
Advances in Science, Technology and Engineering Systems Journal
Vol. 2, No. 3, 1172-1180 (2017)

www.astesj.com
Special Issue on Recent Advances in Engineering Systems

ASTES Journal
ISSN: 2415-6698

Future Contract Selection by Term Structure Analysis
Vasco Grossmann*, Manfred Schimmler

Kiel University, Technical Computer Science, Department of Computer Science, Faculty of Engineering, 24098,
Germany

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 30 May, 2017
Accepted: 09 July, 2017
Online: 20 July, 2017

In futures markets, a single asset is generally represented by several 
contracts with different maturities. The selection of specific contracts is 
an inevitable task that also creates new opportunities, especially in 
terms of speculative trading. Evaluating immediate and upcoming 
trading costs for all considered contracts might lead to a significantly 
improved performance. Among that, even possible market inefficiencies 
might be taken into consideration. This research introduces and 
evaluates a new algorithm for the contract selection. The results are 
benchmarked and compared with established methods using a Monte 
Carlo simulation on different commodity and index futures.
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1 Introduction

Contractual agreements over prospective commodity
flows already were established in the ancient. The
commitment of transanctions to a fixed maturity re-
liably enabled long-term planning and reduced risks.
The standardization of these so-called forwards to
exchange-traded futures therefore only has been a
question of time. Accordingly, futures have quickly
spread after their first release at the Chicago Board of
Trade in the 1860s. Modern futures markets offer high
volumes and attractive trading conditions for numer-
ous assets. This situation generates a highly interest-
ing trading environment for speculative investors.

This paper is an extension of work originally pre-
sented in SSCI 2016 [1] in which different contract se-
lection strategies have been introduced and tested in
commodity markets. This research deepens the find-
ings and improves the presented algorithm by refin-
ing the selection process. For this purpose, the new
algorithm separates the ask and bid price structure to
furtherly improve a case-dependent trading cost anal-
ysis. The results are evaluated by Monte Carlo simula-
tions on sets of arbitrary trading instructions on three
future classes in both, commodity and index futures.
The analysis is settled on a broad fundament of his-
torical data that enables a wider range of benchmarks
than the previous paper. The results allow the conclu-
sion of market inefficiencies in the analyzed markets.
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Figure 1: Prices of three WTI future contracts (top
chart) and three Nikkei future (bottom chart) con-
tracts with different maturities

Among other properties, every future class is de-
fined by a fix maturity interval in which correspond-
ing contracts expire (typically one or three months).
The life span of a contract however is an issue of sup-
ply and demand and generally considerably longer.
Consequently, there are several coexistent contracts
with different price structures and liquidities – all for
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the same asset, but with different maturities. Due to
individual risks and demand changes, different un-
derlyings may exhibit significant disparities in their
term structure properties. While consumer goods
futures like natural gas show strong seasonal fluc-
tuations, differences of index futures tend to more
constant deviations [2]. Figure 1 exemplarily shows
quotes for different WTI future contracts during the
period from June to December 2016.

The application of conventional trading strategies
in futures markets mandatorily generates the chal-
lenge of defining a strategy for the contract selection.
As advantageous properties of a contract systemati-
cally result in other properties being unfavorable, the
selection is always a nontrivial compromise with the
objective of the best possible balance.

Of course, the prices of future contracts are sig-
nificantly influenced by the current price of the un-
derlying asset. However, an adequate model requires
several additional factors to be taken into considera-
tion. The definition of a formal relationship between
future and spot price has been researched precisely
and several models have been proposed [3–5]. The
cost-of-carry model explains the price Ft,τ of a future
contract with maturity τ at time t as a function of the
spot price S given by

Ft,τ = St · e(r+s−c)·(τ−t). (1)

The interest rate is divided into three parts: the
risk-free interest rate r and storage cost s. Arising in-
accuracies are explained by the so-called convenience
yield c that covers all movements that are created by
changing market expectations. Thereby, market situa-
tions like contango and backwardation can be consti-
tuted.

