

www.astesj.com 1188

Fault-Tolerant in Embedded Systems (MPSoC): Performance Estimation and Dynamic Migration Task

Kamel Smiri* 1, 3, Habib Smei 1, 2, Nourhen Fourati 1, 3, Abderrazak Jemai 1, 4

1Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire LIP2, 2092, Tunis, Tunisie

2Direction Générale des Etudes Technologiques, Institut Supérieur des Etudes Technologiques de Rades, Rades, Tunisie

3Université de Manouba, Institut Supérieur des Arts Multimédias Manouba, Campus Universitaire Manouba, 2010, Tunisie

4Université de Carthage, INSAT, B.P. 676, 1080 Tunis, Cedex, Tunisie

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 09 April, 2017
Accepted: 24 June, 2017
Online: 20 July, 2017

 Multiprocessor Systems-on-Chip (MPSoC) allow the implementation of heterogeneous
architectures with a high integration capacity. In recent years, computational requirements
MPSoC are increasing exponentially. This complexity, coupled with constantly evolving
specifications, has forced designers to consider intrinsically flexible implementations.
Deploying applications typical of multimedia domains is difficult, not only due to the
heterogeneous parallelism in the platforms, but also due to the performance constraints
that typify these systems. An application can be modeled as a set of cooperative tasks. A
task can be implemented in software or in hardware depending on its complexity and the
involved cost. Our proposal is a fault tolerance approach which combines the results of a
performance model and a technical’s fault tolerance. We interest of the dynamic migration
task to resolve the Fault-Tolerant for Multiprocessors Embedded System. We exploited an
example of multimedia application (MJPEG decoder) to find optimal Fault tolerance
systems. Our aim in this paper is to exploit the classic technique of fault tolerance. The
solution chosen is the transformation of software processing into hardware processing.
And also, exploitation of hybrid models (simulation/analytics). The goal is to have a Fault
Tolerant Embedded System.

Keywords:
Hybrid Model
Fault tolerance
Dynamic migration Task
Multiprocessor Systems-on-Chip
(MPSoC)

1. Introduction

This paper is an extension of work originally presented in 11th
International Design & Test Symposium, IDT 2016 [1].

Multiprocessors System-on-Chip (MPSoC) is a system that
contains several heterogeneous processors interconnected around
advanced communication architecture as a Network on Chip
(NoC). Nowadays, Multimedia applications use MPSoC
architectures in order to achieve high performance. These
architectures may include different types of computation units
(DSP, Microcontroller...) and use different diagrams of
communication.

We distinguish in the literature [2,4] three design approaches for
MPSoC: (1) platform based design, (2) components based design
and (3) synthesis system. In this paper we are going to focus on the
first approach that targets the implementation of an application on
configurable prototype architecture.

We follow along our work the MPSoC hardware/software
design flow proposed by [5]. The software and the hardware are
then gradually refined and simulated on four levels of abstraction.
These levels are System Level, Virtual Architecture, Transaction
Accurate and Cycle Accurate. System Level (SL) is the highest
level of design flow. It provides an environment for parallel
execution. The application is described as a set of processes that
exchange data only through the FIFO blocking point to point.
Virtual Architecture (VA) level is more detailed than the standard
SL. The major difference is that it includes information on the
architecture. For abstracting the underlying hardware architecture,
the code of tasks using APIs known as HdS (Hardware dependent
Software). Primitives of these APIs (ex. Send/Receive) access to
explicit communication components. Transaction Accurate (TA)
level is the second intermediate level. In this level, the tasks are
linked to an Operating System (OS) and a library of
communication to implement the communication and
management services tasks. This software layer uses primitives of
Hardware Abstraction Layers (HAL). The data transfer uses
explicit addresses. The hardware platform is more detailed,
including a communications network, the devices accessed by
HAL-API, and an execution model of abstract processor. Cycle

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Kamel Smiri, Université de Tunis El Manar, Faculté des
Sciences de Tunis, Laboratoire LIP2, 2092, Tunis, Tunisie
Email: smiri_kamel@yahoo.fr

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1188-1195 (2017)

www.astesj.com

 Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj0203150

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj0203150

K. Smiri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1188-1195 (2017)

www.astesj.com 1189

Accurate (CA) level is the lowest level. At this level, the HAP-API
is implemented. This implementation is done by adding a HAL
software layer and a processor for each sub-system (for example,
we create an implementation and a model for ARM, MIPS, and
SPARC...).

