
Advances in Science, Technology and Engineering Systems Journal
Vol. 2, No. 3, 1272-1279 (2017)

www.astesj.com
Special Issue on Recent Advances in Engineering Systems

ASTES Journal
ISSN: 2415-6698

Towards Deployment Strategies for Deception Systems
Daniel Fraunholz*,1, Marc Zimmermann1, Hans Dieter Schotten1,2

1Intelligent Networks, German Research Center for Artificial Intelligence, 67663 , Germany
2Wireless Communication and Navigation, University of Kaiserslautern, 67663, Germany

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 22 May, 2017
Accepted: 07 July, 2017
Online: 01 August, 2017

Network security is often built on perimeter defense. Sophisticated
attacks are able to penetrate the perimeter and access valuable resources
in the network. A more complete defense strategy also contains
mechanisms to detect and mitigate perimeter breaches. Deceptive
systems are a promising technology to detect, deceive and counter
infiltrations. In this work we provide an insight in the basic
mechanisms of deception based cyber defense and discuss in detail one
of the most significant drawbacks of the technology: The deployment.
We also propose a solution to enable deception systems to a broad range
of users. This is achieved by a dynamic deployment strategy based on
machine learning to adapt to the network context. Different methods,
algorithms and combinations are evaluated to eventually build a full
adaptive deployment framework. The proposed framework needs a
minimal amount of configuration and maintenance.

Keywords :
Information Security
Network Security
Deception Systems
Honeypots
Deployment Strategy
Machine Learning
Artificial Intelligence

1 Introduction

Several studies suggest that cyber crime and espi-
onage frameworks are flourishing. In the United
States of America the monetary loss due to cyber
crime is amounted to $1,070,000,000 in 2015 [1]. The
European Union was also in the focus of organized cy-
ber crime. 15 reported major security breaches leaked
more than 41 million records of sensitive informa-
tion, such as credit card information, email addresses,
passwords and private home addresses [2]. In the
context of highly sophisticated cyber crime such as
industrial espionage, digital repression and sabotage
it is common to not only trust perimeter based net-
work security [3]. Several cyber attacks and devel-
opped attack methods such as AirHopper [4] proved
that even physical isolation can be circumvented. This
leads to a permanent and latent threat of successful
infiltrations, which are undetectable by state of the
art defense mechanisms such as firewalls, antivirus,
rule based intrusion detection and prevention systems
(IDS/IPS), network separation and user authentica-
tion. Deception systems (DS) enable in depth network
defense support for the IT security concept. They
mimic productive, secret or critical resources in the
target system. Intruders can not distinguish between
a DS and the actual resource. However, defenders

easily detect intrusions because no connections, traf-
fic and activities are expected on a DS. Any interac-
tion with such a system can be classified as malicious.
This technology therefore comes along with no false
positive classifications, from which other defense in
depth technologies such as anomaly detection often
suffer. Typical issues for state of the art network de-
fense are: Inside or insider attacks, encryption, high-
throughput traffic, polymorphism and highly fluctu-
ating signatures. Deception systems do not suffer any
drawbacks on these issues. More than that, technol-
ogy changes such as IPv6 do not impact DSs. How-
ever, there are other drawbacks coming along with
DSs. A major drawback is the deployment [5]. The
DS needs to mimic a actual system and additionally
fit in the network structure [6]. State of the art for
a proper configuration, deployment and maintenance
is manual effort [7]. We state that a framework con-
sisting of a scanning engine for context observation,
a back-end database for proper storage of context in-
formation in combination with an engine for machine
learning based on context analysis and a DS depen-
dent deployment engine can solve this issue. This en-
ables DSs for a broad range of applications and com-
panies. Especially small and medium size compa-
nies will profit from manageable DSs, because they
cannot afford cumbersome manual configuration, de-

*Daniel Fraunholz, Trippstadter Str. 122, +49 (0)631 / 205 75-0 & daniel.fraunholz@dfki.de

www.astesj.com 1272

https://dx.doi.org/10.25046/aj0203161

http://www.astesj.com
http://www.astesj.com

D. Fraunholz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1272-1279
(2017)

ployment and maintenance of network security mech-
anisms.