57

58

59

60

Apr 21 Apr 23 Apr 25 Apr 27 Apr 29 Mai 01

Ask

Bid

2016-04-21 2016-05-01

60

59

58

57

Pr
ic

e 
in

 U
SD

58

59

60

61

62

63

Apr 21 Apr 23 Apr 25 Apr 27 Apr 29 Mai 01

Ask

Bid
60

59

61

58

62

63

2016-04-21 2016-05-01

Pr
ic

e 
in

 U
SD

Figure 2: Ask and bid quotes from two WTI Mini con-
tracts with maturities July (above) and September (be-
low) 2016 show huge differences in market liquidity
and estimated trading costs

Figure 4 shows ask and bid quotes for two

WTI Mini future contracts with maturities July and
September 2016 during April 2016. Obviously, the
spread highly depends on the time left to the matu-
rity. The lower and much more persistent spread of
the near contract yields favorable conditions. The no-
tably smaller liquidility of contract markets with a
more distant maturity generates an averagely higher
spread. As the trading volume tremendously rises
with a decreasing time span to the maturity, spreads
tend to be the lowest for the nearest future contracts.
While commissions follow a plain pattern, spreads be-
tween ask and bid prices strongly depend on market
capitalization.

However, the acquisition of contracts with short-
term maturities for long-running positions require an
extension of the expiry by re-opening positions for the
same underlying asset. This procedure is called fu-
ture rolling and results in additional trades and ac-
cordingly trading costs.

So, a suitable future contract selection strategy for
speculative investments should balance the contracts
in a way that the benefit from low trading costs is as
high as possible. Besides, the chance of upcoming fu-
ture rollings should be as low as possible to avoid ad-
ditional costs.

One established selection strategy is the so called
front month rolling strategy [6]. The method restricts
itself to the trade of the nearest future contract whose
maturity is more than one month in the future. Af-
ter exceeding that point in time, contracts are rolled
to the subsequent maturity. Of course, the month in-
terval might be scaled depending on average trading
intervals. Next to the benefit of most likely address-
ing liquid markets, it is simple to use and backtesting
requires only the two nearest future contracts to be
considered.

However, the constant period may be to rigid to
fit the needs of the underlying system. Especially
highly varying holding times or partial reorganiza-
tions of a long-running portfolio may cause the ne-
cessity of future rolls. The front month strategy disre-
gards these factors and also ignores several informa-
tion that might improve the selection process. Even
if more distant contracts suffer from higher trading
costs in general, their evaluation might depict situa-
tions in which transactions of distant contracts create
new opportunities. Besides, current portfolio posi-
tions have a significant impact during the liquidation
process and should be evaluated – their consideration
can result in a better contract selection. Also statisti-
cal parameters of the trading strategy might be taken
into consideration. Correspondingly, this research in-
troduces a procedure that optimizes the selection of
futures by investigating the influence of a larger set
of parameters. The described problem will be formal-
ized in the following section.
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2 Optimal contract selection

The application of a trading strategy based on a con-
ventional non-expiring asset in futures markets is
non-trivial due to the additional task of selecting ma-
turities. This research addresses this contract selec-
tion problem and introduces algorithms that assign
trading decisions for non-expiring assets to expiring
contracts. It is searched for the optimal selection of
specific contracts for a given future class F in a de-
fined environment. The objective of the presented
method is to allocate contracts in a way that max-
imizes the overall wealth. As the selection process
should work on arbitrary trading strategies on a fu-
ture class, the latter are sufficiently characterized by
deviated trading decisions.

Let a future class F be a set of related future con-
tracts Fτ1

,Fτ2
, . . . ,Fτn that only differ in their maturi-

ties τ1, τ2, . . . , τn ∈ T .
Let (Dt)t∈T with Dt ∈ Z be the sequence of trad-

ing decisions. Dt contains the number of positions to
be bought or sold (depending on sign) at time t – the
value 0 represents no transactions.

Let Ω be the set of all possible market scenarios
and the finite sequence (Ft)t∈T be a filtration on the
space Ω, so that the element Ft represents the known
and relevant information at time t.

Let q : F ×D → F be a selection strategy that re-
turns a specific future contract Fτ by evaluating the
known information set Ft for a given trading decision
Dt . Let Q be the set of all selection strategies.