Figure 1 Typical architecture of MPSoC systems

Figure 1 present a typical architecture of MPSoC which is
composed by software and hardware nodes connected by a
communication network. Hardware nodes are component which
does not have the ability of programming. A communication
network connects all the nodes together. Software nodes provide
the execution environment for applications tasks.

The software node is structured into several layers:

• Application Layer, this layer represents a set of tasks of the
application which are carried out in parallel, in order to profit to
the maximum of the parallelism offered by architecture
multiprocessors. This layer communicates with the software node
by calling on primitives of the operating system (OS).

• The Operating System OS, the operating system makes it
possible to provide an interface between hardware equipment and
the application.

• Libraries, the objective to use the library of communication
is to call on the channels of communication and to use the various
features of the library C standard and the library of mathematics.

• Hardware Abstraction Layer, this layer makes it possible the
operating system to interact with the material peripherals on a level
abstract rather than on a detailed material level.

The motivation of the paper is to explore the design space
(Design for Space Exploration DSE) by early in the design cycle.
We present in this paper a methodology for the migration of a
software task in hardware component of a multimedia application
at Transaction Accurate level and at Cycle Accurate level. The
chosen application to illustrate our approach is the MJPEG decoder
that is characterized by its high treatment density and important
data exchange. This paper is organized as follows. Section 2
presents the related work. Section 3 gives an overview of Fault-
Tolerant in Embedded Systems (MPSoC) approach. Section 4
presents the experimentation of MJPEG Decoder, with the
objective to show the efficiency of our approach.

We propose in this paper an extension of the paper conference
(IDT 2016) [1]. Mainly, we have added the following parts: a) An
advanced synthesis on related works, b) A detailed description
of our dynamic migration approach (based on Fault-Tolerant

in Embedded Systems (MPSoC)), and c) A series of experiments
to illustrate the effectiveness of our approach. We have added
some experimentation that shows the effectiveness of our
approach. The MJPEG decoder (which is a refresh application) is
chosen to get me the dynamic migration efficiency. The IDCT task
is chosen to show the gain during dynamic migration of the
software to the hardware.

2. Related works

Due to the complexity of multiprocessor systems, the
probability of failure is all the more important that it requires
special consideration. Indeed, during a failure, a part of the
application state disappears and the application may pass in an
inconsistent state that prevents it from continuing normal
execution. To perform effectively and properly, it must withstand
stresses related to the execution environment. It must be able to
tolerate the failure of one or more components. Fault tolerance is
the property that keeps the smooth functioning and continuity of
the system during a failure. So the intensity of the fault is not
proportional to the decrease of the system load operation since
found contents a very small mistake can cause a total blockage in
a system designed.

There are many causes for failures in distributed systems. In
[2], the author focused on solving crash failures in GRID
computing, their proposal aims to ease the process of recovery
when system failures are detected at runtime avoiding the necessity
for application restarts. Their proposal works through a set of
services that performs transparent task migration over the
computing nodes, hiding the complexity related with error
handling when a hybrid programming model based on Open MPI
and OpenCL is employed.

In [3], the author proposes scheduling algorithm of the adaptive
fault tolerant tasks which is a combination of two fault tolerant
algorithm TMR (Triple Modular Redundancy) and DMR (Dual
Modular Redundancy) and it also benefits from EDF and LLF task
scheduling algorithms for decreasing miss rate of tasks. The main
goal of these algorithms is to find a proper tasks assignment on the
cores and tolerate processing component failures which could
either be homogeneous or heterogeneous, so this algorithm is more
perform than DMR and TMR methods in average 35% which can
guarantee the proper execution of running tasks and reduce the
total time of task execution.

