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 This research designed an image encryption system that focused on securing 
teledermatology data in the form of skin disease images. The encryption and decryption 
process of this system is done on the client side using chaos-based encryption with 
confusion and diffusion techniques. Arnold’s cat map is the chaotic map model used for 
confusion, while the Henon map is used for diffusion. The initial values of both chaotic 
maps are obtained from a 30-digit secret key that is generated using Diffie–Hellman key 
exchange. During Arnold’s cat map generation, different p and q values are used for every 
iteration. On the other side, the precision of the Henon map’s x and y values is 10–14. From 
the tests that have been done, histograms of the encrypted images are relatively flat and 
distributed through all the gray values. Moreover, the encrypted images have average 
correlation coefficients of 0.003877 (horizontal), -0.00026 (vertical) and -0.00049 
(diagonal) and an average entropy of 7.950304. According to the key sensitivity test, a 
difference of just one number in the secret key causes big differences, as both results have 
a similarity index of 0.005337 (0.5%). Meanwhile, in the decryption process, that small key 
difference cannot be used to restore the encrypted image to its original form and generate 
another chaotic image with average entropies of 7.964909333 (secret key difference) and 
7.994861667 (private key difference). 
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1. Introduction  

Today, most of the information on the Internet is in the form of 
images, which may contain confidential information, such as 
patients’ medical records. In daily life, clinics or public health 
centers sometimes find it difficult to determine patients’ disease, 
and they need the help of hospitals or more experienced medical 
experts for analysis and diagnosis. Therefore, images of patients’ 
medical records must be sent from the clinic/public health center 
to the destination hospital. The problem is patients’ medical 
records are confidential and contains sensitive data. There are also 
regulations and legal protection of medical records. For example, 
Indonesia’s medical records regulation can be seen in [1]. So there 
has to be a way to maintain the security of patients’ medical 
records, which can be done by performing image encryption [2].  

Basically, image encryption is a technique that is performed 
with the aim of protecting the content conveyed therein. This 
encryption is done by transforming the image into another form so 
that it does not contain meaningful information and cannot be 
understood visually or statistically. In general, there are two types 
of image encryption: traditional encryption and chaos-based 
encryption. Traditional encryption uses common encryption 
algorithms, such as the Data Encryption Standard (DES), 
International Data Encryption Algorithm (IDEA), or Advanced 
Encryption Standard (AES). Chaos-based encryption uses a 
sequence of (pseudo-)random numbers called chaotic maps as a 
key for encrypting images. Of these two types, chaos-based 
encryption is more suitable for use with images because the image 
consists of information (i.e., image pixels) with high redundancy 
and correlation, and the resulting encrypted image will be random 
and have low correlation between pixels. In contrast, traditionally 
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encrypted images have more patterns, so they are more vulnerable 
to attack. In this study, two chaotic map models will be used: 
Arnold’s cat map for confusion or shuffling pixel positions and the 
Henon map for diffusion or changing gray values [3, 4]. 

To generate a chaotic map, there are several parameters that 
can be described as the key to the encryption and decryption 
process in this system. The generated chaotic map is influenced by 
these values, so the encryption and decryption process must use 
exactly the same parameter values. The slightest change to this 
value will result in a different output matrix, so there must be a 
mechanism that ensures the encryption and decryption process 
uses the same parameter values. In [4], author use the shared-key 
cryptography with Diffie-Hellman method to secure the key 
exchange process [5]. 

2. Literature Review 

Chaos-based image encryption, commonly known as a chaotic 
system, is an approach to encrypting an image that involves chaotic 
maps, which are rows of random numbers generated by a 
mathematical calculation with certain initial values. This system is 
widely used in image encryption for several reasons: (1) it sensitive 
to initial values, (2) the resulting numbers are random, and (3) 
there are no patterns in the random number sequence, so it is 
difficult to predict [3, 6]. 

In general, there are two techniques that can be performed with 
chaos-based image encryption: confusion and diffusion. [6] 
Confusion involves shuffling the pixel positions that make up an 
image, while diffusion involves changing pixels’ gray values. In 
encryption, both techniques should be used; the use of just one can 
reduce the power of the encryption.  In [7], the author used chaotic 
system, the chaotic map plays a major role in both the confusion 
and diffusion processes. One of the chaotic map models that can 
be used for confusion is Arnold’s cat map (ACM), and one of the 
chaotic map models that can be used for diffusion is the Henon 
map, which is a mathematical model of the discrete-time dynamic 
system. 

2.1. Arnold’s Cat Map 

ACM is a chaotic map model that is used to randomize the pixel 
positions in an image. It was first introduced by Vladimir Arnold 
as a way to shuffle an image of a cat. Mathematically, this concept 
works by stretching and distorting a square shape and then 
reassembling it into the same shape [8, 9]. 

Since it was introduced, ACM has been intended to randomize 
the pixel position of an image so that it does not look the same, 
which is a confusion technique. ACM works by scrambling a 
pixel’s position without changing the value of the pixel itself. This 
can be done using the following formula [8,9]: 

 �
𝑥𝑥𝑛𝑛′
𝑦𝑦𝑛𝑛′� = 𝐴𝐴 �

𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (1) 

 �
𝑥𝑥𝑛𝑛′
𝑦𝑦𝑛𝑛′� = �1 𝑝𝑝

𝑞𝑞 𝑝𝑝𝑝𝑝 + 1� �
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (2) 

Although ACM is a chaotic map, if iterations are repeated 
many times, it is possible that the original image will be rearranged 
because the ACM concept relies on position randomization only. 
According to researchers, up to 3N iterations may be needed to 
return to the original image, where N is the dimension of the image 
[10]. 

Arnold’s cat map is commonly used for image encryption by 
shuffling the image pixels but actually it can be used to encrypt 
other form of multimedia data. In [11] and [12], there are good 
examples of audio encryption using Arnold’s cat map for securing 
voice communication. Arnold’s cat map can also be used to 
watermark an image or video, which is useful for tamper detection. 
In [13] and [14], there are some good examples of image 
watermarking, and [15] for video watermarking using Arnold’s cat 
map. 