Let w : D×Q→ R be the wealth function that cal-
culates the return after the application of all trading
decisions in D with a selection strategy in the set Q.
Thereby, the function gives a measure that enables the
comparison of different selection strategies.

The problem is then to find a contract selection
strategy q̂ ∈ Q at time t that maximizes the expected
wealth after the execution of all trading decisions:

w (D, q̂) = maxq∈Q (w (D,q)) (2)

The optimal selection strategy q̂ depends on sev-
eral factors. The variety of contracts creates an oppor-
tunity of lesser trading costs – providing that trad-
ing costs (and possible future roll costs) are at least
rateable. Thus, the analysis of observed spreads is a
mandatory step for a suitable prediction that is dis-
cussed in section 3.2. Statistical information of the
underlying trading strategy is then included to esti-
mate the temporal uncertainty of trading decisions.
These distributions are introduced to identify the time
window in which a prospective order may be created
by a trading strategy so that emerging costs can be
predicted as precise as possible 3.4. In a final step,
the overall minimum trading costs are evaluated by
the analysis of all discrete trading paths over all pos-
sible combinations (section 3.5).

3 Minimizing trading costs

The identification of a selection strategy that maxi-
mizes the overall wealth not only depends on mini-
mal trading costs but as well on the question whether
the underlying market is efficient in regard to the
market-efficiency hypothesis [7]. While cointegrated
processes may be used to furtherly improve trading
results in inefficient markets, the following section fo-
cuses on the minimization of trading costs.

As there is a strong connection between distance
to the maturity and the spread of a contract, trading
costs can be predicted quote precisely. Figure 3 shows
the average development for six WTI contracts dur-
ing the last 180 trading days (maturities from July to
December 2015) and clearly reveals this correlated re-
lation. Not only the value but its volatility decreases
for near maturities which is the typical evolution for
the price structure [8]. The convergence to a spread
of 1‰ of the base price and enables almost exact es-
timates for the spread during the last months. The
spread oscillation is a result of liquidity discrepancies
between regular and irregular trading hours. As these
tremendous differences may generate a huge impact
on the overall performance of the trading strategy, the
contract selection is a crucial topic .
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Figure 3: Spread over the last six months to maturity
for WTI Mini contracts (top chart) and Nikkei con-
tracts (bottom chart)

Figure 3 clearly displays the advantage of short-
term contracts. However, as one contract per month
exists for WTI, it also reveals that at least the last
three contracts may have similar spreads at times.
Considering long-term trading strategies, the acqui-
sition of near contract positions create a high prob-
ability of necessary future rolls. This effect appears
even stronger for different Nikkei contracts. Although
there are frequently high spreads for distant futures,
the high fluctuation may yield opportunities as well.
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3.1 Spread composition analysis

High spreads are a symptom of market illiquidity.
However, they do not automatically represent a simi-
larly disadvantageous situations for both, buyers and
sellers. For example, it is absolutely possible that a
high spread of a future contract is an expression of a
low supply for either long or short positions in com-
parison to other contracts. Still, the other side may
offer attractive prices anyhow. That is the reason why
an alignment of spread structures of all contracts is
a reasonable step to identify trading opportunities.
Therefore, a robust estimation for evolutions of the
log prices is applied that generate the least absolute
residuals.

Let AFτt and B
Fτ
t be the ask and bid log prices of

Fτ at time t. The evaluation of the estimated log price
Xt+1 is given by

dXt+1 =minε∈R
∑
F∈F

max(Xt −At+1 + ε,0)+

min(Bt −Xt+1 + ε,0) . (3)

Figure 4 shows the application of the robust quote
estimation for the two presented WTI contracts. By
interpreting all current contracts, price evolutions are
computed that are placed between ask and bid prices.
This creates comparable quotes for all future con-
tracts. The differences of ask, bid and robust esti-
mation enables the separate rating of supply and de-
mand. For instance, the significant increase of the
spread at April 24 for the December contract is pri-
marily generated by an unfavorable ask price that
cannot be traced back to a general movement. The
bid price does not show any illiquidities in this case.
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Figure 4: Robust quote estimation

The resulting time series is mandatorily less
volatile than both, ask and bid quotes. It only con-
tains the minimum movement that both time series
make and is robust concerning every one-sided break.

