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 A3S(Arwin-Adang-Aciek-Sembiring) is a method of information fusion at a single 
observation and OMA3S(Observation Multi-time A3S) is a method of information fusion 
for time-series data. This paper proposes OMA3S-based Cognitive Artificial-Intelligence 
method for interpreting Transformer Condition, which is calculated based on maintenance 
data from Indonesia National Electric Company (PLN). First, the proposed method is tested 
using the previously published data, and then followed by implementation on maintenance 
data. Maintenance data are fused to obtain part condition, and part conditions are fused to 
obtain transformer condition. Result shows proposed method is valid for DGA fault 
identification with the average accuracy of 91.1%. The proposed method not only can 
interpret the major fault, it can also identify the minor fault occurring along with the major 
fault, allowing early warning feature. Result also shows part conditions can be interpreted 
using information fusion on maintenance data, and the transformer condition can be 
interpreted using information fusion on part conditions. The future works on this research 
is to gather more data, to elaborate more factors to be fused, and to design a cognitive 
processor that can be used to implement this concept of intelligent instrumentation. 
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1. Introduction  

In the earlier paper [1], transformer condition is used to 
estimate its end of life using instant data. In this paper, transformer 
condition is calculated using maintenance data from Indonesia 
Electric Company (PLN) and is interpreted using Cognitive-
Artificial method. Each factor influencing the same component is 
assumed to have the same weight in the condition calculation. The 
condition is then interpreted to provide early warning system for 
the potential failure and to estimate the transformer end of life.  

There are no single conventional method of transformer 
diagnosis can be used to define transformer condition accurately. 
Usually there are several methods combined to perform such a task. 
These methods are very expert-dependant and are not formulated. 
Therefore, an automated method for transformer condition 
monitoring is proposed. Using Cognitive-Artificial-Intelligence 
(CAI) method, the transformer condition interpretation can be 

accurately performed, and the expert-dependency can be reduced 
as well. 

2. Transformer Condition Component 

Transformer condition can be calculated using some factors. 
These factors are shown in Figure 1 [2].  
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Figure 1 Transformer Condition Factors [2] 
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Data are collected from PLN and fused to obtain part 
conditions, part conditions are then fused to obtain transformer 
condition. Figure 2 explains how transformers degrade over time. 
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Figure 2 Transformer Degradation Diagram [3] 

There are two main processes of the transformer degradation 
process, hydrolysis and pyrolysis. Hydrolysis is related to water, 
while pyrolysis is related to fire. The main cause of hydrolysis is 
water, acids and temperature causes hydrolysis as well. Pyrolysis 
is caused by temperature [3]. 

Hydrolysis causes depolymerization of transformer insulating 
system, and later produces furanoid compounds, which produces 
carbon dioxide and carbon monoxide, which is the main cause of 
acids [3]. Acid will then cause hydrolysis. 

Pyrolysis causes levoglucosane fragmentation, which 
produces diatomic oxygen. Oxygen is the cause of oxidation in 
cellulose and oil, which leads to hydrolysis [3]. These two 
degradation processes and the compounds they produce makes the 
transformer degradation processes accelerate over time. The 
impact of diatomic oxygen will be discussed in Load Tap Changer. 

3. The Mathematical Model of Arwin-Adang-Aciek-
Sembiring (A3S) [4] 

How knowledge grows in the system can be described using 
Figure 2 [4, 5]. There are two main parts of Knowledge-Growing 
System. The upper part of Figure 3 contains Information Fusion, 
while the lower part of the diagram contains knowledge fusion. 

The system receives multi-source information from sensors 
and performs information fusion. When the information exceeds 
certain level of desirable Degree of Certainty, the information will 
be considered as knowledge. 