This work is structured as follows: Since the idea
of machine learning and deception in network de-
fense is around 30 years old, we first identify recent
trends and related work in chapter 2. Investigated
machine learning methods as well as their advantages
and drawbacks are introduced in chapter 3. In chap-
ter 4 we propose our adaptive deployment framework
and discuss important modules. The proposed frame-
work is evaluated in chapter 5. Our work is concluded
in chapter 6.

2 Related Work

In strategic defense and attack the idea of deception
dates back to the 5th century BC [8]. It was first de-
scribed from Clifford Stoll as digital strategy [9] in
1990 and first implemented from Lance Spitzer as net-
work defense strategy [10].

2.1 Deception Systems

Modern DSs provide a vast variety of fake resources
to deceive intruders. The most popular concept are
server side systems. These systems mimic typical
server protocols such as FTP, SSH or SMB. Connect-
ing intruders trigger alarms and are under observa-
tion while they try to exploit the server. Other con-
cepts are client side systems, which connect to po-
tential malicious servers and observe the servers be-
havior. This concept is common to investigate web
based attacks such as drive by downloads. A more re-
cent concept employs tokens as trigger for alarms. To-
kens impersonate documents, credentials or accounts.
Stack canaries can be interpreted as token-based DS.
Long-term and large scale studies with deception sys-
tems enable high quality insight in recent threats and
their developments [11][12].

2.2 Deployment Strategies

Except for client-side DSs all need to be implanted in
an existing and often fluctuating context. This con-
text can be a IP-based network, a file system or any
other architecture to defend. In this work we will fo-
cus on IP-based networks. There are two major groups
of deployment modes: Research and production. In
research mode the DS is directly connected with the
Internet. In this mode its main purpose is the col-
lection of threat intelligence, botnet observation and
other trends. For non IT security companies this mode
is not relevant. The production mode deploys DSs be-
hind the perimeter. DSs in this mode typically have
less interaction. However, in this mode any interac-
tion is a strong indicator for perimeter breaches or in-
ternal misuse. In the production mode, six basic de-
ployment concepts are prevalent [13][14]: Sacrificial
lamb, deception ports on production systems, prox-

imity decoys, redirection shield, minefield, zoo. In ta-
ble 1 the different concepts are described.

State of the art deployment strategies do not em-
ploy automated deployment. Our adaptive frame-
work supports all deployment concepts except for de-
ception ports, since access to the production machines
is not natively available. Furthermore, we argue that
manipulation of software on production systems is
not acceptable for most operators and vendors. This
restricts the usage of the deception port concept in in-
dustrial scenarios and proprietary systems. We also
argue that sacrificial lamb and zoo deployment suf-
fer from lower attraction to intruders and less knowl-
edge about the actual network security state. Both
are implications of the deployment in a different sub-
network. Minefield deployment is a good choice to
detect intrusions in an early state, but if an intruder
circumvents the minefield there are no more defense
in depth mechanisms. We focus on proximity decoys,
since we think it is the most promising deployment
concept for defense in depth strategies. Please note
that redirection shield is a special case of all other con-
cepts, where the DSs hardware is not located in the
internal network, but the malicious traffic is tunneled
out to an external environment.

