
Advances in Science, Technology and Engineering Systems Journal
Vol. 2, No. 4, 115-120 (2017)

www.astesj.com

ASTES Journal
ISSN: 2415-6698

Solving the SAT problem using Genetic Algorithm
Arunava Bhattacharjee*, Prabal Chauhan

National Institute of Technology Durgapur, Computer Science and Engineering, 713209, India

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 28 June, 2017
Accepted: 20 July, 2017
Online: 01 August, 2017

In this paper we propose our genetic algorithm for solving the SAT
problem. We introduce various crossover and mutation techniques and
then make a comparative analysis between them in order to find out
which techniques are the best suited for solving a SAT instance. Before
the genetic algorithm is applied to an instance it is better to seek for
unit and pure literals in the given formula and then try to eradicate
them. This can considerably reduce the search space, and to
demonstrate this we tested our algorithm on some random SAT
instances. However, to analyse the various crossover and mutation
techniques and also to evaluate the optimality of our algorithm we
performed extensive experiments on benchmark instances of the SAT
problem. We also estimated the ideal crossover length that would
maximise the chances to solve a given SAT instance.

Keywords:
SAT
CNF
Genetic Algorithm
Crossover
Mutation
Elitism

1 Introduction

A Boolean Satisfiability (abbreviated as SAT) problem
involves a boolean formula F consisting of a set of
boolean variables x1,x2,.....xn. The formula F is in con-
junctive normal form(CNF) and it is a conjunction of
m clauses c1,c2,.....cm. A clause is a disjunction of one
or more literals, where a literal is a variable xi or its
negation. A formula F is satisfiable if there is a truth
assignment to its variables satisfying every clause of
the formula, otherwise the formula is unsatisfiable.
The goal is to determine an assignment for every vari-
able x satisfying all clauses.

The class k-SAT contains all SAT instances where
each clause contains upto k literals. While 2-SAT is
solvable in polynomial time, k-SAT is NP-complete for
k>=3 . The SATs have many practical applications e.g.
in planning, in circuit design, in spinglass model,in
molecular biology and especially many applications
and research on the 3-SAT is reported.

Some say that if we have an algorithm to solve
k-SAT problem in polynomial time then cooking the
food would become as easy as eating it. Speculations
have been also there that a polynomial time algorithm
might disapprove 2nd law of thermodynamics or can
even find the god!

There are two approaches which are generally
used to solve the SAT problem. The first one is lo-
cal optimization or local search and the other one is

genetic or evolutionary framework. The local search
optimization technique is to assign some truth val-
ues to variables until we do not get a conflict[1].
After getting a conflict either the algorithm starts
again or backtracks to change the value of the vari-
able which is responsible for the conflict. So this ap-
proach uses backtracking hence time-complexity wise
is not suitable (especially for large instances contain-
ing hundreds and thousands of variables). The most
common algorithms in local search optimizations are
GSAT(Greedy SAT)[2] and WalkSAT.

The other approach is to come up with an evolu-
tionary algorithm[3, 4] for solving the SAT problem.
They are admittedly quite fast than the traditional lo-
cal search methods. However, if a given SAT instance
is satisfiable but the program fails to come up with
a satisfying instance within the limited time period,
then it would wrongly judge the given instance as un-
satisfiable. Hence it is an incomplete algorithm.

These genetic approaches involve many other fac-
tors such as crossover, mutation, parent selection and
the most important factor, the fitness function. Till
date we have many approaches proposed so far. For
example, the SAWEA , the RFEA and RFEA2+ are
based on adaptive fitness functions and use problem-
specific mutation operators[5]. The FlipGA and ASAP
use the MAXSAT fitness function and a local search
procedure. The MAXSAT fitness value is equivalent
to the number of satisfied clauses.

*Arunava Bhattacharjee, National Institute of Technology Agartala, Tripura, India, Contact: +91-9485013441 Email: bhattachar-
jee.arunava9@gmail.com

www.astesj.com 115

https://dx.doi.org/10.25046/aj020416

http://www.astesj.com
http://www.astesj.com

A. Bhattacharjee et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 115-120
(2017)

Figure 1: Basic flow chart of Genetic Algorithm design

2 Proposed Algorithm

Our algorithm combines the power of local search
along with the Genetic Algorithm.

The Trivial Case:
We first check if there isnt any clause present in

our formula such that all of its constituent literals are
positive (negative). If this is the case, then we can
immediately find a solution by assigning False (True)
to all the variables.

Trivial()

• CountAllPos = No. of clauses with all con-
stituent literals positive.

• CountAllNeg = No. of clauses with all con-
stituent literals negative.