The knowledge will be fused with the existing knowledge in 
the knowledge part of the system to obtain new knowledge and is 
stored. When the new knowledge exceeds certain level of DoC, it 
will become the ultimate knowledge. 
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Figure 3 Knowledge-Growing System [5] 

A3S (Arwin-Adang-Aciek-Sembiring) algorithm [5] is 
information fusion algorithm based on Bayesian Inference Method. 
When a problem occurs, the system collects information and fuses 
them to produce new knowledge. A3S starts with (1). 
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Where ( )ij ABP  is the probability of jB is true given the 

presence of the fusion or combination of all events iA [4]. 

Maximum A Posteriori (MAP) is determined by (2) 
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It is then simplified to become (3) 
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Where ( )j
iPψ  will be the New Knowledge Probability 

Distribution (NKPD) at a certain observation time γ1 [4]. The new 
knowledge will be obtained by applying (4). 
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The system will keep collecting information (NKPD) on each 
observation, ( )jP 1ψ , …, ( )jP γψ , …, ( )jP Γψ  [4]. The 
inferencing can be determined using (5). 
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Where ( )jP γφ  is inferencing of each information to the 

knowledge distribution. 

Information-inferencing fusion will be calculated using 
OMA3S method, a dynamic version of A3S resulting NKPD over 
Time (NKPDT) [4]. 
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4. Transformer condition calculation 

System’s block diagram is shown in Figure 4. 

 
Figure 4 System’s block diagram 

Data is collected using sensors and is compared to standards 
and relation.  The system fills the observation table using (1). 
After each observation, there will be new knowledge shown by 
New Knowledge Probability Distribution (NKPD). Each NKPD 
is fused with the previous NKPD to produce NKPD over time 
(NKPDT). Decisions are made based on NKPDT. 

There are two kinds of faults in transformers. They are 
electrical faults and thermal faults [9]. Electrical faults are Partial 
Discharge, Low-Energy Discharge, and High Energy Discharge, 
while thermal faults are Thermal-Low and Thermal-High [9]. The 
proposed method is tested using previously published DGA 
dataset, which is classified based on the identified fault [9]. Table 
1 shows Partial Discharge dataset, Table 2 shows Low-Energy 
Discharge, Table 3 shows High-Energy Discharge, Table 4 shows 
Thermal-Low, and Table 5 shows High-Energy Discharge. 

Table 1 Partial Discharge dataset [9]. 

No. H2 CH4 C2H6 C2H4 C2H2 CO 

1 32930 2397 157 0 0 313 

2 37800 1740 249 8 8 56 

3 92600 10200 0 0 0 6400 

4 8266 1061 22 0 0 107 

5 9340 995 60 6 7 60 

6 36036 4704 554 5 10 6 

7 33046 619 58 2 0 51 

8 40280 1069 1060 1 1 1 
9 26788 18342 2111 27 0 704 

 

Table 2 Low-Energy Discharge dataset [9]. 

No. H2 CH4 C2H6 C2H4 C2H2 CO 

1 78 20 11 13 28 0 

2 305 100 33 161 541 440 

3 35 6 3 26 482 200 

4 543 120 41 411 1880 76 

5 1230 163 27 233 692 130 

6 645 86 13 110 317 74 

7 60 10 4 4 4 780 

8 95 10 0 11 39 122 

9 6870 1028 79 900 5500 29 
 

Table 3 High-Energy Discharge dataset [9]. 

No. H2 CH4 C2H6 C2H4 C2H2 CO 

1 440 89 19 304 757 299 

2 210 43 12 102 187 167 

3 2850 1115 138 1987 3675 2330 

4 7020 1850 0 2960 4410 2140 

5 545 130 16 153 239 660 

6 7150 1440 97 1210 1760 608 

7 620 325 38 181 244 1480 

8 120 31 0 66 94 48 

9 755 229 32 404 460 845 
 

Table 4 Thermal-Low dataset [9]. 