This also enables to separate non-exploitable mean re-
verse tendencies from real mispricings. This property
will be used to evaluate under- and overvaluations in
chapter 4.

3.2 Relation between spread and matu-
rity

To formally include the remaining time span of a con-
tract, let D ⊂Z be the set of durations. Let dτ : T →D

with dτ (t) = τ − t be the remaining time span between
a time t and the maturity date τ of a future contract
Fτ .

Let dτ ∈D be the time interval between maturities
of two consecutive future contracts. It is assumed to
be constant for a future class (e.g. 1 month for WTI).

Let c : D→ R with c(d),d ≥ 0 then be the average
observed trading costs that incur d time steps before
the maturity.

Further, let

c(d) = c(0) + c(dτ)︸       ︷︷       ︸
Future roll cost

+ c(d + dτ)︸    ︷︷    ︸
Liquidation cost

∀ d < 0. (4)

be the trading costs for an exceeded maturity. Fu-
ture rolls consist of two trades: closing the expiring
position at the last valid point before the correspond-
ing maturity (t = c(0)) and re-opening the same posi-
tion in a the consecutive contract (c(dτ)). The actual
liquidation itself must be included as well and is de-
layed by dτ . Therefore, the overall trading cost is a
sum of three values as shown in equation 4. Figure
6 illustrates these additional future roll costs for ex-
ceeded maturities.
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Figure 5: The average trading costs c(d) over the last
50 days for WTI Mini contracts are displayed. An ex-
ceeded maturity results in additional trades by future
rolling. Therefore, the expected trading costs increase
considerably for t < 0.

It can be summarized that the a low future roll
probability opposes low trading costs – the least costs
will generally arise in a balance between these objec-
tives. The probability of future rolls not only depends
on maturities but is primarily based on the relation-
ship between maturity and trading frequency. There-
fore, statistical information about the trading strategy
must be evaluated.
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Figure 6: Overview over the evaluation pipeline that leads to a contract recommendation for a given trading
decision.

3.3 Statistical trading strategy evaluation

Depending on the trading strategy, prospective trad-
ing times may be perfectly predictable. Even if there
are no temporal connections, statistical methods al-
low the estimation based on past observations. Thus,
it is assumed that a probability density function of the
number of trades per time interval can be computed.
In this case, it is assumed to be normally distributed
with an average interval between two trades µ and a
standard deviation σ . These values enable the calcula-
tion of the number of trades up to a prospective point
in time. The time of the n-th upcoming trade is then
represented by a random variable tn ∼ N (t +nµ,nσ )
for the last observed trading time t. The expected
number of trades in an interval from s to t is t−s

µ with

a standard deviation of t−s
µ · σ .

3.4 Portfolio liquidation costs

Next to immediate trading costs, the attractivity of
contracts is strongly connected to the question how
expensive the liquidation of the acquired position will
be. This section focuses on the prediction of these
costs. A minimization procedure is introduced with
regard to the contract selection problem. It is based
on the evaluation of the following information:

• future contract positions in portfolio

• estimation of spread fraction (section 3.1)

• estimation of trading cost function c (section
3.2)

• statistical information frequency and volume of
the underlying trading strategy (section 3.3)

To connect the trading cost function c with the sta-
tistical information, we define v : T ×T ×T →R to be
expected trading costs. The value v(τ, t, s) displays the
trading cost estimate for a future contract Fτ at time
t at calcuation time s with s < t. These costs are inde-
pendent from s for this first researched method and
directly arise from the average observed trading costs:

v (τ, t, s) = c (τ − t) . (5)

The future trading costs can be predicted by con-
voluting the probability density function f (in this

case a normal-distributed approximation) and a given
estimate v. The temporal uncertainty rises with in-
creasing variance of the distribution for larger dis-
tances. This effect reduces the accuracy for more
distant predictions that reveals itself by observably
smoother movements representing the convolution
kernel. The function Cτ : T → R illustrates this re-
lationship and enables the estimation of transaction
costs of prospective trades at an approximate time t
with the information of time s by

