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 The behavior of rivers’ hydrology and flow under changing climate has been an objective 
of interest for long time. In this study the impacts of climate change on streamflow of the 
Arkansas River will be investigated. The paper is an extension of work originally presented 
in ASET conference in Dubai. The Arkansas River is a crucial element in the economy of 
the Colorado state in the USA. It is a vital transportation channel and main source of water 
for irrigated agriculture.  In order to understand the direction and magnitude of climate 
change, the changes in the monthly flow regimes of the Arkansas River were projected using 
two future climate scenarios. The projections extend over 100 years (2000 – 2100). The 
projections were carried out in the period from April to September because this is the period 
of the river’s significant runoff. For better presentation the monthly flows were aggregated 
and presented on decadal time scale. Project stream flow is simulated using a neural 
network that was developed to autonomously model the relationship between different flow 
levels and the resultant changes in temperature and precipitation. In general, the 
projections depict a rise in the magnitude of the flow in the river. In general the increases 
concurred with the patterns of temperature and precipitation projected for the region.  
Noticeably, the high temperatures cause the precipitation to melt earlier shifting the peak 
flow to April instead of June. Statistical analysis show that in the future the current levels 
of flow would be surpassed more frequently. The probability of exceedance fluctuates 
between from month to month – reaching its peak in April-July; before retreating to a very 
low level in August and becoming almost negligible in September. Overall, the results 
reveal profound implications for regional water resource planning and management.  

Keywords:  
Climate change  
River flow  
Impacts 

 

 

1. Introduction   

The Arkansas River is a crucial element in the economy of the 
state of Colorado, in the western United States. It is a vital 
transportation channel and main source of water for irrigated 
agriculture. Water sources for the river mainly from snowmelt. 

Snow melt is a critical component of the water cycle in the 
American West, providing the region with at least 50% of its 
annual runoff, and up to 80% in some years. Concerns are growing 
regarding the impacts the altered climate might have on snowpack 
and the region’s water cycle overall. A few studies projected the 
region to have profound changes in minimum winter temperatures, 
summer average temperatures, snowfall, snow-melt, and growing 
season rainfall quantities [1]-[5]. Several other studies have 

reported that spring and early summer temperatures are expected 
to increase while the quantity of snowpack in spring is expected to 
decrease [6]-[8].  There are other several earlier studies of 
snowmelt dominated systems show similar seasonal shifts in 
snowmelt runoff as a result of warmer temperatures and a shorter 
snow accumulation period [8]-[11]. 

If the changes in climate take place as projected, it is expected 
to have profound impacts on the hydrology of the Arkansas River 
and hence the economy of the region. Many studies, using 
historical data analyses, have explored the impacts of climate 
change on water in this region where water is already under stress 
[12]–[19]. The outcome of these studies reported that, even 
though, the direction and magnitude of change in climate is well 
documented (increase in temperature) but there is no consensus on 
the direction and magnitude of the impacts on the region. And this 
attributed to uncertainty regarding the changes in precipitation’s 
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patterns under warmer climate. But, precipitation is the main 
driving factor of the changes in streamflow. Almost all of the 
studies conducted in this region, have reported that snow is 
expected to melt early shifting the peak runoff and the growing 
season to take place earlier. But none of them reported increases in 
streamflow. However, the changes in precipitation regimes are 
expected to cause the snowpack to decrease and/or to melt (shift) 
earlier. Therefore, streamflow is expected to decrease and the peak 
emanates earlier shifting the growing season towards winter 
season [6], [13], [16]. Some studies on the region, projected a 
reduction in streamflow up to 30% below the historical recorded 
flow [18]. More recent studies using data sets extracted from 
GCMs support this result projecting a reduction in streamflow 
ranges between 10 – 30% by the end of the 21st century [6], [13]-
[14]. The only increase in streamflow resulted from increase in 
precipitation was reported by Groisman and others [20].  

It is noticeable, from the outcome of all these studies that there 
is no consensus on the magnitude and direction of the change in 
the precipitation and hence the river flow under the changing 
climatic conditions. This may be attributed to the nature of the 
climate and hydrologic models used (coarse spatial and temporal 
resolution).  The coarse resolution bounds the general circulation 
models (GCMs) to reproduce a similarly complex spatial 
environment that simulates the actual precipitation. Besides, the 
discrepancies in the precipitation projections are larger than the 
ones in the temperature projections [21]-[23]. 

