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 Abstract— The process of mapping large numbers of markers is computationally complex, 
as the increase of numbers of markers results in an exponential increase in the mapping 
runtime. Also, having unreliable markers in the dataset adds more complexity to the 
mapping process. In this research, we have addressed these two issues and proposed our 
solution. The proposed approach builds solid maps in two phases: Phase 1 builds an initial 
map following these steps: 1) Resample the original dataset to generate variant datasets, 
then cluster all resampled datasets into groups of markers. 2) Merge all groups of markers 
to filter out unreliable markers. 3) Generate a Map for each group of markers. 4) 
Concatenate all groups’ maps to form the final map. Phase 2, Adds more markers to the 
initial framework to build a high resolution map as follows: 1) Use Kmeans algorithm to 
filter out unreliable markers and cluster the remaining markers. 2) Insert the remaining 
markers in their best positions in the initial framework. To evaluate the performance of the 
proposed approach, we compare our constructed maps on the human genome with the 
physical maps. Moreover, we compare our constructed maps with a state-of-the-art tool for 
building maps. Experiment results show that the proposed approach has a very low 
computational complexity and produces solid maps with high agreement with the physical 
maps. 
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1. Introduction   

 This paper is an extension of work originally presented in The 
15th IEEE International Conference on Machine Learning and 
Applications [1]. Genome mapping [2] is the process of finding the 
order of markers within chromosomes; where markers are short 
fragments of Deoxyribo Nucleic Acid (DNA) sequence most often 
located in noncoding regions of the genome (regions that do not 
encode protein sequences). Markers orders can provide researchers 
with essential information for localizing disease-causing genes in 
the genome. Radiation Hybrid (RH) Mapping [3] is a statistical 
mapping technique to order markers along a chromosome, and 
estimate the physical distances between markers. RH mapping is  
widely used in many mapping projects, and has several advantages 
over alternative mapping techniques [4]. In RH Mapping, 
chromosomes are separated from one another, then high doses of 
X-rays are used to break the chromosome into several fragments. 
The main principle of RH mapping is that the probability of 
separation of two adjacent markers due to radiation breakage 
increases with the increase in physical distance [4]. The order of 

markers on a chromosome can be calculated by estimating the 
frequency of breakage and retention between the markers. 

An RH population can be seen as a m X n Boolean matrix, 
where m is the number of markers, and n is the number of 
individual organisms in the mapping population. A single RH 
vector represents one marker across all individuals/Panels. All 
markers in each panel is assigned a value of 1 or 0, where the value 
1 indicates the presence of that marker in that panel, and the value 
0 indicates the absence of that marker. Once all markers in all 
panels are screened and saved, the RH population will be used for 
the mapping process. Figure 1 shows a sample RH population of 3 
markers on 6 panels. 

After preparing the RH population, the RH mapping process 
starts. The Obligate Chromosome Breaks (OCB) is used to indicate 
the similarity and estimate the distance between two markers in 
RH population [5]. The basic mapping step is to estimate the OCB 
between all pairs of markers, where a 1 is followed by 0 or vice 
versa in the same panel, and place the closest (similar) markers 
together. For example to map the simple population in Figure 1, 
we need to find the similarity between these three RH vectors 
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(markers), and then place the similar markers close together in the 
constructed map. First calculate the OCB for all possible markers 
permutations (the number of times a 1 is followed by 0 or vice 
versa in the same panel), and second select the permutation with 
the minimum number of OCB; the best map of these three markers 
is {M1, M2, M3} with five breaks. Any other permutation will 
have more than five breaks. 

The toy example in Figure 1 is used just to explain the process 
of mapping a RH population. Typically, the number of markers in 
chromosomes range between a hundred to thousands. Thus, 
calculating the OCB for all markers permutations is unfeasible 
solution for such large numbers of markers; where for n markers, 
there are n!/2 permutations to evaluate. In this study, we are going 
to map a RH dataset of the human genome with hundreds of 
markers. Heuristic approaches [6-8] have been used to map such 
larger datasets of markers in a reasonable time. Although the 
heuristic approaches are relatively fast, they scale exponentially 
with the number of markers. Figure 2 shows the typical pattern of 
mapping different datasets of markers using some heuristic 
algorithms that have been used to map RH populations in many 
researches [9-12]. 