No. H2 CH4 C2H6 C2H4 C2H2 CO 

1 1270 3450 520 1390 8 483 

2 3420 7870 1500 6990 33 573 

3 360 610 259 260 9 12000 

4 1 27 49 4 1 53 

5 3675 6392 2500 7691 5 101 

6 48 610 29 10 0 1900 

7 12 18 4 4 0 559 

8 66 60 2 7 0 76 

9 1450 940 211 322 61 2420 
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 Table 5 Thermal-High dataset [9]. 

No. H2 CH4 C2H6 C2H4 C2H2 CO 

1 8800 64064 72128 95650 0 290 

2 6709 10500 1400 17700 750 290 

3 1100 1600 221 2010 26 0 

4 290 966 299 1810 57 72 

5 2500 10500 4790 13500 6 530 

6 1860 4980 0 10700 1600 158 

7 860 1670 30 2050 40 10 

8 150 22 9 60 11 0 

9 400 940 210 820 24 390 
 

In order to analyze the DGA, there are several ratios required, 
they are [5]: 

[ ] [ ]241 HCHR =      (6) 
[ ] [ ]42222 HCHCR =     (7) 

[ ] [ ]62425 HCHCR =     (8) 
These ratios are put into groups based on Table 6. 

Table 6 Gas Ratio grouping [9]. 

  R2 R1 R5 
< 0.1 0 1 0 

0.1 - 1.0 1 0 0 
1.0 - 3.0 1 2 1 

> 3 2 2 2 
 

Estimated faults can be determined using the rules shown in 
Table 7 [9]. 

Table 7 Gas Ratio grouping [9]. 

No. Characteristic Fault R2 R1 R5 
0 No fault 0 0 0 
1 Partial Discharge 0 or 1 1 0 
2 Low-Energy Discharge 1 or 2 0 1 or 2 
3 High-Energy Discharge 1 0 2 
4 Thermal-Low 0 0 or 2 0 or 1 
5 Thermal-High 0 2 2 

 

Datasets are made into Ratios and are put into groups as shown 
in Table 8 to Table 12. 

Table 8 Ratios: Partial Discharge. 

Ratio Ratio Group 
R1 R2 R5 R1 R2 R5 

2.72 0.01 2.67 1 2 0 
2.30 0.00 4.66 1 1 0 
1.69 0.03 1.00 0 2 2 
27.00 0.25 0.08 0 2 0 
1.74 0.00 3.08 0 1 0 
12.71 0.00 0.34 0 1 0 
1.50 0.00 1.00 1 0 0 
0.91 0.00 3.50 1 1 0 
0.65 0.19 1.53 0 0 0 

Table 9 Ratios: Low-Energy Discharge. 

Ratio Ratio Group 
R1 R2 R5 R1 R2 R5 

0.26 2.15 1.18 0  1  1  
0.33 3.36 4.88 0  2  2  
0.17 18.54 8.67 0  2  2  
0.22 4.57 10.02 0  2  2  
0.13 2.97 8.63 0  1  2  
0.13 2.88 8.46 0  1  2  
0.17 1.00 1.00 0  1  1  
0.11 3.55 inf 0  2  2  
0.15 6.11 11.39 0  2  2  

Table 10 Ratios: High-Energy Discharge. 

Ratio Ratio Group 
R1 R2 R5 R1 R2 R5 

0.20 2.49 16.00 0  1  2  
0.20 1.83 8.50 0  1  2  
0.39 1.85 14.40 0  1  2  
0.26 1.49 inf 0  1  2  
0.24 1.56 9.56 0  1  2  
0.20 1.45 12.47 0  1  2  
0.52 1.35 4.76 0  1  2  
0.26 1.42 inf 0  1  2  
0.30 1.14 12.63 0  1  2  

Table 11 Ratios: Thermal-Low. 

Ratio Ratio Group 
R1 R2 R5 R1 R2 R5 

2.72 0.01 2.67 2 0 1 
2.30 0.00 4.66 2 0 2 
1.69 0.03 1.00 2 0 1 
27.00 0.25 0.08 2 1 0 
1.74 0.00 3.08 2 0 2 
12.71 0.00 0.34 2 0 0 
1.50 0.00 1.00 2 0 1 
0.91 0.00 3.50 0 0 2 
0.65 0.19 1.53 0 1 1 

Table 12 Ratios: Thermal-High. 