2.3 Artificial Intelligence for Deception
based Network Security

Artificial intelligence enables context-awareness. In
network security this is crucial, since modern net-
works are heterogeneous and entities within the net-
work can often change. To adapt DSs in these sce-
nario several researches have been conducted. These
researches can be classified in two major domains: In-
teraction and Deployment. Context-aware interaction
focuses on decision making for DSs [15][16][17]. The
adaptive deployment domain is in an early stage com-
pared to the first usage of DSs. However, this do-
main decreases the probability for being fingerprinted
by adapting to other entities in the network and also
increases the intrusion detection probability by op-
timizing the ratio between DSs and production sys-
tems within a network. Conducted works are learn-
ing mechanisms of new unknown services and pro-
tocols [18], context-awareness for DSs [19] and auto-
mated configuration [20]. An overview of conducted
research is given by Zakaria [21][22].

3 Unsupervised Machine Learn-
ing

The data acquired from our framework is not labeled.
Even the number of clusters is unknown. To deter-
mine the optimal DSs deployment, we employ unsu-
pervised machine learning methods to identify clus-
ters and derive deployment prototypes. In this chap-
ter we introduce and investigate several methods we
identified as promising. These methods are later em-
ployed in our framework.

www.astesj.com 1273

http://www.astesj.com

D. Fraunholz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1272-1279
(2017)

Table 1: Deployment concepts for DSs in internal networks

Concept Description

Sacrificial lamb Single deployment isolated from any production systems

Deception ports on production systems Deployment on the production system

Proximity decoys Deployment near the production systems

Redirection shield Redirection of certain traffic outside the internal network

Minefield Deployment of a vast amount of DSs near the perimeter

Zoo Deployment of a vast and versatile amount of DSs isolated from any production system

3.1 Methods and Algorithms

We investigated three different clustering algorithms.
All three are assigned to a different class of clus-
ter algorithms. First is the centroid based k-medoids
method [23]. In difference to the well known k-
means algorithm, k-medoids always sets an entity
from within a cluster as centroid. This centroid is
called medoid. As given in (1), we define the Jaccard-
Tanimoto metric [24] as distance measurement:

d(x,y) =

∣∣∣x∪ y∣∣∣− ∣∣∣x∩ y∣∣∣∣∣∣x∪ y∣∣∣ (1)

where x and y are either a feature set of an obser-
vation or a feature set of an aggregation of observa-
tions. We employ this distance measurement as refer-
ence for all further investigations in this paper. There
are, however, several distance measurements that are
also feasible such as the Manhattan, Euclidean, Simp-
son, Dice and Mahalanobis distance [25]. The defini-
tion of the k-medoids method is given in (2):

argmax
S

k∑
i=1

|Si |V arSi (2)

where k is the number of clusters and S =
S1,S2, ...,Sk the sets of all observations.

Our evaluation is based on the partition around
medoids (PAM) [23] implementation. PAM is a heuris-
tic method, employed to circumvent the NP-hardness
of k-medoids.

Second is the connectivity based single linkage
clustering [26]. We also chose the Jaccard-Tanimoto
distance as distance measurement to ensure compa-
rability. The single linkage method is an agglomera-
tive hierarchical clustering method. All observations
are considered as cluster and then merged into an ag-
glomeration of clusters based on the distance between
the clusters. The distance is calculated by a linkage
function, which is given in (3) for the single linkage
method

D(Si ,Sj) = min
u∈Si ,v∈Sj

d(u,v) (3)

where D is the linkage function, Si and Sj are sub-
sets of S, u is a observation in cluster Si and v a obser-
vation in cluster Sj . In our experiments we found that
more complex linkage functions such as WPGMA, UP-
GMA and WPGMC do not significantly improve the

results of our application. We used the SLINK imple-
mentation [27] to decrease the time complexity from
O(n2log(n)) to O(n2).

Finally, we evaluated the density based spa-
tial clustering of applications with noise (DBSCAN)
method [28]. DBSCAN defines a distance measure-
ment d(x,y) and a minimal number of observations
minP ts that need to be in a certain distance ε of a
given observation x to consider the observation x as
part of the cluster. If a observation x is within the
distance ε of less than minP ts observations, it is con-
sidered as cluster edge and is part of the cluster. The
Jaccard-Tanimoto metric is employed as d(x,y).