The main goal of this study is to propose an alternative 
approach to map large numbers of markers in a short time. The 
proposed approach works in two phases. Phase 1, has been 
originally published in [1], constructs maps as follows: 1) Uses 
Jackknife resampling method on the original RH population to  
create slightly variant RH samples. Then, all the generated samples 
are grouped into clusters based on their LOD (logarithms of odds 
-base 10) scores. The LOD score [14] was developed as a 
probabilistic measure for linkage, and has been used consistently 
throughout the RH literature [9-11]. 2) Merges all RH samples 
clusters into consensus clusters, and filters out the unreliable 
markers. 3) Constructs a map for each consensus cluster. 4) 
Connects all consensus clusters maps into one single map. Phase 
2, uses the output map of Phase 1 as a skeleton to map additional 
markers and improve the resolution of the initial map. Phase 2 
works as follows: 1) Uses Kmeans clustering to find the candidate 
markers to be added to the map. 2) Finds the best position of each 
candidate marker in the initial map in order to add them to improve 
the final constructed map. 

To demonstrate the effectiveness of our approach, three metrics 
are going to be used: 1) Accuracy, which indicates the agreement 
of the constructed maps with the published maps. 2) The number 
of mapped markers in the constructed maps. 3) The running time 
to construct the maps. We will compare our constructed maps with 
the maps we published in our original work in [1]. Also, we will 
compare our results with a state-of-the-art tool for building 
radiation hybrid maps. In our approach, we use the Clustering 
technique to reduce the mapping computational complexity, thus, 
mapping large datasets of markers in a short time. Also, our 
approach considers the problem of noisy markers and can filter out 
unreliable markers to increase the accuracy of the constructed 
maps. 

The rest of this paper is structured as follows: Section 2 
presents the related work. In Section 3, our proposed approach is 
discussed in detail. Section 4 presents the experimental results of 
the proposed approach, and Section 5 concludes this research. 

 
Figure 1. A toy example of an RH population for 3 markers on 6 panels. 

Breakages are highlighted in bold. 

 
Figure 2. Relationship between No. of markers and mapping complexity using 

heuristic algorithms implemented in the Carthagene tool. 
2. Related Work 

Conventional techniques [15, 16] for filtering out unreliable 
markers depend mainly on resampling [17]. Thus, these  
techniques are not recommended for filtering out unreliable  
markers from a large dataset due to their high computational 
complexity. The filtering process can be summarized in three 
sequential steps: 1) Resample the original dataset. 2) Use mapping 
techniques to map each resampled dataset. 3) Construct a matrix 
to show the reliability of all markers and filter out the most 
unreliable marker. These three steps are repeated to filter out 
unreliable markers one at a time. This iterative process is too time 
consuming for a large dataset, as to filter out only one unreliable 
marker, there is a need to resample the dataset and map all 
resampled datasets. The computational complexity of mapping a 
single resampled dataset scales exponentially with the number of 
markers to be mapped, as shown in Figure 2. Thus, repeating this 
complex mapping process for every single resampled dataset to 
filter out one unreliable marker is not a feasible solution for large 
datasets. As we discuss our proposed solution in Section 3, we will 
show that how our approach resampled the dataset and filtered out 
the unreliable markers without the need of mapping the resampled 
datasets. Thus, the proposed approach reduces the computational 
complexity of the whole mapping/filtering process. 
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RHMapper tool [12] provides another approach to build solid 
maps with only the reliable subset of markers. The mapping  
process  is  divided  into  two  steps:  1)  use find_triples command 
to search the data set for well-ordered triples, and save them. 2) 
Use assemble_framework1 or assemble_framework2 commands 
to assemble the saved well-ordered triples into a final map. The 
assembly process uses the overlapping between the well-ordered 
triplets of markers to combine them into a final map, where the 
assemble_framework1 command seeks for overlapping with two 
consecutive markers in each triplet, for example: triplets (A-B-C) 
and (B-C-D) will be assembled into (A-B-C-D). 
assemble_framework2 command can add gaps to assemble triplets, 
for example: triplets (A-B-C) and (A-C-D) will be assembled into 
(A-B-C-D). Although, this mapping strategy can build solid maps, 
mapping a hundred markers takes several hours to finish [13], so 
this approach does not scale well with the number of markers. 