Scale is crucial for climate and hydrologic modeling. It is 
reported that the signal of climate change on monthly patterns of 
runoff is stronger than the annual ones [23], [24]. Projections at 
finer scales is necessary to better evaluate the impacts the changing 
climate might have on the hydrology in the region [25]. Therefore, 
in this research, streamflow is linked to climate change scenarios 
on a monthly scale and aggregated to annual and decadal scale. 

Series of climate parameters (scenarios) have been projected to 
simulate the changes in climate in the future. Most of these 
scenarios were developed assuming equilibrium (change in 
climate caused by jumps in CO2 levels in the atmosphere 
sometime in the future). In fact, climate is expected to have linear 
trend of change (transient) following the linear trend of CO2 on 
the earth [26], [27]. Even though, transient scenarios have not been 
widely used in studies of climate change. As such, it is necessary 
to explore their impact, as: 

• Transient studies provide deeper insight on trends in climatic 
change and annual variability; 

• Transient projections can indicate the potential rate of change, 
which is crucial in determining how to respond and adapt to that 
change, and; 

• Transient simulations may give a more accurate picture of the 
likelihood of when certain critical thresholds will be crossed [27]. 

This research aims to demonstrate how transient scenarios are 
better able to evaluate the implications the changing climate might 
have on river flow at scale. These findings can be particularly 

useful in supporting or facilitating more informed and higher 
quality decision-making for water planning and management. 

2. Description of the Study Area 

The subject of this study is the Arkansas River Basin in 
Colorado which is enclosed by the Rocky Mountains to the west 
and Kansas to the east and expanding towards New Mexico and 
Oklahoma to the south. (Figure 1), the surface area of the basin is 
approximately 72,742 km2 (28,415 square miles) and accounts for 
about 27% of the land area of the state of Colorado. The river’s 
headwaters can be found at over 3,050m (10,000 feet) above sea 
level, in the vicinity of Leadville, CO. From there, its elevation 
drops rapidly as the river flows out of the mountains near Pueblo, 
CO and continues eastward towards the border with Kansas 
border, near the town of Holly, where the elevation drops to 
roughly 1,036 m (3,400 feet). 

The basin sees a wide range of temperatures and precipitation 
due to variations in topography. The temperature can see average 
annual lows of about 2oC at the basin’s highest point in the 
mountains and can reach average highs of about 12°C in the lower 
valley. Seasonal variations are also significant, illustrated by the. 
the average frost free season (0oC) ranging from a low of 85 days 
at Leadville to a high of 167 days at Canon City. 
 

 
Figure 1: Features of the study area in the Arkansas River Basin, Colorado 

Precipitation also demonstrates significant variability 
throughout the year, ranging from 229-305 mm annually in the 
middle and eastern parts of the basin, to 406-508 mm in the center 
and east, to a range of 406-508 mm in the west, and as much as 
1143 mm at the highest elevations in the mountains. At these 
heights, much of the precipitation manifests as snow, the runoff of 
which accounts for the bulk of the region’s annual water supply. 
Consequently, the size of the water supply is dependent on the 
volume of winter snowpack and can shift from year to year. 
However, in general, on average, over 60% of the annual runoff 
takes place in late spring and mid-summer between April and July, 
with a further 20% occurring in later summer  and early autumn 
between August and October [28]. 

3.  Data 

The underlying data for this study is in two parts: (1) historical 
climate scenarios and (2) future climate scenarios. It was sourced 
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from the Vegetation-Ecosystem Modeling and Analysis Project 
(VEMAP) [29] which collected extensive climate data for the 
contiguous United States and includes historical data dating back 
to 1895 and up to 1993, supplemented by projections from two 
GCM-based scenario models covering the period from 1994-2099. 

The historical scenarios were based on data records of varying 
length from 1,200 stations for the 105-year period between 1895 
to 2000 as well as shorter records from approx. 6,000 to 8,000 
stations for the 50-year period between 1951 to 2000. Both GCM 
models, the HAD model and the CCC model, further output 
climate scenarios with the underlying assumption that carbon 
dioxide concentrations are progressively increasing at a rate of 1% 
every year (transient). The VEMAP divided the continental US 
into a grid with 0.5o x 0.5o cells and used these to generate 
scenarios that would demonstrate the impact of factors such as 
topography and local ecosystems on climate [29]. The project 
sponsor, the National Center for Atmospheric Research (NCAR), 
used a downscaling technique, spatial interpolation to 
topographically adjust both the historical and projected climate 
data to fit the small grid cells. The downscaling process took into 
account the impact of local topography on climate parameters. 
Figure 2 shows adjusted projections (downscaled) from both 
models as well as the mean +/- 1 standard deviation for each 
parameter.  