Ratio Ratio Group 
R1 R2 R5 R1 R2 R5 

7.28 0.00 1.33 2  0  1  
1.57 0.04 12.64 2  0  2  
1.45 0.01 9.10 2  0  2  
3.33 0.03 6.05 2  0  2  
4.20 0.00 2.82 2  0  1  
2.68 0.15 inf 2  1  2  
1.94 0.02 68.33 2  0  2  
0.15 0.18 6.67 0  1  2  
2.35 0.03 3.90 2  0  2  

 

Ratio Groups are arranged into observation table as shown in 
Table 13 to Table 17 where: 

• H_PD: Hypothesis Partial Discharge. 
• H_LE: Hypothesis Low-Energy Discharge. 
• H_HE: Hypothesis High-Energy Discharge. 
• H_TL: Hypothesis Thermal-Low. 
• H_TH: Hypothesis Thermal-High. 
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Table 13 Observation: Partial Discharge. 

Nth 
Obs. sensors Range 

Group 
hypotheses 

H_PD H_LE H_HE H_TL H_TH 

1 

R1 1 1 1 1 0 0 

R2 2 0 0 0 0 1 

R5 0 1 0 0 0 0 

2 

R1 1 1 1 1 0 0 

R2 1 1 0 0 0 0 

R5 0 1 0 0 0 0 

3 

R1 0 0 0 0 1 1 

R2 2 0 0 0 0 1 

R5 2 0 0 1 0 1 

4 

R1 0 0 0 0 1 1 

R2 2 0 0 0 0 1 

R5 0 1 0 0 0 0 

5 

R1 0 0 0 0 1 1 

R2 1 1 0 0 0 0 

R5 0 1 0 0 0 0 

6 

R1 0 0 0 0 1 1 

R2 1 1 0 0 0 0 

R5 0 1 0 0 0 0 

7 

R1 1 1 1 1 0 0 

R2 0 0 1 1 1 0 

R5 0 1 0 0 0 0 

8 

R1 1 1 1 1 0 0 

R2 1 1 0 0 0 0 

R5 0 1 0 0 0 0 

9 

R1 0 0 0 0 1 1 

R2 0 0 1 1 1 0 

R5 0 1 0 0 0 0 

Table 14 Observation: Low-Energy Discharge. 

Nth 
Obs. sensors Range 

Group 
hypotheses 

H_PD H_LE H_HE H_TL H_TH 

1 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 1 0 1 0 1 0 

2 

R1 0 0 1 1 1 1 

R2 2 0 1 0 0 1 

R5 2 0 1 1 0 1 

3 

R1 0 0 1 1 1 1 

R2 2 0 1 0 0 1 

R5 2 0 1 1 0 1 

4 

R1 0 0 1 1 1 1 

R2 2 0 1 0 0 1 

R5 2 0 1 1 0 1 

5 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 

6 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 

7 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 1 0 1 0 1 0 

8 

R1 0 0 1 1 1 1 

R2 2 0 1 0 0 1 

R5 2 0 1 1 0 1 

9 

R1 0 0 1 1 1 1 

R2 2 0 1 0 0 1 

R5 2 0 1 1 0 1 

Table 15 Observation: High-Energy Discharge. 

N-th 
Obs. sensors Range 

Group 
hypotheses 

H_PD H_LE H_HE H_TL H_TH 

1 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 

2 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 

3 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 

4 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 

5 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 

6 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 

7 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 

8 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

s 2 0 1 1 0 1 

9 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 
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Table 16 Observation: Thermal-Low. 