Multimap [13] is another tool to build maps with reliable 
markers. The mapping process starts with searching for the 
strongest pair of markers, then iteratively adds one marker at a time 
to extend the initial map. Apparently, this mapping process does 
not scale well with large datasets of markers. 

Carthagene tool [11] is another well-known package that has 
been used in many studies to construct solid maps [24, 25]. The 
Buildfw command implements an incremental insertion procedure 
to build maps with only reliable markers; and it works as follows: 
first, search for the triplet of markers that maximizes the difference 
between the likelihood of the best map, and the second best map 
using only this triplet of markers. Once the best triplet of markers 
is found, save it as an initial framework map. Second, for each 
marker not mapped in the framework, try to insert it into its best 
interval. In order to insert a marker into its best interval in the 
framework map, two thresholds are evaluated: 1) AddThres and 2) 
KeepThres. AddThres is used to determine if a marker can be 
placed in its best interval or not; where if the loglikelihood 
difference between the best two insertion intervals is greater than 
the AddThres, then the marker can be inserted in its first best 
interval in the map. If that marker can be inserted in its best interval 
in the map, the KeepThres is evaluated, which is used to determine 
if the new inserted marker can be saved in the framework map or 
not. If the loglikelihood difference between the best two maps is 
greater than the KeepThres, then the new inserted marker will be 
saved in its best interval and will be used to map other markers in 
the following iterations. Otherwise, the new inserted marker will 
be removed from the current framework map. 

One of the limitations of the incremental insertion procedure in 
Carthagene is that only a few markers are mapped at the final map, 
if the recommended values of the AddThres and KeepThres are 
used [11]. Another limitation is that the mapping process starts 
with only three markers as an initial map. Thus, adding one marker 
at a time to the initial map makes the mapping process not suitable 
for large numbers of markers. Moreover, the incremental insertion 
procedure cannot be parallelized. 

In this research, we compare our proposed approach with the 
Carthagene incremental insertion approach. Our proposed 
approach can take advantage of the parallel computing to reduce 
the computation complexity of the mapping process; where 
markers are grouped into smaller clusters, and these groups of 
markers can be mapped in parallel. We expect to outperform the 
Carthagene approach in terms of the mapping runtime. Also, in 
terms of mapping accuracy, our proposed approach uses the 
grouping process over all resampled data to filter out the unreliable 
markers, and thus uses only the reliable markers to build solid final 
maps. We expect our approach to build solid maps, as the grouping 
process will help in reducing the effect of unreliable markers to the 
local clusters maps, not to the entire map. 

3. Proposed Approach 

The proposed approach divides the mapping process into two 
phases, where each phase consists of several steps. The first phase 
builds an initial map with the most reliable set of markers, Figure 
3 shows the systematic workflow of the first phase. The second 
phase uses the initial map constructed in phase 1 as a framework 
to map more markers to the initial framework, which results in 
building a high resolution map (mapping larger numbers of 
markers), Figure 4 shows the systematic workflow of the second 
phase 

3.1. Phase 1: Building Initial Framework Map 

1)  Resampling and grouping: The Jackknife resampling 
technique is used to generate N variant RH samples of the 
original RH dataset, where each resampled RH dataset will 
have N-1 individuals (leave-one-individual-out).f After 
generating the resampled datasets, the Single Linkage 
Agglomerative Hierarchical clustering technique [18] is used 
to group each dataset into different clusters of markers. The 
group command is implemented in the Carthagene tool can be 
used to create these clusters of markers. The idea of the 
grouping is to create small groups of markers with low intra-
cluster distances and high inter-cluster distances. 