 
Figure 2: Historical and the future scenarios of Precipitation and Temperature  

The historical data, sourced from the U.S. Geological Survey 
(USGS) [30], captures flow levels for the Arkansas River near 
Pueblo, on a monthly basis between 1900 and 2000. Figure 3 
shows the average monthly distribution of the river flow with data 
collected over 30 years. 

As shown in Figure 1, climate data (precipitation & 
temperature) was collected from five snow courses (grid cells) in 
the Rocky Mountains a sample which represent overall runoff in 
the region. Each individual cell contains a minimum of one course 
upon which runoff forecasts were based. Since the accuracy of the 
model’s simulations depends heavily on the accuracy of the input 
data as well as the temporal and spatial scale, the selected snow 
courses were vetted to ensure accurate and reliable records that 
reflect the natural runoff and correlated highly snowmelt levels 
across the entirety of the region [28]. The selected courses, as well 
as their grid cell number are listed in the adjacent table below 
(Table 1). 

 
Figure 3: Seasonal Cycle of the Arkansas River at Pueblo 

Table 1: Characteristics of Snow Courses 

Station Latitude 
(deg) 

Longitude 
(deg) 

Elevation 
(m) 

Cell # 

Apishapa 37.33 105.07 3,040 2683 

Brumley 39.08 106.53 3,222 2220 

Fremont Pass 39.38 106.20 3,465 2221 

Prophyry 38.48 106.33 3,271 2451 

South 
Colony 

37.97 105.53 3,294 2567 

Whiskey 
Creek 

37.22 105.12 3,117 2683 

4. Methods  

In this paper, in order to study the changes in the river flow that 
would accompany any climatic changes in the future, we used 
climate scenarios (precipitation and temperature) extracted from 
two General Circulation Models (GCM). Namely, the Hadley 
Centre for Climate Prediction and Research (HAD) and the 
Canadian Climate Centre (CCC). The data from these two GCMs 
is of transient nature (gradual change) and high spatial and 
temporal resolution. To account for spatial variability, the climate 
data was scaled-down and then used to quantify the impacts the 
climate change might have on the monthly flows of the river 
(Arkansas River).  The paper focused to explore the changes in 
streamflow during the period of April-September, because this is 
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the growing season in the region, and the time during which the 
effective runoff is usually generated. The monthly flow in the river 
was simulated using artificial neural network (ANN). The neural 
network models have been proved to be capable to transform 
minimum number of inputs into an output [31] - [33]. The neural 
network model was used for the minimum number of the input data 
sets it requires. The model was calibrated and validated using 100-
years of historical data records. To account for the extrapolation, 
the historical data was reinforced by extreme events that supposed 
to resemble the climate conditions under global warming. The 
ANN model was then used to simulate the river flow under global 
warming conditions. The output (simulations) from both models 
(GCM and ANN) are compared to historical records (baseline) to 
estimate the quantity and extent of the change. 

4.1. Modeling Streamflow 

The model developed can be described as feedforward artificial 
neural network (ANN). It is three-layer network; in the middle 
layer there is a function that map the relationship between the 
inputs in the first layer (precipitation (PPTa) and temperature (T)) 
and the outputs in the last layer (streamflow (Qr). The ANN is well 
formulated in the following form:  

Qr(t) = f(PPTa, T)          (1) 

Here, Qr represents the average monthly streamflow whereas 
PPTa represents precipitation (accumulated from October of the 
preceding year, up to each individual month of the year after). To 
illustrate, the value of PPTa in April would be equal to the 
cumulative levels of snowpack between October and April. The 
variable T, meanwhile, represents the average temperature 
(calculated between April and each individual month in the 
model). Again, to illustrate, the value of T for May is equal to the 
average temperature between and April and May. For the month of 
April itself, we substituted the average March temperature. 
Accumulating precipitation and temperature was found to contain 
stronger signals of climate variability. The input data to the ANN 
was normalized to fall in the range (-1, 1). Normalization is 
required to remove geometrical biases and equally distribute 
importance of each input.   