2.2. Henon Map 

The Henon map is one of the most commonly studied discrete-
time dynamic system models, and it has chaotic properties. It was 
first introduced as a simplification of the Lorenz model. It is 
formed by using a point (xn, yn) to map the next point using the 
following equation [16]. 

 𝑥𝑥𝑛𝑛+1  =  1 −  𝛼𝛼 𝑥𝑥𝑛𝑛2  +  𝑦𝑦𝑛𝑛 (3) 

 𝑦𝑦𝑛𝑛+1 =  𝛽𝛽 𝑥𝑥𝑛𝑛  (4) 

In equations (3) and (4), xn and yn are the current point 
positions, while xn+1 and yn+1 are the next point positions. In the 
initial conditions, the values of xn and yn become initial values that 
will determine the next points. The slightest change in xn and yn in 
the initial conditions can have a big impact on the map that is 
formed [4, 17, 18]. 

The classic Henon map uses values of 𝛼𝛼 = 1.4 and 𝛽𝛽 = 0.3, 
which causes the results to be chaotic. Changes in both values can 
result in changes in the nature of the resulting map, which may not 
even be chaotic anymore [17, 18]. 

In image encryption, the Henon map model is often applied as 
a key stream generator for diffusion techniques or changing pixel 
values in images. To create this chaotic map, two initial values are 
needed, namely, the initial x and y values (x0 and y0). These are the 
key to establishing chaotic maps that will be used in both 
encryption and decryption processes [4, 17, 18]. 

Chaotic maps are formed by calculating the Henon map 
formula with m × n × bpc  iterations (m × n  represents the 
dimensions of the image, and bpc represents the number of bits in 
each pixel. For each iteration, a new 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 value is obtained 
and then converted to a bit value (0 or 1) using a threshold value 
which will later be converted to gray values for each pixel until the 
chaotic map is sized 𝑚𝑚 × 𝑛𝑛 . In [18] Previous research [19] 
concluded that the cut-off value should be set at 0.3992 so that the 
sequence of numbers produced using the Henon map will be 
balanced. Thus, the decimal value xn obtained at each iteration will 
be converted into binary form using a threshold value of 0.3992 
based on the following equation: 

 𝑍𝑍𝑖𝑖 �
0 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0.3992
1 𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖 > 0.3992 (5) 

2.3. Diffie–Hellman Key Exchange 

The Diffie–Hellman key exchange (DH) is a method created for 
safe key exchange through public channels. It addresses the 
challenges that exist in a symmetrical cryptographic system, which 
uses only one key for encryption and decryption. Without using 
this method, key exchanges on symmetric cryptographic systems 
are performed outside the system, generally conventionally, to 
avoid key exchanges via public channels such as the Internet. [20] 
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DH offers the possibility of using both public and private keys 
for actual key exchange. The two keys are not related to the 
encryption process that will be carried out, but only serve to 
produce the actual key. Each client has a private key that only they 
known. From this private key, a public key can be generated 
through equation (6) [5, 20]: 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 (6) 

where p is the prime value and g is the value of the agreed-upon 
generator. The resulting public key can be given to other people 
because it plays a role in creating a secret key for the two clients. 
To produce this secret key, the sender must perform a 
mathematical computation involving their private key and the 
recipient’s public key using equation (7) [5, 20]: 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 (7) 

Likewise, when the recipient engages in decryption, the 
recipient must compute their private key and sender’s public key 
to produce a secret key that will be used in the encryption process. 
[20] 

3. Proposed Model 

In general, the system involves three parts: sender, receiver, and 
server. However, the implementation in this research only covers 
the client side; server settings have not been determined. The 
sending and receiving client side is where the Chaos-Based Image 
Encryption Program was run. The clinic/public health center, as 
the sending client, performs the encryption function, and the 
hospital, as the receiving client, performs the decryption function. 
The architecture of the whole system can be seen in Figure 1. 

 
Figure 1: Encryption and decryption architecture 

According to this architecture, in order to carry out encryption 
and decryption, two types of inputs are required: keys and images. 
Two keys—a private key and a public key—are needed to produce 
a secret key that will be converted into initial values when making 
the chaotic map. After the image is encrypted, the image will be 
saved to the server so that it can be retrieved by the receiver for 
decryption. There are three stages of encryption: reshaping, 
confusion, and diffusion. Likewise, there are three stages of 
decryption: undiffusion, unconfusion, and crop border. 

This research uses chaos-based encryption with a combination 
of confusion and diffusion methods. The choice of chaos-based 
image encryption is based on the nature of the image, which 

contains information (i.e., pixels) that have a high degree of 
redundancy and correlation with each other. By applying this type 
of encryption, the resulting image will be random, so it will have 
low redundancy and correlation between pixels. Another factor 
that reinforces the choice of chaos-based encryption is the nature 
of the chaotic maps we used, which are sensitive to changes in 
initial values or parameters. A slight change in the initial values 
will result in chaotic maps or rows of random numbers that have 
significant differences. This phenomenon is commonly referred to 
as the butterfly effect. Thus, this type of encryption is used to 
overcome statistical analysis attacks, which is more difficult with 
chaotic-based encryption results because of the randomness of the 
pixels making up the encrypted image [3, 21]. 

The combined use of confusion and diffusion is based on the 
nature of confusion, which shuffles pixels but does not change 
their values. This makes the image unrecognizable but still 
vulnerable to most attacks. Therefore, we used diffusion to change 
the pixel values of the randomized image. By using a combination 
of confusion and diffusion, the encryption results become more 
random and difficult to predict. In this encryption system, different 
chaotic maps are used for confusion and diffusion; Arnold’s cat 
map is used for confusion, while the Henon map is used for 
diffusion. This is done to increase resistance to attacks because 
each method uses a different mathematical model. In addition, we 
chose them because they have many dimensions and are both two-
dimensional chaotic maps [21]. 