E (Cτ (t) | Fs) = (f ∗ v) (t) (6)

=
∫ ∞
−∞

1√
2π

(
t−s
µ · σ

)2

· exp

− x2

2
(
t−s
µ · σ

)2

 · v (τ, t + x,s) dx. (7)

In summary, statistical information about the trad-
ing strategy, observed trading costs and the estimated
probability of future roll costs are weighted to cal-
culate the most likely trading costs for a prospective
trading decision.
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Figure 7: Estimated trading costs E (Cτ (t) | Fs) for fu-
ture Fτ 55 days before its maturity and σ

µ = 1
5 . Normal

distributions for three exemplary points (45, 25 and 5
days left) are schematically figured to denote the un-
certainty of the effective trading time.

The diverse trading cost effects are exemplarily
demonstrated in Figure 7. It shows predictions for
uprising trades for a future contract 48 days before
its maturity. While the anticipated market liquidity
prognosticates averagely lower costs up to 20 days be-
fore the maturity, the increased probability of future
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rolls yields higher estimates afterwards. While near
forecasts apparently embed short-term fluctuations,
estimated trading costs for distant trading events are
strongly smoothed.

Indeed, these predictions are only suitable to
calculate trading costs for discrete future contracts.
However, individual estimates can be applied to com-
pare different outcomes in complex scenarios of many
consecutive trading decisions. This enables the evalu-
ation of all potential executions and yields the oppor-
tunity of a trading cost minimization by prioritizing
these estimates. An efficient procedure to calculate
the optimal order in such a scenario is introduced in
the following.

3.5 Minimizing of portfolio liquidation
costs

In the following, the minimum liquidation costs by
partial successive trades of a given portfolio iares
measured. They are computed by an iterative calcu-
lation of optimal liquidation orders for sub-portfolios
according to the dynamic programming principle.
Starting with the complete portfolio, possible trading
decisions are converted to orders that are used to suc-
cessively remove positions. By comparing each path,
an optimal trading path can be evaluated for every
sub-portfolio and accordingly, for the empty portfo-
lio. The optimal first liquidation step for the given
portfolio is then revealed by the first step of the path
with overall minimum trading costs.

Let the set of necessary transactions for the full liq-
uidation of a given portfolio with N futures at time
t ∈ T be given by Lt = {L1

t ,L
2
t , . . . ,L

N
t } ∈NN

0 .
Let Cs (Lt) ∈R at time s ∈ T , s ≤ t be the estimate of

the trading costs for all transactions in Lt .
These transactions will happen at sequent points

in future. As described, their order and their costs are
predicted recursively. The remaining trading costs are
for an empty portfolio have obviously the value 0:

Cs (Lt) = 0 if Ljt = 0 ∀ j ∈ [1,N ]. (8)

For every sub-portfolio, there may be up to N + 1
actions for each upcoming trading decision:

• if the direction of the order (long or short) is
contrary to an existing position of the N given
futures, a position of Lt can be reduced (actions
will be indexed by j = [1,N ])

• choose a different transaction with minimal
trading costs that does not contribute to the
portfolio liqudation (indexed by j = 0)

The latter case might be reasonable if a future pro-
vides significantly better trading conditions, but it al-
ways increases the probability of future rollings as the
number of necessary liquidation steps remains from t
to the next trading decision at time t + µ. Therefore,
Lt+µ = Lt and accordingly

Cs
(
Lt+µ

)
= C (Lt) if j = 0. (9)

holds. In the other case, contracts of the future
with maturity τj are liquidated (j = [1,N ]). The gener-

ated trading costs E
(
Cτj (t) | Fs

)
contribute to the over-

all estimation. They are added to result of the costs for
the partial liquidation of the sub-portfolio.