Nth 
Obs. sensors Range 

Group 
hypotheses 

H_PD H_LE H_HE H_TL H_TH 

1 

R1 2 0 0 0 1 1 

R2 0 0 0 0 1 0 

R5 1 1 1 0 1 0 

2 

R1 2 0 0 0 1 0 

R2 0 0 0 0 1 0 

R5 2 0 1 1 0 1 

3 

R1 2 0 0 0 1 0 

R2 0 0 0 0 1 0 

R5 1 1 1 0 1 0 

4 

R1 2 0 0 0 1 0 

R2 1 1 1 1 0 0 

R5 0 0 0 0 1 0 

5 

R1 2 0 0 0 1 0 

R2 0 0 0 0 1 0 

R5 2 0 1 1 0 1 

6 

R1 2 0 0 0 1 0 

R2 0 0 0 0 1 0 

R5 0 0 0 0 1 0 

7 

R1 2 0 0 0 1 0 

R2 0 0 0 0 1 0 

R5 1 1 1 0 1 0 

8 

R1 0 0 1 1 1 1 

R2 0 0 0 0 1 0 

R5 2 0 1 1 0 1 

9 

R1 0 0 1 1 1 1 

R2 1 1 1 1 0 0 

R5 1 1 1 0 1 0 

Table 17 Observation: Thermal-High. 

Nth 
Obs. sensors quantity 

hypotheses 

H_PD H_LE H_HE H_TL H_TH 

1 

R1 2 0 0 0 1 1 

R2 0 0 0 0 1 1 

R5 1 1 1 0 1 1 

2 

R1 2 0 0 0 1 1 

R2 0 0 0 0 1 1 

R5 2 0 1 1 0 1 

3 

R1 2 0 0 0 1 1 

R2 0 0 0 0 1 1 

R5 2 0 1 1 0 1 

4 

R1 2 0 0 0 1 1 

R2 0 0 0 0 1 1 

R5 2 0 1 1 0 1 

5 

R1 2 0 0 0 1 1 

R2 0 0 0 0 1 1 

R5 1 1 1 0 1 1 

6 

R1 2 0 0 0 1 1 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 

7 

R1 2 0 0 0 1 1 

R2 0 0 0 0 1 1 

R5 2 0 1 1 0 1 

8 

R1 0 0 1 1 1 0 

R2 1 1 1 1 0 0 

R5 2 0 1 1 0 1 

9 

R1 2 0 0 0 1 1 

R2 0 0 0 0 1 1 

R5 2 0 1 1 0 1 
 

New Knowledge Probability Distribution (NKPD) is shown in 
Table 18 to Table 22. 

Table 18 NKPD: Partial Discharge. 

H_PD H_LE H_HE H_TL H_TH 

0.44 0.11 0.11 0.00 0.33 

0.78 0.11 0.11 0.00 0.00 

0.00 0.00 0.17 0.17 0.67 

0.33 0.00 0.00 0.17 0.50 

0.67 0.00 0.00 0.17 0.17 

0.67 0.00 0.00 0.17 0.17 

0.44 0.22 0.22 0.11 0.00 

0.78 0.11 0.11 0.00 0.00 

0.33 0.11 0.11 0.28 0.17 
 

Table 18 shows hypothesis H_PD has the highest value of Degree 
of Certainty (DoC) on seven out of nine samples, while the other 
two do not provide an accurate interpretation.  

Table 19 NKPD: Low-Energy Discharge. 

H_PD H_LE H_HE H_TL H_TH 

0.11 0.36 0.19 0.25 0.08 

0.00 0.36 0.19 0.08 0.36 

0.00 0.36 0.19 0.08 0.36 

0.00 0.36 0.19 0.08 0.36 

0.11 0.31 0.31 0.08 0.19 

0.11 0.31 0.31 0.08 0.19 

0.11 0.36 0.19 0.25 0.08 

0.00 0.36 0.19 0.08 0.36 

0.00 0.36 0.19 0.08 0.36 
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Table 19 shows hypothesis H_LE has the highest value of Degree 
of Certainty (DoC) on nine out of nine samples with most of them 
showing other hypothesis with significant DoC. 