The encryption system designed and developed in this research 
is based on several previous studies. Eko Hariyanto and Robbi 
Rahim previously explained the use of Arnold’s cat map to encrypt 
images using the confusion technique in a study entitled “Arnold's 
Cat Map Algorithm in Digital Image Encryption.” In [9], author 
explained how Henon maps could be used to encrypt images by 
applying a combination of confusion and diffusion in a study 
entitled “A Chaotic Confusion-Diffusion Image Encryption Based 
on Henon Map” [22]. In addition, the author described the use of 
Arnold’s cat map and the Henon map to encrypt images in a study 
entitled “A Chaotic Cryptosystem for Images Based on Henon and 
Arnold Cat Map” [4]. 

In terms of the methods and algorithms used, the encryption 
method developed in [4] is the closest to the form of encryption 
developed in this research. The difference is that, in this research, 
the dimensions of the image are reshaped to form a square at the 
beginning of the encryption process so that the image can be 
processed as a whole. In previous studies, there was no such stage, 
so the input image had to be square or some information would be 
truncated. In addition, this study used initial values obtained 
through a set of secret keys produced by calculating the 
combination of the private and public keys with the DH algorithm. 
In previous studies, there was no generation of a secret key that 
was used as the initial values. Further, this study used different p 
and q variables in each iteration of Arnold’s cat map following a 
set of numbers taken from the secret key (more details will be 
discussed in the next section). 

3.1. Secret Key and Initial Value Generation 

In this Chaos-Based Image Encryption System, several initial 
value parameters are needed for the encryption and decryption 
processes during both the confusion and diffusion stages. 
Therefore, in this design, a random sequence of numbers will be 
used as the initial value parameter. To decrypt the image perfectly, 
it is necessary to use the same initial value parameters that are used 
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during the encryption process, so the keys used for encryption and 
decryption must be the same. However, the use of the same key in 
the encryption and decryption process has a weakness: it is 
possible for the key to be obtained by a third party. 

Therefore, to secure the key, this design uses the DH method 
to produce the key that will be used as the initial values in the 
encryption and decryption process. In this key exchange 
mechanism with the DH method, each client has a private key and 
a public key that are used to generate a secret key. A secret key is 
needed to perform encryption/decryption, so the secret key 
generation process must be carried out before running the 
encryption/decryption process. 

After the secret key is obtained, numbers are broken into 
several parts to be used as initial values in the confusion and 
diffusion stages. Two initial values are needed for the Henon map: 
x and y. From this solution, the first 28 key numbers for the Henon 
map will be broken into 14 digits each. After that, the 14 numbers 
will be made into decimal fractions 0 < x < 1. The larger decimal 
will be used as the value of x, and the smaller one will be used as 
the value of y. In ACM, three parameters are used, namely, p, q, 
and the number of iterations. The first half of the secret key is the 
value of p, and the last half is the value of q. The number of 
iterations is obtained from the sum of the last 6 digits of the secret 
key. In this design, the p and q values used in each ACM iteration 
will be different but still in accordance with the allocated value. 
For example, in the first iteration, the values 30 and 60 are used, 
then the second iteration uses the values 04 (or 4) and 03 (or 3), 
and so on. The illustration of initial value generation can be seen 
in Figure 2. 

 
Figure 2: Illustration of initial value generation 

3.2. Encryption Process 

In this design, the image encryption mechanism consists of two 
main stages, namely, the preparation and manipulation of pixels. 
In the preparation stage, the image color model is converted to 
RGBA (red, green, blue, alpha), and the size or dimensions of the 
image are rectangular. For example, if the original image is 400 × 
600, the image will be changed to 600 × 600. The gap between the 
initial size and the square size (referred to as the border) will be 
filled with new pixels that have an alpha value of 254, while the 
original pixel image has an alpha value of 255. Alpha is the 
channel in the RGBA color model that determines pixel 
transparency, with a value of 0 indicating transparency and a value 
of 255 indicating non-transparency. The newly added pixels are 
given a value of 254 in order to distinguish which pixels are the 
original pixels in the image and which ones are the border during 
the decryption process. The newly added pixels have randomly 
generated values with a range of 0–255. At the pixel manipulation 
stage, there are two phases: confusion and diffusion. In both 

phases, several initial value parameters are used. The values for 
these parameters are obtained through the secret key, as was 
explained in the previous section. 

3.2.1. Confusion Using Arnold’s Cat Map 

Confusion is the first pixel manipulation process performed 
using this image encryption system. Basically, the confusion 
process involves shuffling or randomizing the position of the 
pixels comprising the image so that it cannot be recognized 
anymore. In this design, ACM is used as a chaotic map model to 
determine the displacement of a pixel. 

At the beginning of the formation of ACM, three parameters 
are needed, namely, p, q, and the number of iterations, which are 
all positive numbers. The values of the three parameters are 
obtained from the secret key constituent numbers, as explained in 
the previous section. The ACM formula is as follows: 

 �
𝑥𝑥𝑛𝑛′
𝑦𝑦𝑛𝑛′� = �1 𝑝𝑝

𝑞𝑞 𝑝𝑝𝑝𝑝 + 1� �
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (8) 

where p and q are parameters and N is the size or dimensions of 
the image. Formula (8) produces a matrix containing 𝑥𝑥𝑛𝑛′ and 𝑦𝑦𝑛𝑛′, 
which is the new position. For each time this calculation is 
performed, the pixels in position (𝑥𝑥𝑛𝑛 , 𝑦𝑦𝑛𝑛)  will be moved to 
(𝑥𝑥𝑛𝑛′ ,𝑦𝑦𝑛𝑛′) . This calculation is carried out continuously until all 
pixels are shuffled. The displacement of pixel positions in the 
matrix can be performed more efficiently using the meshgrid, 
which is one of the functions of Python NumPy. First, the meshgrid 
will be made for x and y with a size of N × N to indicate the original 
position of the pixels in the image. Then, from the two meshgrids, 
two xmap and ymap matrices will be formed using formula (8), 
indicating the new pixel position. Thus, the pixel value at its 
original position (i.e., [x,y]) will be moved to a new position 
according to (xmap,ymap). This process will continue to be 
repeated as many times as the iteration parameter has been set. To 
ensure that the resulting matrix is more random and difficult to 
predict, in this design, the values of p and q will vary with each 
iteration by taking two numbers from the overall values of p and q 
obtained from the secret key. 