Let the function L : ZN × F → Z
N represent con-

tract liquidation. For a given portfolio in Z
N , it re-

turns a portfolio with a reduced position in a specific
future of F. The overall trading costs are defined by

Cs
(
Lt+µ

)
= Cs

(
L
(
Lt , τj

))
+E

(
Cτj (t) | Fs

)
if j ∈ [1,N ]. (10)

The estimated costs E

(
Cτj (t) | Fs

)
for the liquida-

tion of the specific contract are added to liquidation
costs of the residual sub-portfolio L

(
Lt , τj

)
. These

cases can be summarized to one evaluation method
for the minimum liquidation costs:

Cs
(
Lt+µ

)
= minj∈[0,N ]



0 if Ljt = 0
∀ j ∈ [1,N ]

Cs (Lt) if j = 0
∞ if Lit = 0
Cs

(
L
(
Lt , τj

))
+

E (Cτ (t) | Fs) else.
(11)

Equation 11 contains four cases, three of them are
already explained. Only the third case which assigns
infinite trading costs to the acquisition of positions for
already liquidated contracts has not yet been men-
tioned. This (obviously wrong) estimate avoids the
examination of further transactions after a success-
ful liquidation. Thus, the resulting portfolio is always
empty and therefore, the recursive evaluation will al-
ways stop its calculation with case one (zero transac-
tion costs for an empty portfolio).

Every sub-portfolio can be reached by a finite
number of different order combinations. The dynamic
programming principle grants all possible paths to be
evaluated. The resulting trading path has the mini-
mum transaction costs according to all intermediate
predictions. All in all, O(tmax ·

∏|L|
i=1L

i
t) elements must

be calculated. The best path can then easily be calcu-
lated by backtracking.

The selection of the best liquidation points is un-
ambiguous for a single future when all future costs for
its contract are predicted. The best liquidation is di-
rectly specified by the order subset with the minimum
cumulated trading costs. The complexity arises when
several liquidations seem to be optimal at the same
time. The best compromise may significantly differ
from a greedy selection strategy. As every future gen-
erates a new dimension in our evaluation table, such
collisions become more probable when more futures
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are taken into consideration. The task of finding the
optimal path for a single future is trivial, the com-
plexity lies in effecting a compromise between con-
flicting future liquidations. The resulting path for one
future is directly specified by the subset of trades with
the minimal cumulated trading costs. However, pos-
sible collisions in which several transactions seem op-
timal at the time yield the problem of selecting spe-
cific ones. Therefore, the actual decision is based on
the evaluation of all further trading steps as well. It is
then given by the first trade of the best trading path.

The process of avoiding liquidations due to better
trading costs of other acquisitions extends the time
until the portfolio is cleared. Therefore, no finite
point in time can be identified and the theoretical
number of recursions has no limit. However, as future
roll costs cumulate for long-running positions, liqui-
dations of contracts near to their maturity are auto-
matically preferred. The recursive date extension will
not exceed tmax = max(s+ k ·µ,τk) with k successive
futures for this reason.

4 Mean reverse inefficiencies

The following researches focus on the relationship be-
tween a spot price St the concerning future prices Ft,τ .
We expect the future prices to converge to the spot
price St with a simplified cost-of-carry approach. The
differences are explained by specific general interest
rates rt,τ , so that

Ft,τ = St · ert,τ ·(τ−t). (12)

Several finance products are only traded as fu-
tures, so that spot prices must be approximated by the
evaluation of future prices. The following approach
averages interest rates between all future combina-
tions. The spot price can be extrapolated to the cur-
rent time:

rt,τ = avgi,j
lnFt,τi − lnFt,τj

τi − τj
(13)

The interest rates between spot prices and future
prices may strongly fluctuate in short periods. The
set of different contract prices is referred to as term
structure and several researches concerning its inter-
nal systematics have been proposed [9, 10]. As even
the smallest under- or overvaluations may be used to
enhance the performance of a trading strategy, an in-
effiency analysis is a crucial step during the future
selection process. For this purpose, it will be anal-
ysis whether cointegration between the related price
series exist. Different from pure arbitrage strategies,
there is no lower limit for the intensity of these in-
efficiencies. They do not need to be high enough to
counterbalance additionally emerging trading costs as
all trading decisions are already settled. However, the
success of this method does not only require the exis-
tence of mean reverse effects but also their persistence
to ensure a measurable predictability.