In [4], the authors proposes an offline task remapping
technique to minimize the communication energy and task
migration overhead of an application mapped on a heterogeneous
multiprocessor system for all processor fault-scenarios. This
technique involves two steps: the first is communication Energy
driven Design Space Exploration (CDSE) to select an initial
mapping and the second is communication energy and Migration
overhead aware Task Mapping (CMTM) for different fault-
scenarios. The results show that the proposed CDSE reduces space
exploration time of Conception 99% and the reduced energy
CMTM 35% average communication and migration over by an
average of 20% for all scenarios of single and double faults
compared to tolerance techniques existing faults.

 In [6], the authors proposes a design flow to explore mapping
strategies and shape of the NoC network to improve
synchronization performance and the power consumption, then for
each step of the flow they used a heterogeneous platform (PC and

http://www.astesj.com/

K. Smiri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1188-1195 (2017)

www.astesj.com 1190

FPGA) to fulfill them. The exploration flow is provided to help
designers NoC to choose a technique appropriate mapping tasks on
a NoC appropriate form for a particular application. The
experiments demonstrate that the most appropriate task mapping
strategy and the most suitable NoC shape strongly depend on the
algorithm used. Depending on the timing latency results obtained
and the FPGA resources used, the designer can select the
appropriate task mapping strategy on the suitable shape in a short
exploration time and with precise timing evaluation.

In [5], the author proposed a methodology to master the migration
process at transaction level and they demonstrate the various levels
of the design process to deals with the impact of task migration as
an alternative to meet performance constraints in the design flow.
And, they use a SDF3 tools to provide performance estimation at
transaction level. Using the SDF3 tool, the authors model a
multimedia application using SDF graphs. Secondly, they target an
MPSoC platform. The authors take a performance constraint to
achieve 25 frames per second.

Table 1: synthesis works of fault tolerant

 [3] [4] [5] [6] [7] [8]
GC ++ - - - - - - - - --

MPs - - ++ ++ ++ ++ ++
AM - - - - - - - - ++ --
SM - - - - - - - - ++ --
OS - - ++ + + ++ +
SMt ++ - - ++ ++ ++ --
DMt ++ - - ++ ++ ++ ++
IPb - - - - - - ++ ++ --
FT ++ ++ ++ ++ - - +

GC: Grid computing SMt: Static Migration task
AM: Analytic Model DMt: Dynamique Migration task
SM: Simulation Model IPb: IP blocks
OS: Operating Systems, FT: Fault-Tolerant, MPs:MPSoC
systems

In [7], the team of Tahir maqsood are conducted a detailed
quantitative evaluation of the selected dynamic task mapping
algorithms for NoC based MPSoCs for a wide range of mesh sizes
with varying task and communication loads. Comparisons are
conducted with varying network load, number of tasks, and
network size for constantly running applications. Moreover, they
propose an extension to communication-aware packing based
nearest neighbor (CPNN) algorithm that attempts to reduce
communication overhead among the interdependent tasks. The
results indicate that proposed mapping algorithm reduces
communication cost, average hop count, and end-to-end latency as
compared to CPNN especially for large mesh NoCs. And the
proposed scheme achieves up to 6% energy savings for smaller
mesh NoCs. Finally, results of formal modeling indicate that
proposed model is workable and operates according to
specifications.

Synchronous Data Flow SDF is a particular case of the data
flow and Petri network. Formalism SDF is often used for the entire
predictable systems, in which the number of samples of data
consumed and produced by each node with each execution, is

specified a priori. Graphs SDF constitute the central element of
modeling by SDF3 [8]. Moreover, SDF3 tool integrates several
commands, for each one has a precise function. Indeed, the
command sdf3flow is most interesting of tool SDF3 since it makes
it possible to deploy an application graph with a constraint on
architecture graph [9].

System on Chip Library (SoCLib) is an open platform for the
virtual prototyping of MPSoC systems. SoCLib is a tool based on
the simulation which it allows the development of platforms of
virtual prototyping and facilitates the exploration of architectures
by means of software tools to conceive embedded applications and
of library Open Source is made up of models of high level
simulation written in SystemC for the material components, which
allow fast simulations [10].