All three methods imply different advantages and
disadvantages. A comparison is given in table 2.

It can be seen that the optimal algorithm depends
on the application. Determining a suitable method
requires an understanding of the data set. In our ap-
plication it is not possible to assume a certain distri-
bution of systems within a network. The diversity of
clusters and the occurrence of outliers depend on the
network architecture.

3.2 Convergence Criteria

The introduced algorithms require a proper
parametrization to ensure reasonable results. Even
methods that need no predetermination of k need pa-
rameters to calculate k.

We employed three methods to estimate the con-
vergence criteria: The Elbow method, the GAP
method and the Silhouette coefficient. An increasing
number of clusters decrease the mean squared error
(MSE). The MSE is defined as follows:

k∑
i=1

∑
u∈Si

∥∥∥u −µi∥∥∥2
(4)

where k is the number of clusters, u an observation
in cluster Si and µi the mean value of Si . The elbow
method [29] investigates, if further incrementation of
the number of clusters do significantly decrease the
MSE. If the decrease is not significant, the optimal
number of clusters is found. The GAP method [30]
is based on the elbow method, but instead of ∆MSE

∆k ,
the maximal difference between the MSE of the elbow
function and the MSE of randomly distributed obser-
vations indicates the optimal number of clusters. A
widely employed method to determine the number of
clusters in machine learning applications is the sil-
houette coefficient [31]. The definition is given in (5).

www.astesj.com 1274

http://www.astesj.com

D. Fraunholz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1272-1279
(2017)

Table 2: Comparison of different clustering algorithms

Feature k-medoids Single linkage DBSCAN

Class Centroid Connection Density

Predetermined k Yes No No

Outliers - + +

Efficiency PAM: O(k(n− k)2) SLINK: O(n2) O(nlog(n))

Divers clusters - 0 +

Deterministic No Yes No

sj =

0 for dist(Si ,u) = 0
dist(Sv ,u)−dist(Si ,u)

max {dist(Si ,u),dist(Sv ,u)} else
(5)

The distance measure for the silhouette method
based on (1). For the distance between an observa-
tion and a cluster, the mean value of the cluster is em-
ployed as defined in (6) and (7).

dist(Si ,u) =
1
|Si |

∑
x∈Si

d(x,u) (6)

dist(Sj ,u) = min
Sy,Si

1
|Sx |

∑
y∈Sy

d(y,u) (7)

The distance between Sj and u is the difference as
defined in (1) to the nearest cluster Sy ∈ S. For an
evaluation we will employ the three introduced con-
vergence criteria.

4 Adaptive Deployment Frame-
work

We developed an adaptive deployment framework
consisting of a data acquisition engine (DAE), a clus-
tering engine (CE) and a deployment engine (DE). A
specific data format was also developed. In this chap-
ter we describe our framework and the single compo-
nents. The adaptive deployment consists of four con-
secutive processes: Context perception, context evalu-
ation, configuration and deployment. In the first step
the DAE collects context information such as other
hosts. The acquired data is then stored in our data
format. Based on this data, the CE statistically an-
alyzes the stored data and determines k prototypes
P . These prototypes P are DSs that are mind(P ,Si).
The configuration process depends on the DE. In gen-
eral, however, the required configuration file is gener-
ated in this process. Finally, the DE deploys the DSs
based on the configuration file. The overall process of
adaptive deployment is restartable at any time. This
enables a fast adaption to changing architectures and
contexts. The process is shown in Figure 1.

4.1 Data Acquisition Engine

The DAE captures the context and stores it in a de-
fined data format. In our implementation we define
the other hosts in the same subnetwork as context.

To capture as much information as possible about the
context, the DAE combines passive information gath-
ering by p0f [32] and active information gathering by
nmap [33] and xprobe [34]. For each host in the sub-
network the information sources decide by vote for an
operating system. The services available from a host
are determined by nmap.