3.2.2. Diffusion Using the Henon Map 

The main concept of this diffusion process is to perform XOR 
operations on a matrix of image pixels generated by the confusion 
process with a chaotic map matrix. This system uses the Henon 
map as the chaotic map model. 

At the beginning of the formation of the Henon map, two initial 
values are needed, namely 𝑥𝑥𝑛𝑛  and 𝑦𝑦𝑛𝑛 . Just like in the confusion 
stage, the two initial values are obtained from the secret key 
constituent numbers, as explained in the previous section. In this 
system, the values of 𝑥𝑥𝑛𝑛  and 𝑦𝑦𝑛𝑛  are between 0 and 1, with a 
precision level of 10−14 . This means that changes in values as 
small as 10−14 can affect the results of the diffusion. In addition to 
𝑥𝑥𝑛𝑛  and 𝑦𝑦𝑛𝑛 , there are other parameters, namely, 𝛼𝛼 and 𝛽𝛽. In this 
system, the values of 𝛼𝛼 = 1.4 and 𝛽𝛽  = 0.3 are used so that the 
resulting Henon map is chaotic. 

To create a chaotic map, a Henon map formula is calculated 
with an iteration of m × n × bpc  times ( m × n  represents the 
dimensions of the image, and bpc is the number of bits in each 
pixel). For example, if the image to be processed is a 512 × 512 8 
bpc image, then the iteration will be performed 512 × 512 × 8, or 
262,144, times. 
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For each iteration, new 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 values (𝑥𝑥𝑛𝑛+1 and 𝑦𝑦𝑛𝑛+1) are 
obtained. From these results, the value of 𝑥𝑥𝑛𝑛+1 will be converted 
to a bit value (0 or 1) using a threshold value of 0.3992 according 
to the results of [19]. In other words, if the value of 𝑥𝑥𝑛𝑛+1 is greater 
than 0.3992, it will produce a value of 1, but if it is smaller or equal 
to 0.3992, it will produce a value of 0. Then, the bit will be inserted 
into the bit sequence. The 𝑥𝑥𝑛𝑛+1 and 𝑦𝑦𝑛𝑛+1 values generated in the 
current iteration will be x_n and y_n for the next iteration. At each 
bpc iteration of a certain multiple, the resulting bit sequence will 
be converted into a decimal form that will represent the gray value 
of a pixel. For example, in the 8 bpc image, the bit sequence will 
be changed to a decimal in the 8th, 16th and 24th iterations, and so 
on. After all the iterations are finished, a chaotic map will be 
produced with dimensions m × n. 

After the chaotic map is formed, bitwise XOR operations will 
be performed between the image pixels generated by the confusion 
process with the chaotic map at the bit level. The results of the 
XOR operation are stored in a new matrix and become the results 
of the diffusion process. Diffusion is the last process carried out in 
this series of encryption processes, so the results are the result of 
this image encryption system. 

3.3. Decryption Process 

The flow of decryption is the opposite of encryption, which is 
divided into undiffusion, unconfusion, and crop border phases. The 
undiffusion and unconfusion processes involve manipulating 
image pixels that aim to return the encrypted image pixels to their 
original values and positions. In both phases, several initial value 
parameters are used. The values for these parameters are obtained 
through the secret key, as explained in the previous section. To 
decrypt the image into its original form, the initial value 
parameters used in the undiffusion and unconfusion processes 
must be the same as those used in the diffusion and confusion 
processes during encryption. Differences in values can cause the 
image to not be decrypted. 

After going through the undiffusion and unconfusion phases, 
there is one more phase that must be completed, namely, the crop 
border process. In this phase, the original image has been seen, but 
the dimensions of the image are still not in accordance with the 
original due to changes in the image dimensions in the encryption 
process. Therefore, a crop border is performed to remove the pixels 
added during the encryption process so that the image returns to its 
original dimensions. 

3.3.1. Undiffusion using the Henon Map 

The undiffusion process is the opposite of the diffusion process 
performed at the time of encryption. If diffusion involves changing 
the value of the pixels that make up the image, the undiffusion 
process restores encrypted image pixels to their original values. 
The approach is the same as that carried out during the diffusion 
process: one makes chaotic maps and then performs a bitwise XOR 
operation. This can be done with an XOR operation because of its 
reversible characteristics. The only difference between the 
diffusion and undiffusion processes is the operand. During the 
diffusion process, an XOR operation is performed between the 
confusion matrix and the chaotic map, whereas in the undiffusion 
process, an XOR operation is performed between the encrypted 
matrix and the chaotic map. To restore encrypted image pixels to 
their original values, the chaotic map used in undiffusion must be 
the same as that used during the diffusion process. Chaotic map 

mismatch will cause the pixel values to change from the original 
values, so the image will not be successfully decrypted. 

The unconfusion process is the opposite of the confusion 
process during encryption. In the confusion process, the original 
image’s pixel positions are randomized, so the pixel positions in 
the encrypted image are not the same as in the original image. As 
for the unconfusion process, the pixel positions in the encrypted 
image, which have been scrambled, will be returned to their 
original positions. The formula used for unconfusion is as follows: 

 �
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛� = �1 𝑝𝑝

𝑞𝑞 𝑝𝑝𝑝𝑝 + 1� �
𝑥𝑥𝑛𝑛′
𝑦𝑦𝑛𝑛′�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (9) 

By using formula (9), the original position of a pixel is obtained 
(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛). Each time this calculation is performed, the value of a 
pixel at position (𝑥𝑥𝑛𝑛′,𝑦𝑦𝑛𝑛′) will be returned to its original position 
(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛). The calculation is carried out continuously until all the 
pixels return to their original positions. 

The displacement of pixel positions in the matrix can be 
performed more efficiently by using a meshgrid, as in the 
confusion process. First, a meshgrid for x and y of N × N size will 
be created to indicate the pixel position in the encrypted image. 
Then, from the two meshgrids, two xmap and ymap matrices will 
be created using formula (9), indicating the new pixel position. 
Thus, the pixel at the position of [xmap, ymap] will be moved to 
the position of [x, y]. This transfer is the reverse of that performed 
in the confusion process because the purpose of the unconfusion 
process is to return the pixels in the encrypted image to their 
original positions. This process will be repeated as many times as 
the number of iterations that has been set. The number of iterations 
carried out in the unconfusion process must correspond to the 
number of iterations performed during the confusion process. 
Mismatch in p, q, or the number of iterations will cause the pixels 
in the image to not return to their original positions. Just like in the 
confusion process, the p and q values in the unconfusion process 
change with each iteration, but inversely; the p and q values used 
in the last iteration in the confusion process will be the p and q 
values of the first iteration in unconfusion, and so on. 