Following our synthesis established in Table 1, we propose to
use the contributions proposed in the paper (4) and paper (5),
which we will be useful to propose a new fault tolerance approach
based on dynamic migration for Embedded Systems.

3. Fault Tolerance Approach for Embedded Systems

Fault tolerance approach for embedded systems multiprocessor
(Multiprocessor System on Chip MPSoC), combines the results of
a hybrid model (proposed by LIP2 laboratory, in [6]) and a
technical fault tolerance that is based on the dynamic migration.
This approach provides an effective solution to the current
problems of modern embedded systems.

Figure 2 Fault tolerance approach for Embedded Systems

Our Fault tolerance approach for Embedded Systems is
structured in three steps: 1) implementation of input models
(Hubrid model, Dynamic migration technique, Fault tolerance
technique), 2) performance synthesis and 3) Elaboration MPSoC
Fault Tolerant.

3.1. First step: Input Models

The first step shows the essentials components of our approach
citing hybrid model and fault tolerance techniques based on
dynamic migration. The hybrid model (MH) resulting
hybridization of two performance estimation methods: Analytical
Method (MA) and Method based on simulation (MS). This model
allows the exchange of information between the two methods MA
and MS through an intermediate bonding layer whose goal is to
treat various types of systems and reduce the time estimation and
evaluation of performance and a low error rate. So, the aims of the
MH model, is to combine the strengths of both MA and MS
methods.

Note that the analytical method is characterized by the speed
of optimal solution. It is based on the exploitation of SDF graph,

http://www.astesj.com/

K. Smiri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1188-1195 (2017)

www.astesj.com 1191

this formalism to model the software applications, hardware and
software requirements for deploying tasks on hardware resources.
The analytical model used in this approach is a synchronous data
stream which is a particular case of the data stream (Data Flow)
and Petri network, to generate the mapping of the software
application on the hardware platform, not only but also the usage
rate of hardware resource which can be regarded as performance
indicators.

 The simulation-based method is characterized by the precision
of the results. So in this model the designer must perform three
tasks: Define the structure of the software application, Set the
hardware architecture and Check the deployment of the software
application on the hardware platform. Concerning technical fault
tolerance that is based on dynamic migration, we propose to use
migration software / hardware in a multiprocessor architecture, as
a solution for fault tolerance.

3.2. Second step: performance synthesis

For the second step is the synthesis step we will make a
complete architectural exploration of which will choose a
multiprocessor hardware architecture by specifying these settings,
A software application and we will follow the simulation and
implementation of this application on the architecture while
retaining control over the brutal mistakes that makes system
failures.

3.3. Tree step: Elaboration MPSoC Fault Tolerant

The last step of our approach that will get a MPSoC fault
tolerant. This step involves a component fault monitor CCP noted
that the state's objectives of monitoring the system running. This
hardware component in two missions which should take care of:
detecting hardware failures and handling. CCP's interest is to
eliminate any dependency on the rest of the system, consequently
control failures will be independent of the processing part or in
cases of failures remains functional and it keeps the
communication is with the rest of system or with the outside
(network). At the end of our proposed approach to fault tolerance
in embedded systems multiprocessor allows to restructure the
system into two subsystems: the first subsystem dedicated to the
execution of the application and the second a dedicated subsystem
fault tolerance.

Migration is the solution for fault tolerant problem in MPSoC.
The dynamic migration is structured on four steps: (1) modeling
software by KPN; (2) mapping and execution; (3) performance
evaluation migration.

• Modeling software by KPN

First of all, we have modeled a software application on a target
multiprocessor architecture. The application is a set of tasks
interconnected by communication channels (FIFO) each
architecture used contain one or more hardware accelerators where
migration can be activated for critical tasks. And, we also fix the
performance constraints that must be satisfied.