4.2 Data Format

The data format we developed is based on the Exten-
sible Markup Language (XML). First an unique iden-
tifier (ID) is generated for each host. These IDs are
associated with features. There are three major sec-
tions: meta data, services and operating system. The
first section contains available meta data such as up
time, MAC address, IP address and a time stamp. In
the second section open TCP and UDP ports are listed.
We map port numbers directly to services. This is ef-
ficient and produces sufficiently reliable results. In
the third section we store information about the TCP
stack based fingerprint. This information is extracted
from the nmap and xprobe scan.

4.3 Clustering Engine

In the CE the prototypes for the deployment are gen-
erated. These prototypes need to contain all informa-
tion that is needed for a sufficient deployment. In our
implementation we employ the same data format for
context information and prototypes. The CE deter-
mines k clusters containing Si hosts. The TCP stack
and the available services for each P are equal to the
medoid in Si . However, meta information is gener-
ated on distributions within Si . For example the MAC
address: The first three octetes are extracted from the
most prevalent vendor within Si and the other three
are chosen randomly. For the IP address we devel-
oped an algorithm to reduce impact on the distribu-
tion in subnetworks. First a random IP within the
cluster is chosen then the upwards next unoccupied
IP address is assigned to the prototype. By the use of
this algorithm the distribution within the cluster re-
mains the same, since a specific probability distribu-
tion is preserved if only uniformly distributed obser-
vations are added on the existing observations. Please
note that IP addresses are only assigned to one host
at the same time and therefore the distribution is not
perfectly preserved. Uptimes for prototypes are deter-
mined based on the mean uptime within a cluster.

www.astesj.com 1275

http://www.astesj.com

D. Fraunholz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1272-1279
(2017)

Figure 1: Overall process of the adaptive deployment framework

4.4 Deployment Engine

In a last step the actual deployment is executed. This
step is most crucial to all previous steps. The required
information for a proper configuration needs to be
calculated or assumed. In our implementation we em-
ploy honeyd [35] as DE. honeyd is able to emulate a vast
amount of hosts with TCP stack and offers the ability
to open TCP and UDP ports as well as the execution
of scripts to emulate services on the open ports. If
it is needed honeyd is also able to emulate large net-
work architectures including network elements such
as routers, switches and tunnels [36].

5 Evaluation

In the evaluation chapter two different settings are
investigated. First, an artificial scenario is evalu-
ated. This scenario consists of several virtual ma-
chines (VMs) in an isolated network. The second sce-
nario is an actual production network in which we de-
ploy DSs by our framework.

5.1 Artificial Data Sets

As shown in table 3 eight different VMs are prepared
for the simulation of a production network: Windows
10, Windows 7, Ubuntu 17.04, Ubuntu 12.04, Debian
8.8.0, Fedora 25, openSUSE 42.2 and Android 4.3.
Two scenarios are defined in this evaluation. The first
scenario mimics a network with equally distributed
cluster sizes. In the second scenario the cluster sizes
are different. We chose these diverse settings to not
favor a specific algorithm. The deployment is realized
with Virtualbox.

5.2 Real World Scenario

For scenario 3 we scanned a class C development net-
work. The network consists of: 7 Windows 10 ma-
chines, 4 Ubuntu machines, 2 TP Link switches, 2
Cisco switches, 11 Raspberry Pis, 1 Android system
and 4 other Unix systems. Unlike in the artificial sce-
narios the configurations of the systems are different.

5.3 Results

First we evaluated the determination of the number of
clusters. In Figure 2 the comparison of combinations
of different methods in scenario 1 is shown.