 Groups aggregation and filtering: The first step generates N 
variant RH sampled datasets, and with each resampled dataset 
many clusters of markers. The goal of this step is to use all 
clusters of markers of all resampled datasets to filter out 
unreliable markers and aggregate the clusters of markers to 
generate solid consensus clusters. A matrix of size m x m is 
used to show the stability of linkage relationship between all 
pairs of markers, where m is the number of markers in the RH 
population. The matrix is created and initialized to Zero. Then, 
we trace all the clusters in all RH sampled datasets to update 
the values of the elements of the matrix. For each paired 
ordered markers (Mi, Mj), we increment both indexes (i, j) and 
(j, i) in the cluster matrix by 1 each time the pair (Mi, Mj) 
appear in one cluster in all sampled datasets.
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After that, we start filtering out unreliable markers; two factors 
are defined for each marker: 1) the Stability-Factor (SF), which 
indicates the stability of neighbors markers throughout all 
sampled datasets clusters. For example, the Stability-Factor 
value of 80 for markers (Mi, Mj) means that over all resampled 
RH datasets, markers (Mi, Mj) appear 80 times together in the 
same cluster. 2) The Reliability-Ratio (RR), which is 
calculated by the count of relationships above the Stability-
Factor divided by the total number of relationships for that 
marker. Figure 5 shows a simple example to illustrate the 
filtering process. All markers with Reliability-Ratio less than a 
threshold are considered unreliable markers and can be filtered 
out. In our experiments, we used RH population of 93 
individuals and filtered out markers with SF values less than 
80, and RR less than 50%. After filtering out the unreliable 
markers from all clusters, the remaining markers will be 
considered reliable markers and will form the consensus 
clusters. 

2)  Mapping clusters’ markers: In this step, we build a map for 
each consensus cluster of markers. Several heuristics 
algorithms can be used to build the maps, in this study, we 
follow the mapping strategy published in [4, 9, 10] to build a 
map for each cluster, using the heuristics algorithms 
implemented in the Carthagene tool [11]. The following steps 
present the mapping strategy: 1) Mrkdouble command to 
identify and merge identical markers by a single marker. 2) 
Build command to build an initial nice map, where the 
command finds the best pair of markers, with the strongest 
linkage, and incrementally tries to add the remaining markers 
if they satisfy the insertion criteria. 3) Greedy and Annealing 
commands are used as improvement steps to find a better map 
in case a local improvement exists. 4) Flips and Polish 
commands are used to apply all possible permutations in a 
sliding window to check if a better map can be achieved. 
Running all these commands in that sequence will build a map 
for each cluster.  

3)  Connect maps and polish: Building a map for each consensus 
cluster shows the local order of the markers in each cluster. 
However, all these small maps need to be concatenated to form 
a whole chromosome map. In this step, we concatenate the 
clusters’ maps generated in the previous step to form one map 
for a whole chromosome. This process can be done in an 
iterative manner. First, we extract the boundaries, the first and 
the last marker, of each cluster map. Second, we group all 
boundaries into clusters, the group command in Carthagene can 
be used to make these clusters; we start with a high LOD score 
T, i.e. T= 18. Boundaries from different maps that fall into one 
cluster are connected using the closest boundaries to form a 
bigger map. This step is repeated, where at each iteration the 
LOD score T needs to be lowered by a factor of x, i.e. x= 3, to 
let the far away boundaries to be connected to form one single 
map. A polishing step is used at the end of this step to improve 
the constructed map by trimming marker at the edges of the 
final map with LOD score less than 3, which generally 
indicates that there is no linkage between two markers. 