• Mapping and execution

In the second step, we make mapping of the software part
on the hardware platform that contains the hardware
component. We rely on profiling results of the
application to detect the task requiring migration. This
task will be transformed into hardware coprocessor to
accelerate the processing of the complete system.

• Performance evaluation of Migration

To migrate a task from the software to a hardware accelerator,
we propose three steps that need to be gone through:
(1) Hardware description, it is to design a hardware
component and integer throughout the MPSoC
system; (2) The instantiation of the task as a hardware task; (3) The
deployment of the task as hardware task.

When you decide to execute hardware a task, we start the
backup from its current state including the control and the task
selected in the shared memory information.
Then the task migrated will be deleted or suspended
on the source tile.

4. Experimentation: MJPEG Decoder

The figure 3 present Our architecture is formed by two processors
ARM, a coprocessor for the TG task, a coprocessor for the
RAMDAC task and a coprocessor for the migrate task.

Figure 3 Architecture Hardware Platform for Embedded systems

 One has validated the Fault Tolerance Approach for
Embedded Systems using a Motion JPEG decoder. One wants to
find an implementation of the MOTION JPEG decoder realising
25 frames per second (fps) as a functional constraint and using
50MHz processors as a non-functional constraint. The MOTION
JPEG decoder reads a stream of JPEG images from an input
peripheral: a traffic generator named TG and writes pixels on an
output peripheral: a digital-to-analogue converter named
RAMDAC. The first functional bloc DEMUX dispatches the input
stream to the other blocs. The decoding chain (Fig. 5.a) begins with
the decompression bloc (VLD), then the zigzag rearrangement
bloc (ZZ), followed by the inverse quantification bloc (IQ).
Finally, the stream passes to the inverse discrete cosine
transformation (IDCT).

Local Crossbar

 RA

NOC

Local Crossbar

RA

Local Crossbar

 RA

Local Crossbar

Co-processeur
IDCT

Co-processeur
TG

Co-processeur
RAMDAC

ARM ARM

RAM

RAM

I/D cache

I/D cache

http://www.astesj.com/

K. Smiri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1188-1195 (2017)

www.astesj.com 1192

Figure 4 Fault Tolerance Approach for Embedded Systems

http://www.astesj.com/

K. Smiri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1188-1195 (2017)

www.astesj.com 1193

One has validated the Fault Tolerance Approach for
Embedded Systems using a Motion JPEG decoder. One wants to
find an implementation of the MOTION JPEG decoder realising
25 frames per second (fps) as a functional constraint and using
50MHz processors as a non-functional constraint. The MOTION
JPEG decoder reads a stream of JPEG images from an input
peripheral: a traffic generator named TG and writes pixels on an
output peripheral: a digital-to-analogue converter named
RAMDAC. The first functional bloc DEMUX dispatches the
input stream to the other blocs. The decoding chain (Fig. 5.a)
begins with the decompression bloc (VLD), then the zigzag
rearrangement bloc (ZZ), followed by the inverse quantification
bloc (IQ). Finally, the stream passes to the inverse discrete cosine
transformation (IDCT).

(a)

(b)

(c)

(d)

Figure 5: (a) Motion JPEG decoding principle, (b) model of Motion JPEG
decoder, (c) 1st parallelization solution, (d) 2nd parallelization solution

Based itself on migration diagram presented in Fig. 4, we
transform the software task IDCT to hardware component. The
validation of hardware IDCT is carried out in two stages. The first
is the validation of behavioral IDCT; by comparing the results of
the implementation software IDCT in C with the equipment in
SystemC. The second step is the validation of the communication

interface that interconnects IDCT block with the rest of MPSoC
system. The integration is made by adding a software/hardware
channel between VLD-IDCT and a hardware/software channel
between IDCT-LIBU. We limit ourselves to adapt to existing
protocols KPN channels to have a coherent refinement. We have
structured hardware IDCT component on three layers: (1) an
adapter for easy connection to the rest of MPSoC system, (2) the
interface module that manages the exchange of data between
SystemC module and the rest of system, and (3) the true behavior
of hardware component. The interface module is composed of two
SystemC modules Write and Read, and two FIFO with finite sizes
(64 KBytes). Write module written in the first FIFO data from the
VLD. Read module permits to read the data processed by IDCT
and sends it to the LIBU. Primitives wait (t_Write), wait (t_Write) and
wait (t_IDCT) allow modeling of execution time modules
respectively Write, Read, IDCT.