Table 20 NKPD: High-Energy Discharge. 

H_PD H_LE H_HE H_TL H_TH 

0.11 0.31 0.31 0.08 0.19 

0.11 0.31 0.31 0.08 0.19 

0.11 0.31 0.31 0.08 0.19 

0.11 0.31 0.31 0.08 0.19 

0.11 0.31 0.31 0.08 0.19 

0.11 0.31 0.31 0.08 0.19 

0.11 0.31 0.31 0.08 0.19 

0.11 0.31 0.31 0.08 0.19 

0.11 0.31 0.31 0.08 0.19 
 

Table 20 shows hypothesis H_HE has the highest value of Degree 
of Certainty (DoC) on nine out of nine samples with all of them 
showing significant H_LE and other hypothesis with less 
significant DoC. 

Table 21 NKPD: Thermal-Low. 

H_PD H_LE H_HE H_TL H_TH 

0.11 0.11 0.00 0.61 0.17 

0.00 0.11 0.11 0.67 0.11 

0.11 0.11 0.00 0.78 0.00 

0.11 0.11 0.11 0.67 0.00 

0.00 0.11 0.11 0.67 0.11 

0.00 0.00 0.00 1.00 0.00 

0.11 0.11 0.00 0.78 0.00 

0.00 0.19 0.19 0.42 0.19 

0.22 0.31 0.19 0.19 0.08 
 

Table 21 shows hypothesis H_TL has the highest value of Degree 
of Certainty (DoC) on eight out of nine samples with some of 
them showing other hypotheses with less significant DoC. 

Table 22 NKPD: Thermal-High. 

H_PD H_LE H_HE H_TL H_TH 

0.08 0.08 0.00 0.42 0.42 

0.00 0.11 0.11 0.33 0.44 

0.00 0.11 0.11 0.33 0.44 

0.00 0.11 0.11 0.33 0.44 

0.08 0.08 0.00 0.42 0.42 

0.11 0.22 0.22 0.17 0.28 

0.00 0.11 0.11 0.33 0.44 

0.11 0.33 0.33 0.11 0.11 

0.00 0.11 0.11 0.33 0.44 
 

Table 22 shows hypothesis H_TH has the highest value of Degree 
of Certainty (DoC) on eight out of nine samples with all of them 
showing other hypotheses with significant DoC. 

The overall accuracy of A3S algorithm is 91.1% as shown in 
Table 23. 

Table 23 NKPD: Thermal-High. 

Fault Identification Accuracy (%) 

Partial Discharge 77.8 

Low-Energy Discharge 100 

High-Energy Discharge 100 

Thermal Low 88.9 

Thermal-High 88.9 

Average 91.1 
 

The algorithm is then used to calculate transformer condition 
and make interpretation of the calculated condition based on DGA 
data. The condition of a transformer depends on several factors. 
In this research, the condition is calculated is based on DGA data. 
Table 24 shows Dissolved Gas Analysis (DGA) data collected 
from PLN and Table 25 shows other quantities included in 
transformer condition factors. 

Table 24 DGA data 

  gas concentration (ppm) 

t(days) H2 CH4 C2H6 C2H4 C2H2 CO 

0 20.00 94.54 62.87 0.00 0.00 27.87 

486 20.00 0.00 80.97 15.54 0.00 6.58 

551 58.01 120.32 169.23 3.26 0.00 205.42 

586 439.47 137.21 121.72 63.06 57.12 0.00 

873 380.04 137.39 122.89 71.24 75.69 135.97 

884 315.90 156.73 123.19 56.56 79.04 55.53 

961 276.17 172.71 114.88 74.86 70.50 171.51 

985 48.24 94.83 83.03 47.84 29.93 0.00 

990 165.21 156.14 163.52 72.09 40.07 120.90 

1011 42.91 152.12 157.53 58.60 36.10 226.49 

1374 39.84 36.84 199.27 60.37 14.07 35.55 

1692 20.00 172.92 208.30 51.90 6.63 305.14 

1882 20.00 162.52 179.81 34.24 0.00 0.00 

2034 321.12 146.04 210.90 35.13 0.00 516.79 

2203 20.00 70.33 236.11 10.74 0.00 0.00 

2315 20.00 26.75 87.71 10.93 0.00 0.00 

2316 20.00 48.67 75.74 10.58 0.00 100.40 
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Table 25 Dielectric, water content, and acid number data 