 

 

 

3.2. Phase 2: Improving Framework Map  

1)  Loose markers extraction and grouping: After building a 
framework map with only the most reliable subset of markers, 
our goal is to use the framework map as an initial map to 
construct a high resolution map by mapping more markers from 
the remaining left out markers (Loose Markers) to the initial 
framework map. In this step, we use the initial constructed 
framework map as a skeleton to map the loose markers, where 
loose markers will be placed into the intervals of the initial 
framework map. This process works as follows: 1) Extract the 
loose markers from the original dataset. 2) Group the loose 
markers into clusters; the Kmeans algorithm is used to make 
the clusters of the loose markers. Kmeans algorithm works well 
for large datasets. To run the Kmeans algorithm, we need to set 
the number of clusters (K). In this study, we set the value of K 
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to the number of markers in the initial framework map plus 1. 
Assuming that all loose markers are going to be placed in 
between framework’s markers, so if the number of markers in 
the framework map is n, that means we have n+1 number of 
intervals to place the loose markers in. Thus, the number of 
clusters K can be set as n+1, if the number of loose markers is 
less than the number of markers in the initial framework map, 
then we consider each loose marker as a single cluster. 

2)  Insert loose markers in their best positions: The kmeans 
algorithm will group the loose markers into clusters, where 
markers within clusters are too close to each other and far away 
from other clusters’ markers. Generally, for large datasets 
singleton clusters, clusters with only one marker, are 
considered unreliable clusters and will be filtered out, as they 
are not attached to any other loose markers. After we group the 
loose markers into clusters, we choose randomly a loose 
marker from each cluster and try to place that loose marker into 
its best position in the initial framework map. To find the best 
position of that loose marker, the Buildfw command in 
Carthagene is used to report the best position for each loose 
marker, where the loose marker is inserted in all possible 
positions in the framework map, and then reports the best 
position based on the linkage of the loose marker with its 
immediate neighbors (left and right markers, if possible). After 
we find the best position of each loose marker, we add them to 
their best positions. In case there are more than one loose 
marker in one position, we randomly pick one marker and keep 
it in that position. Step 1 and Step 2, in Phase 2, can be repeated 
to include more markers in the framework map, where the final 
map of each iteration is used as an input for the next iteration 
to map as many loose markers as needed. Figure 4 shows the 
systematic workflow of Phase 2. 

4. Experimental Results 

4.1. Datasets 

The three common used human genome radiation hybrid 
panels are: 1) The G3 [19] and 2) TNG [20] panels produced by 
Stanford University and 3) The Genebridge 4 [21] panel by the 
Sanger Center. In this study, we use the Genebridge 4  panel where 
the number of individuals is 93. We have selected 8 different 
chromosomes with varying number of markers to show the 
scalability of our proposed approach over the increasing number 
of markers. Table 1 shows the selected chromosomes with their 
numbers of markers. The choice of these chromosomes is 
determined by the availability of markers in both radiation hybrid 
data set and physical marker locations. The physical marker 
locations are extracted from the Ensemble website [22], and the 
RH dataset are downloaded from the EMBL-EBI website [23]. 

4.2. Evaluation of the approach 

The proposed mapping approach builds maps in two phases: In 
Phase 1, we construct initial map with the most reliable markers. 
Once the initial map is constructed, Phase 2 extends the initial map 
to include more markers in the final map. In this section, we are 
going to refer to Phase 1 as Clustering Method; and Phase 1 and 
Phase 2 together as Extended Clustering Method. The Clustering 

Method has been evaluated in [1], where the reported results show 
that the constructed maps have high agreement with the 
corresponding physical maps. To evaluate the Extended Clustering 
Method, we use the same dataset we have used in [1], the 
constructed maps reported in [1] will be used as an input to Phase 
2 in the Extended Clustering Method. 