3.3.2. Unconfusion using Arnold’s Cat Map 

The unconfusion process is the opposite of the confusion 
process performed during encryption. In the confusion process, the 
original image’s pixel positions are randomized, so the pixel 
positions in the encrypted image are not the same as in the original 
image. As for the unconfusion process, the pixel position in the 
encrypted image, which have been scrambled, will be returned to 
their original positions. The formula used in the unconfusion 
process is as follows: 

 �
𝑥𝑥𝑛𝑛
𝑦𝑦𝑛𝑛� = �1 𝑝𝑝

𝑞𝑞 𝑝𝑝𝑝𝑝 + 1� �
𝑥𝑥𝑛𝑛′
𝑦𝑦𝑛𝑛′�𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (10) 

By using formula (9), the original position of a pixel is obtained 
(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛). Each time this calculation is performed, the value of a 
pixel at position (𝑥𝑥𝑛𝑛′,𝑦𝑦𝑛𝑛′) will be returned to its original position 
(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛). This calculation is carried out continuously until all the 
pixels return to their original positions. 

The displacement of pixel positions in the matrix can be 
performed more efficiently by using a meshgrid, as in the 
confusion process. First, a meshgrid for x and y of N × N size will 
be created to indicate the pixel position in the encrypted image. 
Then from the two meshgrids, two xmap and ymap matrices will 
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be created using formula (9), indicating the new pixel position. 
Thus, the pixel value at the position of [xmap, ymap] will be 
moved to the position of [x, y]. This transfer is the reverse of that 
performed in the confusion process because the purpose of the 
unconfusion process is to return the pixels in the encrypted image 
to their original positions. This process will be repeated as many 
times as the number of iterations that has been set. The number of 
iterations carried out in the unconfusion process must correspond 
to the number of iterations performed during the confusion 
process. Mismatch in p, q, or the number of iterations will cause 
the pixels in the image to not return to their original positions. Just 
like in the confusion process, the p and q values in the unconfusion 
process change with each iteration, but inversely; the p and q 
values used in the last iteration in the confusion process will be the 
p and q values of the first iteration in unconfusion, and so on. 

4. Test and Analysis 

4.1. Image Encryption Testing Using Confusion 

In this test, encryption was performed on 30 images with only 
confusion, using ACM as the chaotic map. An example of the 
encryption result can be seen in Figure 3. 

 
Figure 3: (a) Original image and (b) image encrypted using confusion 

From the results of this test, we can see that the image does not 
show the characteristics of the original image because the pixel 
positions have been shuffled. However, the colors in the encrypted 
image are the same as the colors in the original image because no 
pixel values were changed during encryption; new pixels were 
only added to reshape the image into a square. 

In terms of pixel distribution, the histogram generated from 30 
encrypted images has the same pixel distribution trend as the 
original image’s histogram. A comparison between the histograms 
of the original image and the encrypted image can be seen in Figure 
4. Although the trends shown by the two images look similar, it 
should be noted that the number of pixels is different. In the 
original image, there are several pixels with a value of 0, whereas 
in encrypted images there are none. This happens because, during 
the encryption process, new pixels with random values are added 
to reshape the image into a square. Thus, the number of pixels 
considered in the histogram increases. Confusion does not change 
the pixel values at all, so it does not change the distribution of pixel 
values in the image. Thus, it can be concluded that the confusion 
method is not safe enough by itself. 

Then, analysis of the correlation between pixels is performed 
by calculating the correlation coefficients between the neighboring 
pixels horizontally, vertically, and diagonally. Correlation 
coefficient values range from -1 to 1, where 1 indicates perfect 
correlation, 0 indicates no correlation at all, and -1 indicates 
negative correlation. This calculation is performed three times for 
each channel (red, green, and blue), and then the average value is 
calculated. A comparison of the average correlation coefficients of 
the original image and the encrypted image can be seen in Table 1. 

 
Figure 4: Histogram of (a) the original image and (b) the image encrypted using 

confusion 

Based on the average correlation coefficient, the neighboring 
pixels in the original image have a strong linear correlation, with 
correlation coefficients close to 0. By contrast, in the encrypted 
image, the correlation coefficients between neighboring pixels are 
close to 0. This shows that the confusion method successfully 
weakens the correlation between neighboring pixels in an image. 

Table 1: Comparison of average correlation coefficients of the original image 
and the image encrypted using confusion 

Correlation coeff. Horizontal Vertical Diagonal 
Original image 0.984251 0.981887 0.974224 
Encrypted image -0.08009 -0.0462 0.084784 

After that, entropy analysis is performed to calculate the level 
of uncertainty of the pixel values in the encrypted image. The ideal 
entropy of encrypted image is log2(256) , which equals 8. A 
comparison of the average entropy of the original and encrypted 
images can be seen in Table 2. 

We can see that images encrypted with confusion have higher 
entropy than the original image, with an average entropy value 
above 7. In theory, confusion should not change the entropy value 
of the image because there is no change in the pixel value. 
However, in this test, a greater entropy value was obtained 
because, during the encryption process, new pixels with random 
values are added to change the shape of the image into a square. 
The addition of these random pixels makes the entropy value 
increase from 6.912776 to 7.401581. Even so, the encrypted image 
with this entropy value is not secure enough and is still predictable. 
Encrypted images are considered to be safe if they have an entropy 
value close to 8, which indicates that the pixels in the image are 
difficult to predict. 
Table 2: Comparison of the average entropy of the original image and the image 

encrypted using confusion 

 Entropy 
Original image 6.912776 
Encrypted image 7.401581 

4.2. Image Encryption Testing Using Diffusion 

In this test, encryption was performed on 30 images with only 
diffusion, using the Henon map as the chaotic map. An example of 
the encryption results can be seen in Figure 5. 