For aim of determining the timing of hardware IDCT and
functions Write and Read on target technology (Xilinx, Altera ...),
we explored GAUT tool, which is among architectural synthesis
tools under constraints. For a cadence = 100ns and period = 10ns,
the execution time of the IDCT is t_IDCT = 100ns for the treatment
of Macro-Block (8 × 8 pixels). We estimate that the execution
time of each module Write and Read are equal and is t_Write = t_Read
= 10ns.

2) Performance migration at CA level

The architecture that we synthesize at Cycle Accurate (CA)
level is relative to the constraints laid down at the beginning of
the problem. The first constraint is the functional constraint on the
decoding speed of 25 frames per second (25 fps). The second
constraint is the non-functional constraint on the platform that
uses MIPS processors running at 50 MHz. The Operating System
Mutek is a multiprocessor multithread kernel supporting POSIX
APIs. This Mutek kernel proposes FIFO based communication
layer allowing KPN communications. It includes three different
schedulers. In the Symmetric Multiprocessor (SMP) kernel, there
is only one scheduler allowing the KPN processes to migrate
between processors. The Asymmetric centralized Scheduler
(Non_SMP_CS) is only one scheduler affecting statically
processes to processors. The Asymmetric distributed scheduler
(Non_SMP_D) instantiates one scheduler to every processor and
the processes are statically affected to processors. The design
space exploration synthesis of kernel scheduling policies and
software/hardware mapping are presented in Table 1. This table
summarizes the performance of implementation of the MJPEG
decoder in number of frames per second (fps).

Table 2: Performance implementation of MJPEG decoder (fps)

http://www.astesj.com/

K. Smiri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1188-1195 (2017)

www.astesj.com 1194

We decide to transform IDCT task in hardware component,
which allows us to achieve a speed decoding of 24.07 fps with 2
MIPS processors and 36.73 fps with 3 MIPS processors on a
simulation platform. The optimal architecture will use 2 MIPS
processors configured with 4 KB memory cache, RAM memory,
Pi-Bus and an interruption controller. The 2 MIPS processors are
dedicated to execute DEMUX, VLD, IQ, ZZ and LIBU processes
with an SMP scheduling policy. In addition, an input peripheral is
needed for reading video stream TG and an output peripheral for
display RAMDAC. For achieving the 25 fps functional constraint,
hardware implementation of the IDCT processes is necessary. If
the performance is meadows of 25 fps (for example 24 fps), one
accepts the solution under condition to optimize the codes of
application until to get the performance of 25 fps.

3) Performance migration at TA level

The modeling of the IDCT in hardware, adding time
performance metrics (t_Write, t_Read and t_IDCT) and the integration
of the component with the rest of system, allowed us to perform
simulations for three different input images (see Fig. 6.). We note
that the best performance is obtained for a configuration of two
CPU and hardware IDCT. This configuration agrees well with the
results obtained at CA level.

Figure 6 Comparison of simulation Results with IDCT hardware for three
different images

The first stage of our approach is analytical modeling. The latter
provide the estimation performance in earlier stage of MPSoC
design. In our methodology, analytical modeling is based on the
exploitation of graph SDF. This formalism makes it possible to
model an application graph, an architecture graph and, it allows
to model the constraints (we interested in the throughput
constraint as an indicator of performance) under which the
deployment will be run (mapping the software tasks on the
processors) via SDF3 tool. In order to calculate the throughput
constraint, we multiply the number of frames per second by a
cycle time.