As it can be seen for the elbow method and the sil-
houette coefficient all three algorithms perform sim-
ilarly. However, for GAP there are differences. We
found that DBSCAN is not suitable when using GAP.
Please note, that the determined number of clusters is
six in this scenario for all algorithms. This is because
Ubuntu 12.04 and Ubuntu 17.04 as well as Windows
7 and Windows 10 have closely resembling TCP-Stack
implementations and similar open ports in the default
configuration, reducing the number of clusters from
eight to six. In Figure 3 we compare the same algo-
rithms for scenario 2.

For DBSCAN the elbow method does not give a
feasible result. The GAP method results only for
SLINK in suitable results. PAM as well as DBSCAN
result in a number of clusters of four. The silhou-
ette coefficient only results in suitable values for the
PAM. Figure 4 compares the results for the develop-
ment network.

DBSCAN is not feasible with any convergence cri-
teria in this scenario. This fits in our overall evalua-
tion. However, it is recommend to estimate ε not on
the number of cluster, but on the k-distance graph for
DBSCAN. By doing so the results are probably better.
PAM and SLINK both result in reliable values for the

www.astesj.com 1276

http://www.astesj.com

D. Fraunholz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1272-1279
(2017)

Table 3: Definition of the investigated scenarios

Scenario 1 Scenario 2

Windows 10 3 10

Windows 7 3 5

Ubuntu 12.04 3 0

Ubuntu 17.04 3 4

Debian 3 2

Fedora 3 1

openSUSE 3 1

Android 3 5

Figure 2: Evaluation of algorithms to estimate the number of clusters in Scenario 1

Figure 3: Evaluation of algorithms to estimate the number of clusters in Scenario 2

Figure 4: Evaluation of algorithms to estimate the number of clusters in Scenario 3

Table 4: Relative error for the estimation of the number of clusters

Scenario 1 Scenario 2

Elbow Method GAP Silhouette Elbow Method GAP Silhouette Mean

SLINK 0.25 0.25 0.5 0.25 0.25 0.25 0.29

PAM 0.25 0.25 0.13 0.25 0.5 0.25 0.27

DBSCAN 0.25 0.75 0.38 0.25 0.5 0.5 0.44

Mean 0.25 0.42 0.33 0.25 0.42 0.33

www.astesj.com 1277

http://www.astesj.com

D. Fraunholz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1272-1279
(2017)

Table 5: Relative error for the estimation of the entities within the clusters in scenario 1

C1 C2 C3 C4 C5 C6 C7 C8 Mean

SLINK 0.33 1.00 1.00 0.00 1.00 0.33 1.00 0.00 0.58

PAM 0.67 1.00 1.00 1.00 1.00 0.50 1.00 0.00 0.77

DBSCAN 0.33 1.00 1.00 0.00 1.00 0.33 1.00 0.00 0.58

Table 6: Relative error for the estimation of the entities within the clusters in scenario 2

C1 C2 C3 C4 C5 C6 C7 Mean

SLINK 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PAM 1.00 1.00 0.67 1.00 0.00 0.00 0.80 0.64

DBSCAN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

elbow method and the silhouette coefficient. The over-
all performance evaluation is given in Table 4.

Comparing the algorithms the best results are
achieved for the SLINK implementation. For the con-
vergence criteria the elbow method appears to pro-
vide the best results. However, the elbow method
requires an additional criterion for the detection of
the elbow. Formally a criterion detecting significant
changes for ∆MSE

∆k is required. These criteria tend to be
unreliable [37]. For the silhouette coefficient it is also
difficult to detect a reliable number of clusters. This
is because the local maximum before a monotonic in-
crease determines the optimal number of clusters and
this maximum can be ambiguous, as shown in Figure
2.

Besides the optimal number of clusters the clus-
tering results are of importance for the adaptive de-
ployment. In scenario 1 eight clusters are existing, all
with the same size. In Table 5 the clustering results
are evaluated. As similarity measurement we employ
the Jaccard index.

In scenario 1 PAM performed best. This is as ex-
pected since a particular strength of centroid based
clustering algorithms are equally sized clusters. How-
ever, in networks an equal distribution of hard- and
software cannot be assumed. To evaluate also hetero-
geneous environments, scenario 2 features an unequal
distribution of systems.

