),
1363–1365, 2016, doi:10.21275/ART20162488.

[10] F.J. Dyson, H. Falk, “Period of a Discrete Cat Mapping,” The American
Mathematical Monthly, 99(7), 603, 1992, doi:10.2307/2324989.

[11] M.F. Abd Elzaher, M. Shalaby, S.H. El Ramly, “An arnold cat map-based
chaotic approach for securing voice communication,” in The 10th
International Conference on Informatics and Systems, Giza: 329–331, 2016,
doi:10.1145/2908446.2908508.

[12] A.M. Elshamy, M.A. Abdelghany, A.Q. Alhamad, H.F.A. Hamed, H.M.
Kelash, A.I. Hussein, “Secure VoIP System Based on Biometric Voice
Authentication and Nested Digital Cryptosystem using Chaotic Baker’s map
and Arnold’s Cat Map Encryption,” in 2017 International Conference on
Computer and Applications, ICCA 2017, Doha: 140–146, 2017,
doi:10.1109/COMAPP.2017.8079739.

[13] C. Saha, M.F. Hossain, “MRI Watermarking Technique Using Chaotic Maps,
NSCT and DCT,” in 2nd International Conference on Electrical, Computer
and Communication Engineering, ECCE 2019, IEEE, Cox’s Bazar, 2019,
doi:10.1109/ECACE.2019.8679464.

[14] N. Lazarov, Z. Ilcheva, “A fragile watermarking algorithm for image tamper
detection based on chaotic maps,” in 2016 IEEE 8th International
Conference on Intelligent Systems, IS 2016 - Proceedings, Sofia: 723–728,
2016, doi:10.1109/IS.2016.7737391.

[15] R. Munir, “A Secure Fragile Video Watermarking Algorithm for Content
Authentication Based on Arnold Cat Map,” in 2019 4th International
Conference on Information Technology (InCIT), IEEE, Bangkok: 32–37,
2019.

[16] Hénon Map -- from Wolfram MathWorld, Dec. 2019.
[17] N.S. Raghava, A. Kumar, “Image Encryption Using Henon Chaotic Map

With Byte Sequence,” 3(5), 11–18, 2013.
[18] J. Lin, X. Si, “Image encryption algorithm based on hyperchaotic system,”

in 2009 International Workshop on Chaos-Fractals Theories and
Applications, IWCFTA 2009, 153–156, 2009,
doi:10.1109/IWCFTA.2009.39.

[19] D. Erdmann, S. Murphy, “Henon Stream Cipher,” Electronics Letters, 28, 9.
[20] D. Gollman, Computer Security Third Edition, 2011,

doi:10.1017/CBO9781107415324.004.
[21] J.G. Sekar, C. Arun, “Comparative performance analysis of chaos based

image encryption techniques,” Journal of Critical Reviews, 7(9), 1138–1143,
2020, doi:10.31838/jcr.07.09.209.

[22] A. Afifi, “A Chaotic Confusion-Diffusion Image Encryption Based on
Henon Map,” International Journal of Network Security & Its Applications,
11(4), 19–30, 2019, doi:10.5121/ijnsa.2019.11402.

http://www.astesj.com/

	2.1. Arnold’s Cat Map
	2.2. Henon Map
	2.3. Diffie–Hellman Key Exchange
	3.1. Secret Key and Initial Value Generation
	3.2. Encryption Process
	3.2.1. Confusion Using Arnold’s Cat Map
	3.2.2. Diffusion Using the Henon Map

	3.3. Decryption Process
	3.3.1. Undiffusion using the Henon Map
	3.3.2. Unconfusion using Arnold’s Cat Map

	4.1. Image Encryption Testing Using Confusion
	4.2. Image Encryption Testing Using Diffusion
	4.3. Image Encryption Testing Using a Combination of Confusion and Diffusion
	4.4. Image Encryption Testing Using Modified Secret Keys
	4.5. Image Decryption Testing Using Modified Keys
	4.6. Algorithm Complexity Analysis
	5. Conclusions
	Acknowledgment
	References