Throughput = 1/(frequency)*(number of frames)

The first stage of the diagram is the modeling of the application
on a target platform at Transaction Accurate level. The Fig. 7.a
presents the structure in layers of the software part and the Fig.
7.b shows an example of hardware architecture of a target
platform. The application is modeled via the Khan Process
Network (KPN) at TA level. The software stack is composed of a
set of tasks, HdS-API, Operating System (OS) and HAL-API.
Communications at this abstraction level is done through specific
addresses by the primitive types Read() and Write().

f1

HDS API

f3f2

OS Comm

HAL API

HDS API

OS Comm

HAL API

HDS API

OS Comm

HAL API

CPU_1 Memory

PeriphInterface

 CPU_2 Memory

PeriphInterface

H
a

rd
w

a
re

co
m

p
o

n
en

t

NoC

F1 F3F2

HDS API

OS Comm

HAL API

(a) (b)

Figure 7 Transaction Accurate level: (a) software layers, (b) model of the target
platform

We are going to try in this section to validate our hybrid model
of estimation of the performances for the design of the embedded
systems. We begin with the first part which is the analytical
modeling and the data, which will be used by this model, can be
obtained via tools of profiling either from the traces of a tool of
simulation (we choose this method).

Figure 8 Graph of the MJPEG decoder application

The figure 8 represents the SDF model of the decoder MJPEG
which is used during the estimations of performance. The actor
VLD produces 36 tokens which correspond to 36 macros block of
the image "plane.jpg" with a size of 48 pixels by 48. These are then
transmitted to the actor IQ-ZZ, who reorganizes pixels according
to the coding inverse zigzag then transmits it to the actor IQ-ZZ,
who realizes the inverse quantification. The macro block is then
treated by the actor IDCT who makes the inverse discreet
transformed in cosine. Finally, the actor LIBU handles the pixels
of the image to adapt them to the ring peripheral of exit, it is for it,
he requires 36 macro blocks to reconstitute the whole image. Auto-
arcs on knots VLD and IQ-ZZ represents respectively the tables of
Huffman and quantification auto-passed on executions after
execution. Once the actors are modeled, it is necessary to
determine the requirements in terms for memory and the execution
times of the actors of the graph. These properties are also described
in an XML file. This code makes it possible to carry out actor
IQZZ on the processor mips0_0 with 174763 cycles like an
execution time for this task.

We add the attribute name for the element memory to facilitate
the assignment or the allowance of a segment of memory for each
actor in the SoCLib simulation tool. The latest information needed
for the application description in its XML file is the throughput
constraint which must be respectful when the decoder MJPEG
mapped on the target platform. This following code presents how
can define the throughput constraint in description file.

<timeConstraints>
 <throughput>0.0000005</throughput>
</ timeConstraints>

In this pseudo code, the objective of constraint is to reach a
rate of 25 frames per second. So, the Application must be
performed 25 iterations per second and the processor being
clocked at 50 MHz (the time unit = 0.2 nanoseconds).

Results with hardware IDCT

0

1000000000

2000000000

3000000000

4000000000

5000000000

6000000000

1 2 3 4 5 6

CPU

Ex
ec

uti
on

 tim
e (

ns
)

Unicycle.jpg
Videoin.jpg
Fl.jpg

http://www.astesj.com/

K. Smiri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1188-1195 (2017)

www.astesj.com 1195

5. Conclusion

In this paper, one presented the technique of Fault-Tolerant in
Embedded Systems (MPSoC). We interest of the dynamic
migration task to resolve the Fault-Tolerant for Multiprocessors
Embedded System. Multiprocessor Systems-on-Chip (MPSoC)
allow the implementation of heterogeneous architectures with a
high integration capacity. In recent years, computational
requirements MPSoC are increasing exponentially. This
complexity, coupled with constantly evolving specifications, has
forced designers to consider intrinsically flexible implementations.
Deploying applications typical of multimedia domains is difficult,
not only due to the heterogeneous parallelism in the platforms, but
also due to the performance constraints that typify these systems.
An application can be modeled as a set of cooperative tasks. A task
can be implemented in software or in hardware depending on its
complexity and the involved cost. In this paper, our proposal is a
fault tolerance approach which combines the results of a
performance model and a technical’s fault tolerance. Mainly our
approach deals with three techniques: 1) Performance estimation
in embedded systems, 2) Exploitation of hybrid models (which are
based on technical simulation and analytical model), 3) Fault
tolerance (based on duplication of software/hardware processing).