We assume the deviations from the average in-
terest rate drt,τ to be potentially inefficient. In case
of over- or undervaluations, mean reverse reactions
should be taken into consideration. Therefore, we
try to characterize the term evolutions of drt,τ by
Ornstein-Uhlenbeck processes with

drt,τ = θτ
(
µτ −drt−µ,τ

)
dt + στdWt (14)

The potential mispricings drt,τ converge to the
level µτ with the mean reversion speed θτ with a
standard Wiener process (Wt)t∈T . στ represents the
influence of random noise. The parameters of this
Ornstein-Uhlenbeck process are fitted with a maxi-
mum likelihood estimation [11]. The estimated ap-
proximation βt,τ can be used to introduce a future
counterbalance of mispricings to the average interest
rate in the calculation of v(τ, t,x) (see Equation 6):

βt,τ = Ft,τ · edrt+µ,τ−drt,τ (15)

v(τ, t,x) =

c ((τ − t)− x) + βt,τ for a buy
c ((τ − t)− x)− βt,τ for a sell

(16)

By the modification of v(τ, t,x), the acquisition of
a presumably overvalued future contract is penalized
in the same way in which a sell of such a future is fa-
vored.

5 Results

The objective to reduce trading costs in futures mar-
kets by selecting specific futures is targeted by two
introduced strategies. They are compared with the es-
tablished front month rolling strategy for a detailed
analysis. This evaluation is based on a Monte Carlo
simulation with 10000 tests for each strategy that are
based on sets of 100 random trading decisions each.
These simulations use real time data from the time
period from July 2015 to January 2016.
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Figure 8: Random portfolio series created by the first
50 trades of an exemplary simulation

Figure 8 shows the resulting portfolio after the
first 50 trades of a simulation with a constant volume
of one position. Accordingly, the shown portfolio evo-
lution requires 50 contract selections at preassigned
times. The result of the front month rolling strategy
is shown schematically in Figure 9.
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Figure 9: Portfolio evolution of front month rolling
strategy

Every color transition represents the change to the
subsequent future. Noticeable is the periodic process
in which no future is specifically preferred. As ev-
ery contract is applied for one month, the number
of trades is directly dependent from the trading fre-
quency during this period. There are always not more
than two different futures in the portfolio. This is
induced and without exception, because overlaps di-
rectly cause future rollings in this case.

-8
-6
-4
-2
0
2
4
6
8

0 10 20 30

Po
si

tio
n

40 50

Figure 10: Portfolio evolution of the minimum trad-
ing cost contract selection

Figure 10 shows the conversion of trading deci-
sions with the introduced minimum spread approach.
The preferred contract changes frequently and yield a
more diverse composition with occasional formations
with more than two contracts. The expected over-
all transaction costs are temporary estimated to be
the lowest for contracts whose maturity is more than
one month in the future, so that transactions partially
happen noticeably earlier.
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Figure 11: Portfolio evolution of the minimum trading
cost contract selection with the Ornstein-Uhlenbeck
modification

Mean reverse predictions are added to the se-
lection mechanism in Figure 11. The Ornstein-
Uhlenbeck model favors some maturities and leads
to situation where some futures are almost skipped.
This behavior seems likely as some futures might be
seen as under- or overvalued. Even small trading costs
might be no compensation in these cases.

The following research examines five different
strategies:

1. Front Month rolling strategy

2. Min Spread: strategy that minimizes trading
costs as described in chapter 3.5

3. Ornstein-Uhlenbeck: the minimum trading cost
estimation (chapter 3.5) with an additional
mean reverse expectation term calculated with
an Ornstein-Uhlenbeck model

4. Min Spread (SAB): Method 2, but all trading cost
evaluations are based on processed spread data
according to the ask / bid separation introduced
in chapter 3.1. The term SAB stands for a sepa-
rate ask / bid quote analysis during the selection
process.

5. Ornstein-Uhlenbeck (SAB): Method 3 with the
same ask / bid separation

Table 1: Performance of random sets of trading deci-
sions on three commodities measured in index points.