The running time for the Clustering Method has been reported in 
[1] and can be seen in Figure 6. The big improvement in the 
mapping runtime of our Clustering Method over the Carthagene 
Method can be explained by the grouping of the large numbers of 
markers into small groups, and taking advantage of parallel 
processing to map all these groups of markers simultaneously in a 
short time. The hieratical clustering in the Clustering Method and 
the Kmeans clustering in the Extended Clustering Method only 
take a few seconds to complete. On the other hand, the Carthagene 
Method, uses only three markers as an initial map and then 
incrementally adds more markers to that initial map one marker at 
a time to construct the maps. Figure 6 shows the mapping running 
time for both Carthagene Method and the Clustering Method using 
the same dataset. The Extended Clustering Method running time 
depends on two factors; first, the numbers of markers in the initial 
map, and second, the number of iterations; where the more markers 
there are in an initial map, the less time it takes to map the 
remaining markers. Table 1 shows that the Clustering Method can 
generate initial maps with large numbers of markers compared to 
the number of markers in the maps constructed using the 
Carthagene Method. 

The accuracy of the constructed maps is measured by Pearson 
Correlation, where the closer the value is to 1, the stronger the 
linear correlation (agreement) between the markers positions in the 
constructed maps, and the markers positions in the corresponding 
physical maps. Table 1 shows the Pearson Correlation between the  
physical  maps and the constructed maps using 1) Carthagene  tool;  
2) The Clustering Method; and 3) The Extended Clustering 
Method. The results show that maps generated using the Clustering 
Method have higher correlations with the physical maps than the 
maps generated using the Carthagene tool. Out of 10 
chromosomes, the Carthagene tool outperforms the Clustering 
Method for only one chromosome, Chromosome 21, with a slight 
difference. While, the Clustering Method outperforms the  

 

Figure 6. The proposed approach mapping runtime vs the traditional 
Carthagene approach. 
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remaining 9 chromosomes. For some chromosomes the 
improvement is huge, for example, Chromosome 3, the accuracy 
of the Carthagene Method is 0.45 while the accuracy of the 
Clustering Method is 0.99. Another example is Chromosome 12, 
where the accuracy of Carthagene Method is 0.10, while the 
accuracy of Clustering method is 0.73. For some other 
chromosomes, the difference in accuracy between the Carthagene 
Method and Clustering Method is small, for example: 
Chromosome 10, the accuracy of Carthagene Method is 0.98, 
while the accuracy of the Clustering method is 0.99. Also in 
Chromosome 21, the accuracy of Carthagene Method is 0.98, 
while the accuracy of Clustering method is 0.97. 

Moreover, Table 1 shows the number of mapped markers in 
each chromosome using all three methods. The results show that 
for most chromosomes the constructed maps using the Clustering 
Method have more markers than the constructed maps using the 

Carthagene Method. One of the limitation of the Carthagene 
Method is that the constructed maps have only a few numbers of 
markers, and this can be seen in Chromosomes 10 and 12. For 
Chromosome 10, Carthagene maps only 16 markers, where the 
Clustering Method maps 46 markers. For Chromosome 12, 
Carthagene maps 42 markers, while the Clustering Method maps 
71 markers. For other chromosomes the numbers of mapped 
markers between the Carthagene Method and The Clustering 
Methods are similar and this can be seen in Chromosome 16, 21 
and 22 where the difference in mapped markers is small. In some 
cases, Carthagene tool maps more markers than the Clustering 
Method, for example Chromosome 3 and 7. However, the 
correlations between the constructed maps and the physical maps 
for these chromosomes are not as strong as our proposed approach 
maps for the same corresponding chromosomes.

 
Table 1- Comparison Of The Number Of Mapped Markers And Correlation Between The Constructed Maps And The Physical Maps For Carthagene Method, 

Clustering Method, Extended Clustering Method. 