We can see that the image does not represent the original color, 
but instead consists of a variety of random colors. This is a result 
of changing the image’s gray values during encryption. 
Nevertheless, even though it is very vague, the object or shape 
depicted in the original image is still visible because no 
randomization of pixel positions was performed during encryption. 

(a) (b) 

(b) (a) 
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Figure 5: (a) Original image and (b) image encrypted using diffusion 

In terms of pixel distribution, the histogram of encrypted image 
is very different from the original image. When viewed as a whole, 
30 histograms of encrypted images have the same characteristics; 
every possible gray value is fairly diffused to all image pixels due 
to the use of a diffusion method that changes pixel values. An 
example of a comparison of the original and encrypted images’ 
histograms can be seen in Figure 6. This is because of the nature 
of the Henon map, which produces a sequence of random numbers 
that produces very diverse gray values when an XOR operation is 
performed on the pixels of the original image. 

 
Figure 6: Histogram of (a) the original image and (b) the image encrypted using 

diffusion 

Then, the correlation analysis between pixels is performed by 
calculating the correlation coefficients between the neighboring 
pixels horizontally, vertically, and diagonally. This calculation is 
performed 3 times for each channel (red, green, and blue), and then 
the average value is calculated. A comparison of the average 
correlation coefficient of the original image and the encrypted 
image can be seen in Table 3. 

From the average correlation coefficient, it can be seen that the 
neighboring pixels in the image encrypted with diffusion have 
almost no correlation at all. Indeed, the coefficients are very close 
to 0, which are even smaller than those for the image encrypted 
with confusion. 
Table 3 Comparison of average correlation coefficient of the original image and 

the image encrypted using diffusion 

Correlation coeff. Horizontal Vertical Diagonal 
Original image 0.984251 0.981887 0.974224 
Encrypted image 0.000195 -0.00035 -0.00107 

After that, entropy analysis is performed to calculate the level 
of uncertainty of the encrypted image. A comparison of the 
average entropy of the original and encrypted images can be seen 
in Table 4. Using the entropy calculation, we can see that 
encrypted images with diffusion have a much higher entropy than 
the original image, with an average entropy of 7.950477, which is 
very close to 8. The entropy value produced in this test is even 
greater than the entropy value of the image encrypted with 
confusion in the previous test. This happens because diffusion 
changes the pixel values, which makes the distribution of pixel 
values in the image more random. The entropy value of 7.950477 

indicates that the pixels in the encrypted image with diffusion are 
random and difficult to predict. 
Table 4 Comparison of the average entropy values of the original image and the 

image encrypted using diffusion 

 Entropy 
Original image 6.912776 
Encrypted image 7.950477 

4.3. Image Encryption Testing Using a Combination of 
Confusion and Diffusion 

In this test, encryption was performed on 30 images with a 
combination of confusion and diffusion, using ACM and Henon 
map as the chaotic maps. An example of the encryption results can 
be seen in Figure 7. 

 
Figure 7: (a) Original image and (b) image encrypted using a combination of 

confusion and diffusion 

We can see that image does not represent the original color 
because the pixel value has been changed at the time of encryption 
during the diffusion stage. On the other hand, the characteristics of 
the original image are not visible because the encryption process 
is done by randomizing the position of the pixel image during the 
confusion stage. 

In terms of pixel distribution, the histogram produced in this 
test is the same as histogram in test B (diffusion only), although 
the method used in this test is a combination of confusion and 
diffusion. An example comparison of the histogram of the original 
image and the encrypted image can be seen in Figure 7. This can 
occur because confusion does not change the pixel value, and the 
value of the pixel changes at only the diffusion stage. 

Just like the results of the histogram in test B, all histograms in 
this test have the same characteristics; every possible gray value is 
fairly diffused to all pixels in the image due to the use of a diffusion 
method that changes pixel values. An example comparison of the 
original and encrypted image histograms can be seen in Figure 8. 
This is because the Henon map produces a sequence of random 
numbers, so that very diverse gray values are produced when an 
XOR operation is performed on the pixels of the original image. 

 
Figure 8: Histogram of (a) the original image and (b) the image encrypted using 

a combination of confusion and diffusion 

Then, correlation analysis between pixels is performed by 
calculating the correlation coefficients between the neighboring 

(a) (b) 

(b) (a) 

(a) (b) 

(b) (a) 
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pixels horizontally, vertically, and diagonally. This calculation is 
performed three times for each channel (red, green, and blue), and 
then the average value is calculated. A comparison of the average 
correlation coefficient of the original image and the encrypted 
image can be seen in Table 5. 

Based on the average correlation coefficient, which is very 
close to 0, the neighboring pixels in the image encrypted with only 
diffusion have almost no correlation at all. 
Table 5: Comparison of the average correlation coefficients of the original image 

and the image encrypted with a combination of confusion and diffusion 

Correlation coeff. Horizontal Vertical Diagonal 
Original image 0.984251 0.981887 0.974224 
Encrypted image 0.003877 -0.00026 -0.00049 

After that, entropy analysis is performed to calculate the level 
of uncertainty of the encrypted image. A comparison of the 
average entropy values of the original and encrypted images can 
be seen in Table 6. Based on the entropy calculation, the images 
encrypted with diffusion have a much higher entropy value (an 
average of 7.950304, which is very close to 8) than the original 
image. The entropy value produced in this test is even greater than 
the value of the image encrypted with only confusion, and it is 
more or less the same as the value of the image encrypted with only 
diffusion. This happens because diffusion changes the pixel 
values, which makes the distribution of pixel values in the image 
more random. The entropy of 7.950304 indicates that the pixels in 
the image encrypted with diffusion are random and difficult to be 
predicted. 
Table 6: Comparison of average entropy of original and encrypted images using 

confusion and diffusion combined 

 Entropy 
Original image 6.912776 
Encrypted image 7.950304 

4.4. Image Encryption Testing Using Modified Secret Keys 

In this test, IMG_0130 (a photo taken by the clinic) and 
ISIC_0024306 (a dataset image) are encrypted using the secret 
key, 646286328968294135017954110561, producing the image 
shown in Figure 9. This is the original key that will be used for 
comparison in a key sensitivity analysis. After that, the encryption 
test was performed again using the 30 modified secret keys. In this 
system, the secret key is not actually known by the client because 
it is the result of DH, but to discover the sensitivity of the key used 
as the initial values for encryption in this test scenario, an 
encryption test will be performed using a modified secret key. 