• If (CountAllPos == 0)

• Assign False to every variable.

• Exit.

• Else if(CountAllNeg == 0)

• Assign True to every variable.

• Exit.

• End if.

• Continue with the main algorithm.

We then eliminate all the unit literals (if present) and
the pure literals (if present).

• Unit Literal Rule: If a literal appears as the sin-
gle constituent of a clause in the formula, then
we can safely delete all those clauses containing
that literal. We also then remove the negated
form of this literal from every clause in the for-
mula where it appears.

• Pure Literal Rule: If a variable appears only in
it’s positive(negated) form in the whole formula,
then all the clauses containing that variable can
be safely deleted.

Although the benchmarks problems that we used for
our experiments[6] were carefully designed not to
allow this technique, however, in any random SAT
instance[7] those two techniques hold good and re-
duce the search space to a great extent[Table 1].

Our Algorithm

1. Try the Trivial Case.

2. If solution not found yet, Eliminate Unit Liter-
als.

3. If solution not found yet, Eliminate Pure Liter-
als.

4. If solution not found yet, implement Genetic
Algorithm.

Every chromosome in our algorithm is represented
as a bit-string of length n , where n is the no of vari-
ables present in the formula.

Genetic Algorithm()

• TOTAL GEN = 1

• CURRENT GEN = 1

• MAX FITNESS = 0

• Generate random population of size POP SIZE

• Assign fitness values to every individual of the
population

• For each individual a:

• If fitness(a) equals NO OF CLAUSES:

• Print Satisfiable

• Exit

• Else if fitness(a) is greater than
MAX FITNESS:

• LAST GEN = CURRENT GEN

• MAX FITNESS = fitness(a)

• End if

• Sort the population by their fitness values and
transfer (ELITISM RATE * POP SIZE) top most
individuals (the ones with the higher fitness) to
the next generation

• To fill up the remaining places for the new gen-
eration do the following:

www.astesj.com 116

http://www.astesj.com

A. Bhattacharjee et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 115-120
(2017)

• Select two fittest individuals from the cur-
rent generation using Roulette-Wheel selection
technique

• Apply Crossover between them. (depen-
dent on the CROSSOVER RATE)

• Apply Mutation between them. (depen-
dent on the MUTATION RATE)

• Transfer the new individuals to the next
generation

• Repeat till all places for the new genera-
tion are filled

• Increment CURRENT GEN

• If (CURRENT GEN - LAST GEN) > LIMIT:

• TOTAL GEN=TOTAL GEN+CURRENT GEN

• If TOTAL GEN > MAX GEN:

• Print Not Satisfiable

• Exit

• Else goto Step 2

• End if

• Else goto Step 5

• End if

2.1 Different Parameters

Parameters used in our algorithm:

1. MAX GEN : Maximum no of generations al-
lowed for our program to run.

2. ELITISM RATE : The fraction of the total no of
individuals in our current generation that would
be transferred to the next generation.

3. CROSSOVER RATE : Determines the probabil-
ity that two selected individuals would perform
crossover.

4. MUTATION RATE : Determines the probability
that the concerned individual would undergo
mutation.

5. POP SIZE : The total no of individuals in any
generation.

6. LIMIT : Specifies a threshold, if no improvement
occurs for a given span of generations (specified
by LIMIT), then a new fresh random population
is generated.

The various crossover functions used:

1. Single Point Crossover : We select a pivot point
(randomly) ranging between 0 to length of the
chromosome and then exchange the substring
from the pivot till the end of the string between
the two chromosomes.

2. Two Point Crossover: We select two pivot points
(randomly) ranging between 0 to length of the
chromosome and then exchange the substring
defined within those two points between the
chromosomes.

3. Uniform Crossover: We exchange every alter-
nate bit between the two chromosomes.

4. Greedy Crossover: This is similar to the Single
Point Crossover, however we choose the pivot
point in a greedy fashion.
As a precomputation step, we first build a table
of size 2*no. of variables (as we can have this
many different literals possible) and store in it
the no of clauses satisfied by the corresponding
literal.
So, Table[a] would store the no of clauses that
the literal a would satisfy independently. We de-
fine prefix sum array ’Pre’ and suffix sum array
’Suff’ for a given chromosome C = x1x2x3x4xn as
follows :
Pre[i] = Table[x1] + Table[x2] +Table[xi]
Suff[i] = Table[xi+1] + Table[xi+2] +.....Table[xn]
Hence given a chromosome pair C1 and C2, we
compute their prefix sum arrays Pre1, Pre2 and
their suffix sum arrays Suff1 and Suff2 as de-
scribed above.
We choose the pivot point by the following for-
mula,
Pivot = index for which max(Pre1[index] +
Suff2[index], Pre2[index] + Suff1[index]) is max-
imum for all index from [0.....length - 1] , where
length is the length of the chromosome.