This approach has been tested for a Motion JPEG case study,
to find out an optimal hardware and software implementation.
However, the actual design of MPSoC Fault-Tolerant lacks for a
high level performance evaluation model and a technical’s fault
tolerance. We propose a Fault-Tolerant approach based on the use
of three techniques: 1) performance estimation, 2) exploitation of
hybrid models (simulation / analytics) and 3) fault tolerances. The
goal is to have a Fault Tolerant Embedded System. The limit of
our approach is that it will only be applied in the MPSoC design
approaches platform based design.

References

[1] K. Smiri, S. Bekri, H. Smei,“Fault-Tolerant in Embedded Systems (MPSoC):
Performance estimation and dynamic migration tasks”, in 11th International
Design & Test Symposium, IDT 2016, Hammamet, Tunisia, December 18-
20, 2016. IEEE 2016, ISBN 978-1-5090-4900-4 (IDT 2016), pp1-6.

[2] D. Sender Rocha dos A. Santos, L. M. Jorge, Adaptive Intelligent Systems
applied to two-wheeled robot and the effect of different terrains on
performance, Advances in Science, Technology and .Engineering Systems
Journal Volume: 2 Issue: 1 Pages: 1-5 Published: 2017

[3] S. Shiravi, M. E. Salehi, Fault tolerant task scheduling algorithm for multicore
systems. In Electrical Engineering (ICEE), 2014 22nd Iranian Conference
on (pp. 885-890). IEEE.

[4] A. Das, A. Kumar, B. Veeravalli, Communication and migration energy
aware task mapping for reliable multiprocessor systems. Future Generation
Computer Systems, 30, pp 216-228, 2014.

[5] A. Jemai, K. Smiri, H. Smei, Task Migration in Embedded Systems: Design
and Performance. Embedded Computing Systems: Applications,
Optimization, and Advanced Design: Applications, Optimization, and
Advanced Design, 2013.

[6] K. Pang, V. Fresse, S. Yao, O. A. De Lima, Task mapping and mesh topology
exploration for an FPGA-based network on chip. Microprocessors and
Microsystems, 39(3), pp 189-199, 2015.

[7] T. Maqsood, S. Ali, S. U. Malik, S. A Madani, Dynamic task mapping for
Network-on-Chip based systems. Journal of Systems Architecture,61(7), pp
293-306, 2015.

[8] K. Smiri, A. Jemai, “NoC-MPSoC Performance Estimation with Synchronous
Data Flow (SDF) Graphs“, Autonomous and Intelligent Systems (AIS‘2011),
June 22-24, Burnaby, BC, Canada, pp. 406-415, 2011.

[9] Ghamarian A.H., Stuijk S., Basten T., Geilen MGW. And Theelen B.D.,
“Latency Minimization for Synchronous Data Flow Graphs”, Published in
Digital System Design Architectures, Methods and Tools, 2007.

[10] Website SoCLib http://www.soclib.fr, Juin 2017.

http://www.astesj.com/
http://dblp.uni-trier.de/pers/hd/b/Bekri:Safa
http://dblp.uni-trier.de/pers/hd/s/Smei:Habib
http://dblp.uni-trier.de/db/conf/idt/idt2016.html#SmiriBS16
http://www.soclib.fr/

	2. Related works
	3. Fault Tolerance Approach for Embedded Systems
	3.1. First step: Input Models
	3.2. Second step: performance synthesis
	3.3. Tree step: Elaboration MPSoC Fault Tolerant
	 Modeling software by KPN
	 Mapping and execution
	 Performance evaluation of Migration

	4. Experimentation: MJPEG Decoder
	Figure 4 Fault Tolerance Approach for Embedded Systems
	Figure 7 Transaction Accurate level: (a) software layers, (b) model of the target platform
	5. Conclusion
	References