 
Figure 9: Encrypted image: (a) IMG_0130 and (b) ISIC_0024306, which used 

the original secret key 

In each test, the modified secret key is one number different 
from the original secret key, starting from the largest number 
(1029) to the smallest (100), while the other 29 numbers are the 

same as the original numbers. Variations of the secret key in this 
test can be seen in Table 7. 

Table 7: Modified secret keys 

Trial no. Modification 
precision Secret key 

1 1029 54628632896829413501795
4110561 

2 1028 63628632896829413501795
4110561 

. 

. 
. 
. 

. 

. 

29 101 64628632896829413501795
4110551 

30 100 64628632896829413501795
4110560 

In this test, an analysis is performed by calculating the 
similarity index (SSIM) to determine the level of similarity 
between the image encrypted using the original secret key and the 
one encrypted using the modified secret key. The SSIM index has 
values ranging from 0 to 1, with 1 meaning that the images are 
identical or entirely the same. The results of SSIM calculations of 
the original encryption and encryption with the modified key can 
be seen in Table 8. 

The images encrypted using the original secret key and 
modified secret key have very significant differences, as indicated 
by the very small similarity index. In the first 28 trials, which had 
modification precision of (1029 ) to (102 ), the similarity index 
results were only around 0.005, or about 0.5%. In contrast, for the 
secret key modification of the last two numbers, which had levels 
of precision of (101) and (100), the similarity index is around 0.12, 
or 12%, as the Henon map (diffusion) uses only the first 28 
numbers as initial values. Thus, the secret key used to determine 
the initial values in the encryption process is very sensitive to 
changes; even the slightest change in the smallest number can 
generate a completely different image. 
Table 8: Similarity index between encrypted image using original secret key and 

modified secret key 

Modification 
precision 

Similarity index (SSIM) Average IMG_0130 ISIC_0024306 
1029 0.00485 0.00556 0.005205 

. 

. 
. 
. 

. 

. 
. 
. 

102 0.00497 0.00628 0.005625 
101 0.09249 0.1496 0.121045 
100 0.09231 0.14984 0.121075 

Total Average 0.005337 

4.5. Image Decryption Testing Using Modified Keys 

Two kinds of tests are conducted. The first is decryption of the 
encrypted image in Figure 9b using 30 secret keys, as shown in 
Table 7. These secret keys are modifications of the actual secret 
key (646286328968294135017954110561). The second test is 
decryption of the encrypted image in Figure 9b using a public key 
and a private key. This test was conducted 30 times using 30 
private keys, as shown in Table 9. These private keys are 
modifications of the actual private key 
(885733484466402526888140697877). The public key used in the 
tests is always the same (203798914001523740619069244784). 

(a) (b) 
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The first test is carried out to determine the secret key’s 
sensitivity to the resulting encrypted image, while the second test 
is more like a simulation of image decryption in real circumstances 
by an attacker (not the actual recipient). This is done because in the 
image encryption program designed in this research, the user must 
enter their private key and the sender’s public key to be able to 
decrypt the image. Therefore, the second test in this test scenario 
is intended to determine the sensitivity of the private key to the 
encrypted image that is generated. 

Table 9: Modified private keys 

Trial no. Modification 
precision Private key 

1 1029 78573348446640252688814
0697877 

2 1028 87573348446640252688814
0697877 

. 

. 
. 
. 

. 

. 

29 101 88573348446640252688814
0697867 

30 100 88573348446640252688814
0697876 

From the results of the tests that have been carried out, no 
image has been successfully decrypted to its original form, but in 
the last two trials of the decryption test with secret key 
modifications, the decrypted images represent the colors of the 
original image, which can be seen in Figure 10. 

 

Figure 10: The last two trials of the decryption test using the modified secret 
keys 

 
Figure 11: Histograms of the decryption results obtained using modified secret 

keys (1st, 28th, 29th, and 30th trials) 

This section analyzes the decryption results with histogram and 
entropy analysis. Histograms for the decryption test using 
modified secret keys can be seen in Figure 11. Overall, the 
histograms show uniform pixel distribution, except for the 29th 
and 30th trials. This type of pixel distribution is caused by 
differences between the initial Henon map values used in the 
encryption and decryption processes. When the initial values used 
in the decryption process are not the same as those in the 
encryption process, an entirely different chaotic map is generated 
rather than restoring the pixels to their original values. In the 29th 
and 30th experiments, because the initial values of the Henon map 
used for decryption were the same as the values used for 
encryption, the trend of pixel distribution matches the original 
image, indicating that the encrypted pixel values have returned to 
their original values. Meanwhile, in the ACM, the initial values 

were not the same, so the pixels in the image did not return to their 
original positions. 

Histograms for the decryption test performed using modified 
private keys can be seen in Figure 12. From these histograms, we 
can see that all the trials—both those using the Henon map and 
ACM—failed to decrypt the image to its original form. 

 
Figure 12: Histograms of the decryption results obtained using modified private 

keys (1st, 28th, 29th, and 30th trials) 

Next, entropy analysis was performed to prove that the decryption 
results are random and difficult to predict. The results of entropy 
calculations can be seen in Table 10. The failed decryption trial 
makes the entropy value greater, which means that the image is 
more random and more difficult to predict. Indeed, the overall 
entropy is above 7.99, which is very close to 8. However, in the 
29th and 30th trials of the secret key modification test, the entropy 
values of only around 7.54. 

Table 10: Entropy of decryption results obtained using modified keys 

Trial 
no. Image 

Entropy 
Modified secret 

keys 
Modified 

private keys 
1 IMG_0130 7.99484 7.9948 
. 
. 

. 

. 
. 
. 

. 