Dielectric 
Breakdown 

(kV/2.5 mm) 

Water 
Content 
(ppm) 

IFT 
(dyne/cm) 

Acid 
Number 

(mg KOH/g) 

- 5.96 41.00 0.08 

- 5.96 30.00 0.10 

- 5.96 29.00 0.14 

- 5.96 31.00 0.17 

- 5.96 30.00 0.24 

- 5.96 30.00 0.23 

- 5.96 31.00 0.14 

- 5.96 31.00 0.15 

- 5.96 32.00 0.15 

- 5.96 32.00 0.22 

68.40 5.96 32.00 0.20 

66.00 5.96 34.20 0.14 

50.20 5.96 33.80 0.13 

52.60 4.13 33.40 0.13 

50.10 4.13 32.20 0.11 

55.20 4.13 32.90 0.11 

43.10 4.13 32.60 0.11 
 

Data are compared to standards [7, 8] and are given scores. The 
results are shown in Table 26 and Table 27. 

Table 26 Condition grouping and scoring based on DGA 

 Condition Scoring Based on DGA 

t 
(days) H2 CH4 C2H6 C2H4 C2H2 CO 

0 100 100 100 100 100 100 

486 100 100 67 100 100 100 

551 100 67 0 100 100 100 

586 67 67 33 67 0 100 

873 67 67 33 67 0 100 

884 67 67 33 67 0 100 

961 67 67 33 67 0 100 

985 100 100 67 100 33 100 

990 67 67 0 67 0 100 

1011 100 67 0 67 0 100 

1374 100 100 0 67 33 100 

1692 100 67 0 67 67 100 

1882 100 67 0 100 100 100 

2034 67 67 0 100 100 67 

2203 100 100 0 100 100 100 

2315 100 100 67 100 100 100 

2316 100 100 67 100 100 100 
Table 27 Condition scoring based on other factors 

 Condition Scoring Based on Other Factors 

t (days) Dielectric 
Strength 

Water 
Content IFT Acid 

Number 
0 - 100 100 50 

486 - 100 0 50 

551 - 100 0 50 

586 - 100 33 0 

873 - 100 0 0 

884 - 100 0 0 

961 - 100 33 50 

985 - 100 33 0 

990 - 100 33 0 

1011 - 100 33 0 

1374 - 100 33 0 

1692 100 100 33 50 

1882 100 100 33 50 

2034 75 100 33 50 

2203 75 100 33 50 

2315 75 100 33 50 

2316 75 100 33 50 
 

The total condition of the transformer is shown in Table 28. 

Table 28 Transformer total condition 

t 
(days) 

total 
condition 

0 94 

486 80 

551 69 

586 52 

873 48 

884 48 

961 57 

985 70 

990 48 

1011 52 

1374 59 

1692 68 

1882 75 

2034 66 

2203 77 

2315 84 

2316 84 
 

http://www.astesj.com/


K. O. Bachri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1137-1146 (2017) 

www.astesj.com     1145 

The total condition can be drawn in form of Figure 5. 

 
Figure 5 Condition curve 

At first, transformer condition has high value, as time passes, 
it decreases due to the degradation process. The degradation 
process produces gases, acid, water, which accelerate the 
degradation process. 

There is a sudden increase in condition and then followed by 
a sudden decrease, this is probably caused by the maintenance 
process and the setting process after maintenance. After 
maintenance, the condition began to increase with small gradient. 

The gradient of condition is shown in Figure 6. 