5. Fixed Length Crossover: We want to find out
the optimal length of the crossover (the length
of the substring to be swapped between the two
chromosomes). So we experiment with various
lengths. For a given length l, we maintain a
sliding window of length l and then shift the
window from left to right , and we finally swap
that substring of length l (contained within that
window) such that the resulting individual has
the maximum fitness . We define r = Ratio of
Crossover Length to Chromosome length. i.e. r
= l/n. The results are displayed in Fig. 6 and
Fig. 7.

The various mutation functions used:

1. Single bit flip - Flip a single bit (chosen ran-
domly).

2. Multiple bit flip - Flip multiple bits (chosen ran-
domly).

3. Single bit greedy - Flip a single bit which in-
creases the fitness value for that individual.

4. Single bit max greedy - Flip that single bit which
increases the fitness value for that individual to
the highest as compared to flipping any other
bit.

www.astesj.com 117

http://www.astesj.com

A. Bhattacharjee et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 115-120
(2017)

5. Multi bit greedy - Keep flipping bits (from left
to right) which increases the fitness of that indi-
vidual. (only a single left to right iteration).

6. FlipGA[8] - Keep flipping bits from left to right
which increase the fitness of that individual.
Once the right end is reached, again start from
the left end until no more flipping is possible.

Mutation functions 1 and 2 are dependent
on MUTATION RATE. The rest aren't (due to
forced mutation).

3 Experiments

POP SIZE = 100
CROSSOVER RATE = 0.7
MUTATION RATE (does not matter as we used Multi
bit Greedy)
LIMIT = 50
MAX GEN = 500

The results were pleasant for instances with lesser
no. of variables, however with large test cases (involv-
ing more than 80 variables) the success ratio could
barely make it to 60%.

We then increased our POP SIZE to 500, which
improved the success rate but made our program to
run extremely slow! This is because the mutation
function that we were using (Multi bit greedy) was
costly enough.

So we finally resorted to introduce the concept of
elitism in our algorithm. We experimented with var-
ious elitism rates and found out that a 60-70 % of
elitism yields best results on an average (based on run-
time and success ratio).

So the final parameters for our experiments were-

1. POP SIZE = 500

2. CROSSOVER RATE = 1

3. MUTATION RATE (does not matter as we used
Multi bit Greedy)

4. LIMIT = 40

5. MAX GEN = 200

6. ELITISM RATE = 0.7

• Since we were using a high elitism rate so most
of the population went on to the next generation
without being mutated, so the costly mutation
function needed to be used for a comparatively
small part of the population, which improved
the runtime.

• As we were anyway transferring 70% of the best
individuals (the ones with the maximum fitness)
from the current generation to the next gener-
ation, so we would like to have the remaining

30% of the new generation to be fulfilled by
completely new individuals. Hence we set the
CROSSOVER RATE to 1 to increase the chances
of getting new individuals drastically.

4 Results

As evident from Figure 2 and Figure 3 our algorithm
performed quite well till test cases containing 100
variables. This had been a significant improvement
over what we had achieved earlier. We also noticed
that the success rate could be further increased by in-
creasing the MAX GEN (increasing the POP SIZE in-
creases the runtime drastically, so we should not in-
crease it much), however at the cost of increased run-
time.

Figure 2: Success Rates

Figure 3: Run Times

Variables Clauses Clauses Reduced Time(in sec)

5 20 0 0.031
50 100 10 0.054

100 200 12 0.332
25 100 0 0.069

250 1000 25 101.298
256 6336 0 107.626

Table 1: Table for Random Instances(all satisfiable)

www.astesj.com 118

http://www.astesj.com

A. Bhattacharjee et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 115-120
(2017)

4.1 Comparative Analysis

4.1.1 Different Crossovers

Success Rate: Clearly from Figure 4 we see that the
Two point crossover performed quite well in our ex-
periments. The Single point crossover and Greedy
crossover overlap in some areas and are comparable
to each other. It remains to see how they perform for
instances with a very large no of variables.

Figure 4: Success Rates of Different Crossover functions

However,a striking fact is that the uniform
crossover yielded quite unsatisfactory results. We
were flummoxed with its results and so to crosscheck
our data we ran the program again but still the results
were the same. Looks like this crossover is definitely
not a choice for the Boolean Satisfiability problem.
Our implementation of uniform crossover was
though, nave. It just flipped the alternating bits. It
remains to see if introducing probabilistic methods to
choose which bits to flip can increase the performance
of this algorithm.