 Input Markers Carthagene Clustering Extended Clustering 

Chromosome 3 
No. Of Markers In Map 
Pearson Correlation 

1038 
- 

164 
0.45 

153 
0.99 

215 
0.99 

Chromosome 5 
No. Of Markers In Map 
Pearson Correlation 

1071 
- 

49 
0.84 

84 
0.94 

115 
0.88 

Chromosome 7 
No. Of Markers In Map 
Pearson Correlation 

1026 
- 

165 
0.71 

78 
0.88 

100 
0.82 

Chromosome 10 
No. Of Markers In Map 
Pearson Correlation 

846 
- 

16 
0.98 

46 
0.99 

57 
0.88 

Chromosome 12 
No. Of Markers In Map 
Pearson Correlation 

1028 
- 

42 
0.10 

71 
0.73 

81 
0.68 

Chromosome 15 
No. Of Markers In Map 
Pearson Correlation 

619 
- 

83 
0.88 

77 
0.99 

110 
0.80 

Chromosome 16 
No. Of Markers In Map 
Pearson Correlation 

677 
- 

70 
0.53 

69 
0.95 

87 
0.89 

Chromosome 18 
No. Of Markers In Map 
Pearson Correlation 

407 
- 

65 
0.95 

84 
0.99 

103 
0.99 

Chromosome 21 
No. Of Markers In Map 
Pearson Correlation 

173 
- 

33 
0.98 

34 
0.97 

46 
0.95 

Chromosome 22 
No. Of Markers In Map 
Pearson Correlation 

314 
- 

41 
0.64 

36 
0.71 

41 
0.59 
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 The main goal of the Extended Clustering Method is to map 
more markers to build high resolution maps. The Extended 
Clustering Method is an iterative process, where in each iteration 
some markers are added to the current map to form a new map, and 
that new map will be used in the next iteration to map more 
markers, and so on. Table 1 shows the number of mapped markers 
for each chromosome using the Extended Clustering Method for 
one iteration. For Chromosome 3, the Extended Clustering Method 
mapped 215 markers, while the Clustering Method mapped 153 
markers. Although, the number of mapped markers is increased in 
the Extended Clustering Method map, the accuracy of the 
constructed map remains high 0.99. The same pattern is shown for 
Chromosome 18. For other chromosomes, Chromosomes 5 and 7, 
the number of mapped markers is increased and the accuracy of 
the final maps is decreased slightly. In other cases, for example 
Chromosome 12, The Extended Clustering Method mapped more 
markers, but the accuracy dropped from 0.73 to 0.68. Although the 
accuracy of Chromosome 12 was dropped to 0.68, it is still higher 
than the accuracy of the Carthagene map, 0.10. 

To  show  graphical  representations  of  the  alignment  of the 
constructed maps for some chromosomes using both the 
Carthagene Method and the Extended Clustering Method, we plot 
the known markers positions along the x-axis, and the predicted 
markers position along the y-axis. The plots show how well the 
constructed maps agree with the corresponding physical maps. The 
diagonal line in each plot shows the perfect alignment between the 
predicted markers positions and the actual markers positions. 
Figures 7 to 22 show the maps for all 10 chromosomes. Our 
approach is designed to build robust maps. The resampling and 
clustering techniques are intended to filter our unreliable markers 
and map only reliable markers. Moreover, mapping markers inside 
a cluster does not affect the mapping of the other markers outside 
that cluster. Thus, if there is a noisy marker in a cluster, the effect 
of that noisy marker will be limited to only the markers inside that 
cluster, other markers outside that cluster will not be affected; and 
that can been seen through the local flipping markers’ positions 
errors in our proposed approach constructed maps. 

5. Conclusion 

In this research, we have proposed a scalable approach for 
building high resolution maps. The proposed approach can take 
advantage of the parallel computing to map large numbers of 
markers in a short time, thus reduce the computational complexity 
of the mapping process. The proposed approach can be 
summarized in two phases: Phase 1, generates resampled datasets, 
then group all datasets into small clusters to filter out unreliable 
markers and construct consensus clusters. These clusters are 
mapped in parallel. Once the initial map is constructed, Phase 2 
can be used to iteratively add more markers to the initial map and 
build high resolution maps. Experiment results on the human 
genome show that the proposed approach has a very low 
computational complexity and produces solid maps with high 
agreement with the physical maps. Also, the results show that our 
approach outperforms a state-of-the-art tool for building radiation 
hybrid maps in terms of accuracy of the constructed maps and 
mapping runtime. 
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