It can be seen, that SLINK and DBSCAN outper-
form PAM clearly. This result was expected since
connection and density based algorithms are better
suited for unequal sized clusters. The obtained results
in our experiment suggest, that SLINK in combina-
tion with the elbow method or GAP produce the best
results. However, since we did not compare SLINK
with other connection based clustering algorithms, it
is possible that other algorithms outperform the sin-
gle linkage algorithm. The proposed method of an
adaption of the DS to the context by observing and
scanning the network and determining prevalent sys-
tems to mimic is possible by an employment of the
investigated methods.

6 Conclusion and Discussion

In this work the authors proposed an adaptive frame-
work for the deployment of deception systems for cy-
ber defense. The proposed framework is implemented
for an evaluation. Different algorithms and conver-
gence criteria are evaluated in different aspects such
as computational time, determination of the num-
ber of clusters and the cluster accuracy. The focus
of the implementation are server-side deception sys-
tems. However, the framework can easily be extended
to feature also token based deception systems. We
found that SLINK provides the best results. Even
though the lowest error was achieved for the elbow
convergence criteria, we recommend to consider GAP
in this application because of its robustness and the
simple determination of the global maximum. The
adaptive deployment framework enables deception
based security mechanisms for a broad range of users
and a significant decrease in configuration, deploy-
ment and maintenance effort of such systems. It pro-
vides an enhanced security concept in a simple to use
solution.

Conflict of Interest The authors declare no conflict
of interest.

Acknowledgment This work has been supported by
the Federal Ministry of Education and Research of the
Federal Republic of Germany (Foerderkennzeichen
KIS4ITS0001, IUNO). The authors alone are respon-
sible for the content of the paper.

References
[1] Federal Bureau of Investigation. Internet crime report 2015.

2015.

[2] Europol. Internet organized crime threat assessment. 2016.

[3] Bundesamt für Sicherheit in der Informationstechnik. Die
Lage der IT-Sicherheit in Deutschland 2015. 2015.

[4] M. Guri, G. Kedman, A. Kachlon, and Y. Elovici. Airhopper:
Bridging the air-gap between isolated networks and mobile
phones using radio frequencies. International Conference on
Malicious and Unwanted Software, 9, 2014.

[5] L. Spitzner. Dynamic honeypots. 2003.

[6] D. Fraunholz, F. Pohl, and H. Schotten. Towards basic design
principles for high- and medium-interaction honeypots. Eu-
ropean Conference on Cyber Warfare and Security, 16, 2017.

www.astesj.com 1278

http://www.astesj.com

D. Fraunholz et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1272-1279
(2017)

[7] R. Grimes. Honeypots for Windows: Configure and Manage Win-
dows Honeypots. 2005.

[8] Sun-tzu and S. Griffith. The Art of War. 1964.

[9] C. Stoll. The cuckoo’s egg: Tracking a spy through the maze of
computer espionage. 1990.

[10] L. Spitzner. Honeypots: catching the insider threat. Annual
Computer Security Applications Conference, 19:170–179, 2003.

[11] D. Fraunholz, M. Zimmermann, S. Duque Antón, S. Schneider,
and H. Schotten. Distributed and highly-scalable wan net-
work attack sensing and sophisticated analysing framework
based on honeypot technology. International Conference on
Cloud Computing, Data Science & Engineering, 7, 2017.

[12] D. Fraunholz, D. Krohmer, S. Duque Antón, and H. Schotten.
Investigation of cyber crime conducted by abusing weak or
default passwords with a medium interaction honeypot. Inter-
national Conference On Cyber Security And Protection Of Digital
Services, 2017.

[13] D. Moran. Trapping and tracking hackers: Collective secu-
rity for survival in the internet age. Information Survivability
Workshop, 3, 2000.