 
Figure 6 Gradient of condition 

The gradient of condition depends on condition. In general, it 
is relatively stable. There is a sudden decrease at day 990 and then 
followed by sudden increase. 

The observation table is shown in Table 29.  
Table 29 Observation table 

t 
 (days) cond gradient SC SG 

NKPD 

HW HL 

0 94 0.0000 1 0 1 1 

486 80 -0.0305 1 0 1 1 

551 69 -0.1709 1 1 0 1 

586 52 -0.4762 1 1 1 0 

873 48 -0.0129 0 0 1 1 

884 48 0.0000 0 0 1 1 

961 57 0.1203 1 1 1 0 

985 70 0.5401 1 1 0 1 

990 48 -4.4444 0 1 1 0 

1011 52 0.1764 1 1 1 0 

1374 59 0.0204 1 0 1 1 

1692 68 0.0277 1 0 1 1 

1882 76 0.0390 1 0 1 1 

2034 66 -0.0624 1 1 1 1 

2203 77 0.0657 1 1 1 1 

2315 85 0.0661 1 1 1 1 

2316 85 0.0000 1 0 1 1 

 

Where: 

• Cond: condition of the transformer 
• Gradient: condition change over time 
• SC: cond, after compared to standard 
• SG: gradient, after compared to standard 

NKPD is knowledge of the system at each time of observation. 
To obtain knowledge growth, NKPD is fused with the previous 
NKPD, in this case, NKPD from the beginning of observation. 
This process produced NKPD over time (NKPDT) 

Knowledge growth is represented by NKPDT can be calculated 
using (6) and is shown in Table 30. Knowledge growth can also 
be represented using Figure 7. 

Table 30 NKPDT 

t 
(days) 

NKPD 

HW HL 

0 0.5000 0.5000 
486 0.5000 0.5000 
551 0.3333 0.6667 
586 0.2500 0.7500 
873 0.3000 0.7000 
884 0.3333 0.6667 
961 0.2857 0.7143 
985 0.2500 0.7500 
990 0.3333 0.6667 

1011 0.3000 0.7000 
1374 0.3182 0.6818 
1692 0.3333 0.6667 
1882 0.3462 0.6538 
2034 0.3214 0.6786 
2203 0.3000 0.7000 
2315 0.2813 0.7188 
2316 0.2941 0.7059 
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Figure 7 Hypotheses/Knowledge growth 

Where HL shows Hypothesis-Life and HW shows 
Hypothesis-Warning. Both hypotheses show the same value at the 
first observation. As time passes, HW increases, while HL 
decreases. It indicates that the transformer condition is in the limit 
and there are some changes in the gradient. The positive gradient 
shows maintenance, while negative condition shows degradation. 

Spikes in Figure 7 shows there is an occurrence of a 
phenomenon indicating a hypothesis. In this case, there is a 
change in gradient of condition, making it in a warning condition. 
As gradient is dependent to condition, the hypothesis HW is 
dependent to HL as well. 

5. Concluding Remarks 

A3S has successfully interpreted DGA data to identified fault 
based on the classified dataset. It has successfully identified not 
only the main fault, which has the most significant DoC. It has 
successfully identified the fault(s) occurred along with the main 
fault, which has less significant of DoC. This feature acts as the 
early warning system. 

OMA3S has successfully interpreted transformer condition by 
fusing the parameter Condition (SC) and Gradient (SG) to produce 
Hypothesis-Life (HL) and Hypothesis-Warning (HW). HL and 
HW both are fused with the previous values to obtain knowledge 
growth. 

In the next research, more parameters will be included and 
elaborated to increase accuracy. The number of hypothesis will be 
added as well to reduce the direct impact of the change of one 
hypothesis to the other when using only two hypotheses. 

This algorithm will be implemented in form of a processor 
called cognitive processor. Using a special purposes processor will 
have advantages, such as energy efficiency and minimize 
disturbance caused by electromagnetic transmission. 
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