Return Front Month Min Spread Ornstein-Uhlenbeck

WTI 2.6695 2.5692 3.1958

Natural Gas -0.1542 0.0245 -0.0625

Silver 0.6951 1.0625 1.4265

Costs Front Month Min Spread Ornstein-Uhlenbeck

WTI 1.4896 1.4126 1.5533

Natural Gas 0.5045 0.3782 0.5913

Silver 1.2405 1.0863 1.5235

Return Min Spread (SAB) Ornstein-Uhlenbeck (SAB)

WTI 2.9684 4.1251

Natural Gas 0.3118 0.8352

Silver 1.2014 1.6495

Costs Min Spread (SAB) Ornstein-Uhlenbeck (SAB)

WTI 1.3840 1.7802

Natural Gas 0.5403 0.4821

Silver 1.2114 1.2247

Table 2: Performance of random sets of trading deci-
sions on three national index futures.

Return Front Month Min Spread Ornstein-Uhlenbeck

S&P 500 -31.8806 -28.4124 -19.1266

Nikkei 225 -760.1611 -680.2393 -580.1591

DAX -74.1688 -61.5443 -40.5191

Costs Front Month Min Spread Ornstein-Uhlenbeck

S&P 500 35.1198 30.9552 35.9812

Nikkei 225 712.1519 663.0504 634.9534

DAX 80.1419 70.4560 74.2401

Return Min Spread (SAB) Ornstein-Uhlenbeck (SAB)

S&P 500 -5.9915 4.1958

Nikkei 225 -531.0053 -579.5910

DAX -10.5242 20.5994

Costs Min Spread (SAB) Ornstein-Uhlenbeck (SAB)

S&P 500 32.7817 35.8914

Nikkei 225 649.9088 691.1145

DAX 70.1414 75.0079

The Tables 1 and 2 show the results of Monte Carlo
simulations for the different contract selection strate-
gies. Averaged returns and trading costs are depicted
for three commodities and three national indices. The
cells show cumulated values that are averaged over all
simulations with 100 trades each during June 2015 to
January 2016.

A return of -760 points with a cost value of 712
points (Nikkei, Front Month) i.e. implies an average
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loss of approximately 7 index points per trade that is
mainly created by a spread near 7 index points. The
loss is expected as the simulations are based on 100
random trades. The corresponding minimum spread
approach reduces the cumulated trading costs to 663
points and generated an average loss of 680 points for
the same 100 random trading events. The implication
of mean reverse tendencies generally increases trad-
ing costs, but nevertheless accomplishes higher re-
turns in five cases. These apparently contradicting re-
sults encourage the consideration that the term struc-
ture temporarily shows mean reverse inefficiencies.

The separation of spreads to supply and demand
achieves further trading cost reductions in some
cases. These are interestingly more noticeable in the
minimum spread approach, the Ornstein-Uhlenbeck
method hardly benefits in this category. The return
raises clearly in exchange in some cases. The front
month rolling strategy averages at a return of -74
points for the DAX index, but generates a win of
over 20 points for the improved Ornstein-Uhlenbeck
approach. Holding the same positions in different
contracts results in a difference of almost 100 index
points during the reviewed half year. Especially the
newly introduced trading cost separation enhances
the result in this case, raising it by approximately 60
points.

6 Conclusion

The selection of specific contracts is a mandatory step
in futures markets that may have a huge impact on
trading costs and return. Due to a complex spread
structure, there are conflictive reasons to acquire con-
tracts with near or distant maturities – the optimal
selection depends on many factors. This research op-
poses five different selection strategies that show con-
siderable disparities in their performance.

The study reveals that a statistical analysis of the
used trading strategy and its effects on the portfolio
evolution can significantly improve the performance.
Therefore, not only detailed analyses of trading times
and frequencies but also estimations of upcoming
trading costs are contributive. Of course, this advan-
tage requires trading events to be at least approxi-
mately predictable. The separate research on ask and
bid prices for buy and sell events furtherly improve

the trading performance. This holds for commodities
as well as for national index futures. The introduc-
tion of mean reverse motions after possible over- or
underreactions lead to higher trading costs as well as
to higher return in the Monte Carlo simulation. On
the one hand side, the objective of cost minimization
is degraded by the introduction of further influences.
On the other hand side, the consideration of over- or
undervaluations increases the average return and sug-
gests their existence in the reviewed interval.
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