[14] B. Scottberg, W. Yurcik, and D. Doss. Internet honeypots: Pro-
tection or entrapment? 2003.

[15] G. Wagener, R. State, A. Dulaunoy, and T. Engel. Heliza: talk-
ing dirty to the attackers. Computer Virology, 2010.

[16] G. Wagener. Self-Adaptive Honeypots Coercing and Assessing
Attacker Behaviour. PhD thesis, Universite du Luxembourg,
2011.

[17] G. Wagener, R. State, T. Engel, and A. Dulaunoy. Adaptive and
self-configurable honeypots. IFIP/IEEE International Sympo-
sium on Integrated Network Management, 12:345–352, 2011.

[18] V. Chowdhary, A. Tongaonkar, and T. Chiueh. Towards auto-
matic learning of valid services for honeypots. International
Conference Distributed Computing and Internet Technology, 1.

[19] C. Hecker, K. Nance, and B. Hay. Dynamic honeypot con-
struction. Colloqium for Inforation Systems Security Education,
10:95–102, 2006.

[20] C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an auto-
mated script generation tool for honeyd. Annual Computer Se-
curity Applications Conference, 21, 2005.

[21] W. Zakaria and L. Kiah. A review on artificial intelligence
techniques for developing intelligent honeypot. 2012.

[22] W. Zakaria and L. Kiah. A review of dynamic and intelligent
honeypots. ScienceAsia, 2013.

[23] L. Kaufmann and Rousseeuwm R. Clustering by means of
medoids. 1987.

[24] P. Jaccard. Étude comparative de la distribution florale dans
une portion des alpes et des jura. Bulletin de la Société Vaudoise
des Sciences Naturelles, 37(547-579), 1901.

[25] P. Mahalanobis. On the generalised distance in statistics. Pro-
ceedings of the National Institute of Science of India, pages 49–
55, 1936.

[26] J. Gower and G. Ross. Minimum spanning trees and single
linkage cluster analysis. Journal of the Royal Statistical Society,
pages 54–64, 1969.

[27] R. Sibson. Slink: an optimally efficient algorithm for the
single-link cluster method. The Computer Journal, pages 30–
34, 1973.

[28] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. International Conference on Knowledge Discovery
and Data Mining, 2, 1996.

[29] R. Thorndike. Who belongs in the family? Psychometrika,
18:267–276, 1953.

[30] R. Tibshirani, Waltherm G., and T. Hastie. Estimating the
number of clusters in a dataset via the gap statistic. 2000.

[31] P. Rousseuw. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. Computational and Applied
Mathematics, pages 53–65, 1987.

[32] M. Zalewski. p0f v3: Passive fingerprinter. 2012.

[33] F. Vaskovich. The art of port scanning. Phrack Magazine, 7,
1997.

[34] A. Ofir and F. Yarochkin. Xprobe2 - a fuzzy approach to re-
mote active operating system fingerprinting. 2003.

[35] N. Provos. Honeyd: A virtual honeypot daemon. DFN-CERT
Workshop, 10, 2003.

[36] R. Chandran and S. Pakala. Simulating networks with honeyd.
2003.

[37] D. Fraunholz, M. Zimmermann, and H. Schotten. An adaptive
honeypot configuration, deployment and maintenance strat-
egy. International Conference on Advanced Communication Tech-
nology, 19, 2017.

www.astesj.com 1279

http://www.astesj.com

	 Introduction
	Related Work
	Deception Systems
	Deployment Strategies
	Artificial Intelligence for Deception based Network Security

	Unsupervised Machine Learning
	Methods and Algorithms
	Convergence Criteria

	Adaptive Deployment Framework
	Data Acquisition Engine
	Data Format
	Clustering Engine
	Deployment Engine

	Evaluation
	Artificial Data Sets
	Real World Scenario
	Results

	Conclusion and Discussion