4.2. Model Testing and Validation 

Data records of 100 years (1900 -2000) were used in training, 
validating, and testing the neural network. Sixty years of data 
records 1(900-1960) were used for model’s training, 14 years 
(1961-1975) were used for validation, and 24 years (1976-2000) 
were used for testing. 

The developed neural network was found favorably capable to 
simulate the river flow (output) when the precipitation and 
temperature were used as inputs. The parameters shown in Table 
2 summarize the validity of the model. The correlation 
coefficient (R) is usually used to show the degree of connection 
between two variables. The values of R range from zero as 
minimal to one as optimal (0, 1). The Root Mean Square Error 
(RMSE) is used to determine the magnitude of departure (residual 
variance) of simulated values from measured ones; the zero value 
indicates the least magnitude of departure (optimal value).    

However, the values of the presented parameters (R and 
RMSE) document the high correlation between the measured and 
predicted values and hence the validity of the developed model. 

Table 2: Summary of the Model Validation and Testing 

Month Training Testing 

  R RMSE R RMSE 

April 0.634 0.17 0.562 0.24 

May 0.790 0.10 0.770 0.18 

June 0.863 0.11 0.847 0.15 

July 0.899 0.06 0.740 0.13 

August 0.852 0.06 0.781 0.12 

September 0.904 0.07 0.769 0.17 

5. Results and Discussion  

5.1.  Climatic changes 

To determine the directionality of the climate change in the 
region, the main features of the climate scenarios generated from 
the two GCMs are presented. For better presentation the climate 
scenarios were aggregated into decadal monthly mean.   

Fig. 4 shows the changes in the average monthly temperatures 
under the two scenarios (HAD and the CCC). The GCMs predicted 
slight increase in temperature (the region is projected to be 
warmer). There is a very clear gradual increase in temperature. The 
change in temperatures during the winter (Dec – Feb) is predicted 
to be comparatively higher than in the summer (June – August). 
The changes in temperature look high when compared to the very 
low historical series of temperatures in winter.  

During the focus period (April–September) the temperature 
average is predicted to increase by 5°C in the 2090s, with a growth 
rate of 0.45°C every decade. Generally, the 2090s is predicted to 
be the warmest decade. The figure shows that the CCC scenario 
predicted higher temperatures in the region compared to the HAD 
scenario. However, the temperature projections, generated by both 
scenarios, are similar in trend of change.   

Fig. 5 shows the changes in monthly precipitation in decades. 
It is shown that the HAD scenario predicted large and sudden 
changes in the average monthly precipitation. Despite the 
variation, the figure shows a clear pattern in the decadal mean. The 
figure shows an increase in the decadal mean from the 2010s to 
2030s. The increase was gradual at a rate of 1.4% per decade. The 
2040s and 2050s noticeably experienced a drop in the decadal 
mean.  The drop was gradual and rapid at a rate of 1.4% per decade. 
Then a gradual increase took place again. There was rapid and 
gradual increase in the decadal mean from 2060s to the 2090s with 
a growth rate of 2.2% every decade. The projected drop in 
precipitation could be attributed to changes in natural, large-scale 
features of the climate: the El Niño Southern Oscillation (ENSO), 
El Niño, and La Niña [20]-[24]. 

In general, under the HAD scenario, the increase of the 
precipitation above the historical base line is expected to be of 
magnitude of 36% in the spring and of 25% in the summer. On the 
other hand, it is shown that the CCC scenario predicts a drier  
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Figure 4:  Departures, form historical distribution, of temperature projections from the GCMs:  HAD/CCC     
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Figure 5:  Departures form historical distribution of precipitation projections from the GCMs:  HAD/CCC     
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climate for the region. The projections of the CCC show no clear 
departure from the historical levels except for the 2080s where a 
the region was projected to have significant increase (9% above 
the baseline). Worth to mention, the driest climate is expected 
during the 2040s with a departure of 7%, below the historical 
levels, in April, 4% in August, and 47% in October.   However, the 
CCC tends to project precipitation patterns with no clear trend and 
less variability compared to the HAD. Generally, the two 
scenarios, show poor similarity in the trend and the extent of 
change in the precipitation projections.  