Runtime: Figure 5 suggests that Single point
crossover and Two point crossover are the fastest
(and yield good success rates as well). However,
the Greedy Crossover has to perform a lot of pre-
computations and hence it has a larger runtime. The
runtime of the Uniform Crossover doesnt really mat-
ter as it yielded a quite poor success rate.

Figure 5: Run Times of Different Crossover functions

Fixed-length crossover:
We know that during the crossover phase there

is an exchange of genes between the chromosomes
(or namely, in our algorithm it is represented as
an exchange of a substring between the two chro-
mosomes, which themselves are represented as bit
strings). What should be the ideal length of the sub-
string to be exchanged? We tried to address this prob-
lem by conducting various experiments. We assumed
that this ideal length would be a function of the no of
variables present in the problem statement.

Let l be the Crossover length , i.e. the length of the
substring to be exchanged between the chromosomes.

Let n be the Chromosome Length (since we rep-
resent each chromosome as a bit string of length n,
where the ith bit denotes the xi’th variable.

We defined a parameter r = Crossover
Length/Chromosome Length = l/n.

We conducted experiments for crossover length
ranging from 5% to 95% of the chromosome length,
and the results had been overwhelming.

Figure 6: Success Rates for different values of r (Fixed length
Crossover function)

From Figure 6, it is evident that for cases where
the Crossover length was less than 20% of the Chro-
mosome length, the success rate was pretty bad. Same
was the case when the Crossover length was more
than 80% of the Chromosome length.

Figure 7: Run Times for different values of r (Fixed length
Crossover function)

In Figure 7, we see that very small crossover
lengths (< 20% of the chromosome length) have a very
large runtime compared to other crossover lengths.

www.astesj.com 119

http://www.astesj.com

A. Bhattacharjee et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 115-120
(2017)

4.1.2 Different Mutations

Success Rate: Figure 8 shows that FlipGA dominates
the success chart with around 85% of success for in-
stances with 125 variables. The alternative Multi bit
greedy too is in par with FlipGA for most of the in-
stances except the last set of instances, where its suc-
cess rate drops to 75%. But keeping these two muta-
tion functions aside, the rest of the mutation functions
perform very poorly.

Figure 8: Success Rates for different Mutation functions

Figure 9: Run Times for different Mutation functions

Runtime: Figure 9 shows that the runtime for
Multi bit greedy is slightly better then FlipGA. So its
like a trade off of accuracy over runtime. Perhaps in-

creasing the MAX GEN value could improve the suc-
cess ratio of Multi bit greedy without compromising
the runtime to a great extent. Also, it might happen
that for very large SAT instances the runtime differ-
ence betweeen these two functions might prove to be
significant. The runtime of the rest mutation func-
tions do not matter provided they have such a poor
success rate.

Conflict of Interest The authors declare no conflict
of interest.

Acknowledgment The authors would like to thank
Dr. Pinaki Mitra, Associate Professor, Department of
CSE, IIT Guwahati for his invaluable contributions
and support. We also thank him for the financial sup-
port he provided for the publication of this paper.

References
[1] Peter Maandag. Solving 3-SAT (2012)

http://www.cs.ru.nl/bachelorscripties/2012/Peter
Maandag 3047121 Solving 3-Sat.pdf

[2] Bart Selman, Hector Levesque, David Mitchell .A New
Method for Solving Hard Satisfiability Problems(1992)
www.cs.cornell.edu/selman/papers/pdf/92.aaai.g
sat.pdf

[3] Istvan Borgulya. An Evolutionary framework for 3-SAT Prob-
lem (2003) hrcak.srce.hr/file/69372

[4] Stefan Harmeling. Solving Satisfiability Prob-
lems Using Genetic Algorithms (2000)
https://pdfs.semanticscholar.org/70c0/6d4daabd3
75e818fb23cc6856fe271040095.pdf

[5] Jens Gottlieb, Elena Marchiori, Claudio Rossi. Evolu-
tionary Algorithms for the Satisfiability Problem (2002)
www.cs.ru.nl/˜elenam/fsat.pdf

[6] SATLIB-Benchmark Problems
http://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html

[7] Random instance tough SAT Generator
https://toughsat.appspot.com/

[8] Elena Marchiori, Claudio Rossi. A Flipping Ge-
netic Algorithm for Hard 3-SAT Problems (1999)
https://pdfs.semanticscholar.org/e982/e6f15434d
f6ecfd0b59cb45b7c6875744962.pdf

www.astesj.com 120

http://www.astesj.com

	Introduction
	Proposed Algorithm
	Different Parameters

	Experiments
	Results
	Comparative Analysis
	Different Crossovers
	Different Mutations