. 
28 ISIC_0024327 7.99468 7.9948 
29 ISIC_0024328 7.54545 7.99492 
30 ISIC_0024329 7.54545 7.99486 

Of the two tests that were carried out, the scenario in the second 
test, in which the encryption system is designed to use both a 
public key and a private key as well as a secret key that is a 
combination of both, is more likely to occur in real life. However, 
it is also possible for the attacker to use direct brute force on the 
secret key that is generated. Key space analysis is needed to prove 
that the keys are secure enough. 

Both the secret key and the private key in this design consist of 
decimal numbers with a length of 30 characters. Thus, there are 
1030 permutations. Key spaces of this length can overcome brute 
force attacks. 

4.6. Algorithm Complexity Analysis 

There are three stages of encryption that are carried out 
sequentially, namely, reshaping, confusion, and diffusion. During 
the reshaping phase, the image is converted into a square, adding 
new pixels to fill in the blanks. Therefore, in this section a random 
number of N × N is filled in, where N is the largest dimension of 
the original image. If calculated using Big-O notation, it is O(N2). 
Then, confusion is performed with several operations: 

1) Generate a meshgrid of N × N size, calculated as O(N2). 
2) Loop as many as I iterations, calculated as O(I). 
3) Take p and q from the secret key, calculated as O(2×1). 
4) Generate an xmap and ymap by calculating the ACM of the 

values in the meshgrids x and y, calculated as O(2×N2). 

http://www.astesj.com/


A.A.P. Ratna et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 316-326 (2021) 

www.astesj.com     325 

5) Move pixels from position (x, y) to position (xmap, ymap), 
calculated as O(N2).  

Throughout this calculation, the constant Big-O notation can 
be removed from the calculation because of its very small effect 
compared to O(N2). Therefore, from this confusion stage, we 
obtain a complexity calculation of O(N2) + O(I) × O(3N2) = O(N2) 
+ O(I × 3N2). 

Diffusion is performed as follows: 

1) Loop as many as N × N × 8 iterations, calculated as O(8N2). 
2) Calculate xN and yN with the Henon map formula, calculated 

as O(2×1). 
3) xN and yN become x and y values for the next iteration, 

calculated asO(2×1). 
4) Convert xN to binary bit by using a threshold. In the worst-

case scenario, there are four operations that must be 
performed, so it is calculated as O(4×1). 

5) Insert binary bits into the bit sequence, calculated as O(1). 
6) Check whether the current iteration is a multiple of 8, 

calculated as O(1). 
7) If it is a multiple of 8, convert the bit sequence into decimal 

form, empty the bit sequence, and then insert the decimal 
value into the chaotic matrix. All of these operations are 
counted as O(3×1). 

8) After all the iterations are finished, perform an XOR 
operation between the chaotic matrix and the image matrix 
for each channel, calculated as O(3×8N2) = O(24N2). 

From this confusion phase, we obtain a complexity calculation 
of O(8N2) × (O(2) + O(2) + O(4) + O(1) + O(1) + O(3)) + O(24N2) 
= O(132N2). When combined, the entire encryption algorithm has 
a complexity of O(N2) + O(N2) + O(I × 3N2) + O(132N2), or 
O(3I+134)N2, where I is the number of iterations at the confusion 
stage and N is the largest dimension of the original image. Based 
on the complexity notation, the performance and time needed to 
run the encryption process are influenced by the large number of 
iterations that must be done at the confusion stage as well as the 
largest dimension of an image. Of these factors, the largest 
dimension of the image has the most influence on performance and 
the time needed to carry out the encryption/decryption process, as 
indicated by the notation in the form of quadratic time. 

The decryption process has more or less the same complexity 
as the encryption process. The undiffusion and unconfusion stages 
of decryption perform similar numbers and types of operations to 
the diffusion and confusion stages of the encryption process, so the 
complexity calculation is the same. The only difference between 
decryption and encryption leis in the reshape phase; in the worst-
case scenario, the process of returning the image to its original 
form (crop border) has an operating complexity of O(2N+3N2). 
Thus, the overall complexity of the decryption algorithm is 
O(2N+3N2) + O(N2) + O(I × 3N2) + O(132N2), or O(2N + 136N2 

+ I × 3N2). 

Overall, there is not much difference between the complexity 
of encryption and decryption. Similar to the encryption process, 
the performance and time required to carry out the decryption 
process are affected by the large number of iterations that need to 
be performed at the unconfusion stage as well as the length/width 
of the image to be decrypted. The length/width of the image is the 
factor with the biggest influence. 

5. Conclusions 

There are several conclusions that can be made based on the 
tests conducted in this research: 

1. Chaos-based image encryption using only the confusion 
method is not secure enough, as evidenced by the fact that the 
pixel distribution trend is similar to the original image and the 
average entropy value is 7.401581. 

2. Chaos-based image encryption using only the diffusion 
method is secure enough based on the distribution of pixels on 
the histogram, the average correlation coefficient (which is 
very close to 0), and the average entropy (7.950477). 
However, the characteristics of the original image are still 
vaguely visible. 

3. Chaos-based image encryption using a combination of 
confusion and diffusion methods is the most secure encryption 
method based on pixel distribution on the histogram, the 
average correlation coefficient (which is very close to 0), and 
the average entropy (7.950304). Implementing two methods 
is more secure because there are two layers of security. 

4. Implementation of ACM in the confusion phase with different 
p and q values in each iteration makes pixel positions more 
random and difficult to predict. 

5. The initial values of the Henon map have a sensitivity level of 
at least 10−14. 

6. A difference of just one number in the secret key during the 
encryption process results in a significant difference in the 
encrypted image, as evidenced by the average similarity level 
of around 0.5%. This indicates that changes in the initial 
values of the ACM or Henon map can make a big difference 
in the encryption results. 

7. A difference of just one number in the secret key during the 
decryption process causes the image to not be restored to its 
original shape and produces a stronger random image with 
entropy values closer to 8. 

8. A 30-character numeric key has a high level of security 
because there are 1030 permutations that might be generated. 

9. The largest dimension of an image (length/width) is the factor 
with the most influence on the performance and time involved 
in running the encryption/decryption process. 
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