5.2. Impacts on Streamflow 

Figure 6 shows the projections of streamflow. The projections 
are compared to the historical flow distribution. In spring season, 
under the HAD scenario, driven by the projected increases in 
precipitation shown in Figure 5, the results show a large increases 
in future monthly streamflow. Compared to historical records, the 
average monthly streamflow increased by 87% for the 2030s and 
2050s. The increase jumped to an average of 200% for the 2070s, 
2080s, and 2090s. In summer, the increases are projected to be less 
ranging from 39% for the 2030s to 74% for 2090s. In the fall, 
dampened by the increase in temperature, the increase in 
streamflow dropped to 5% in 2030s and to 15 % in 2090s. In 
general the results show that the largest departures (increases) in 
flow occur in late spring (April) through early summer (June). This 
is attributed to the early melting of snow in the mountains. The 
combined effect of high temperatures and increase in winter snow 
leads to early snowmelt. However, as a result of change in climate, 
the peak flow is expected to occur in April rather than June. 

The CCC scenario projects a drier climate than the HAD one. 
Driven by the projected decreases in precipitation shown in Figure 
5, the results show that, for 2030s and 2050s, the future monthly 
streamflow experiences a very slight decrease (5%) in the summer 
and negligible change in the spring and the fall.  For the 2070s and 
2090s, the results show a considerable increase (65%) in the spring 
and negligible change in the fall. The fluctuations (decreases and 
increases) in projections of the streamflow are attributed to the 
annual and decadal variability in the projected changes in climate. 
The results presented here is widely supported by other several 
earlier studies conducted on the region [7], [9], [13]-[15]. 

Figure 7 shows the frequency analysis results of the monthly flow 
during the focus period (April – September). The results are 
presented in terms of flow duration curves (FDC). In general, 
FDC are used to depict the percentage of time the flow in the 
future exceeds the current levels of flow (historical). Under the 
CCC scenario the percent of exceedance is almost nil for all 
months. Under the HAD scenario the percent of exceedance is 
high for all months (April – September). The flow duration curve 
falls above the historical (baseline) curve, indicating that the river 
flow in the future exceeds the current flow value (historical). The 
probability of exceedance differs from month to month; it is 
relatively high in the months of April to July and low in August. 
In September the probability of exceedance almost nil because the 
two flow curves (historical and future) look similar and almost 
coincide. The variability in the projected flow is greater in April-
July, indicated by the steep flow curves, and stable in August and 
September inferred by the gentle flow curves.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Historical and projected streamflow of the Arkansas River 
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Figure 7: Flow duration curves for monthly flow 

 

http://www.astesj.com/


E. Elgaali et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 65-74 (2021) 

www.astesj.com     73 

This study investigated the influence of different climate 
phenomenon, caused by climate change, on the flow levels of the 
Arkansas River in USA. In order to carry out the study, time series 
of climate data in the future (scenarios) were extracted from two 
GCMs (CCC and HAD), and then plugged in a hydrologic model 
(ANN) to generate time series of flow. While the scenarios, 
produced by both models, agreed that the temperatures were likely 
to increase, they differed on the directionality of the change in 
terms of precipitation levels.   

However, under the HAD-generated scenario, there is 
expected to be a relative increase in precipitation, resulting in 
increased wetness, while the CCC-generated scenario is 
comparatively dry and demonstrates higher variability. This 
variability can be attributed to annual, as well as decadal, shifts in 
expected climatic changes. 

The results of this investigation suggest that, under the range 
of climate conditions studied, river flow processes are strong 
indicators of how climate change is impacting temperature and 
precipitation levels in the region. The HAD scenario in particular 
suggests that present flow levels are likely to be regularly 
exceeded in the future, especially during the peak April-July 
period. It further suggests that any increase in springtime flow is 
likely to be sizeable enough to compensate for attendant decreases 
in summertime flow and they further demonstrate that the 
historical peak flow, which used to begin in June has shifted to 
begin in April, extending the period of high flow levels. These 
results also align well with the results of other studies that explore 
the expected environmental effects of rising temperatures on local 
ecosystems in the western parts of the US [12]-[15].  

The Arkansas River Basin can be considered one of the most 
vulnerable regions in the country when it comes to climate change. 
If, moving forward, precipitation levels match the projections, in 
terms of both magnitude and timing, they can be expected to have 
a significant impact that pose challenge to the water planners and 
managers in the region. 
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