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The design of microelectronic systems is often complex, therefore metaheuristics can be of a
great interest, because in most cases these systems have conflicting objectives and constraints.
In this paper, we demonstrate the application of multi-criteria design strategies to a CMOS
current conveyor. This provides designers with the ability to develop solutions that can meet
several objectives respecting the design constraints. Therefore, three evolutionary algorithms
well-known for their best performance in the resolution of more difficult multi-objective problems
are proposed. They are first applied to the well-known benchmark functions and then for the
optimal design of the current conveyor transistors in the framework of the 0.18µm CMOS
technology. The aim is to maximize the bandwidth and minimize the parasitic input resistance
respecting the technological constraints of the circuit. The obtained results are integrated in
Cadence tool to show their validities. Final performances obtained by the three methods are in
agreement and are better compared to the state-of-art-results.

1 Introduction

Today, with the complex growth of VLSI technology, it is very
difficult to hand design analog integrated circuits with multiple
parameters and purposes. The characterization of complicated trade-
offs between conflicting and nonlinear performances while ensuring
the required design specifications makes the design of analog cir-
cuits a tedious and time-consuming process. In this regard, due to
their design difficulty and complexity, analog circuits have been
attracted a lot of optimization attention. In general, optimization
is often a time-consuming process having several contradictory cri-
teria as well as a wide variety of design parameters. However, the
design of electronic circuits is carried out by optimizing the circuit
parameters to be able to rapidly design high-performance circuits
[1]. For instance, finding passive elements values and transistor
sizes and bias currents, so it can meet output performances such as
gain, frequency band, power consumption, etc.

Several metaheuristics have been developed in the literature,
which can be divided into two principal categories [2]: Single
solution based methods, such as Taboo Search (TS) [3], Local
Search (LS) [4], Simulated Annealing (SA) [5], or population based
approaches like, Ant Colony Optimization (ACO)[6], Whale Op-

timization Algorithms (WOA)[7], Grey Wolf Optimizer (GWO),
Particle Swarms Optimization (PSO)[8], Hybrid PSO-GWO [9],
Non-dominated Sorting Genetic Algorithm (NSGA II)[10], Multi-
objective Genetic Algorithm (MOGA)[11], Strength Pareto Evolu-
tionary Algorithm (SPEA2)[12], etc. Single solution based tech-
niques do not offer good results for problems where different types
of variables, objectives and constraint functions (linear or non-linear
constraints) are used [8]. Moreover, their efficiency highly depends
on their parameters, the search space dimension and the number of
variables. The population based techniques are generally classified
into two groups, Particle Swarms (PS) and Evolutionary Algorithms
(EA). PS give good results for problems that are not so difficult [13],
but their performance also depends on their parameters and the com-
plexity of the problem, especially for multi-objective optimization
problems (MOP) [5, 13]. However, EAs are optimization techniques
based on biological evolution and natural selection of species [14],
are population-based, where each individual represents a possible
solution. The initial population is generated randomly. At every
new generation, the population iteratively evolves by the mutation,
the crossover and the selection operators on each individual, and
only non-dominated solutions meeting the constraints, will survive.
Hence, such algorithms are well-known for their efficiency when
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solving complex MOP, Unlike PS, EAs do not need big parameter
adjustments.

In this paper, we apply EAs for the optimal design of the current
conveyor (CCII). The used EAs are NSGA II, MOGA and SPEA2,
which allows the simultaneous optimization of multiple conflicting
targets resulting into a set of Pareto Front (PF) solutions. Hence, the
main objective to optimize the size of the MOS transistors transis-
tors, using these algorithms, to achieve the high performances of the
CCII. The CCII is one of the best known current mode circuits, mak-
ing it the objective of several applications, such as filters, oscillators,
etc., [15]. As far as we know, few works have been reported until
now on CCII optimization by the EAs. In [16], the MOPSO with
Crowding Distance (CD) was used for the optimization of the CCII,
the differential CCII and the current feedback operational amplifier
(CFOA) for low voltage low power applications, the MOPSO-CD
was used as a part of a simulation-based tool to find the optimal siz-
ing transistors that operate in weak inversion. In [17], the NSGA II
and the decomposition-based multi-objective EA (MOEA/D) were
used for the optimization of other purposes of the CCII, i.e., cur-
rent gain and offset. However, the high-performance CCII design
requires that the input parasitic resistance be small and its cut-off

frequency be high. For this reason, we have chosen in this work
these two characteristics as objectives to be optimized. All EAs
generate Pareto fronts and simulations are carried out on Cadence
using 0.18µm CMOS process. The simulation results are conform
to those obtained by the optimization.

This paper is structured as follows: Section 2 gives an overview
of the EAs, Section 3 is dedicated to the EAs validation using usual
test functions. Section 4 presents the CMOS CCII. Section 5, is
devoted to the results and discussion. A conclusion is given at the
end.

2 Evolutionary Algorithms

2.1 MOGA

The MOGA was introduced in [11], as a new variant of the Golberg
approach [18]. It uses the concept of dominance and a random-
based fitness assignment. The non-dominanted solutions are ranked
into groups, which are assigned the same rank in each group.

The pseudo-code of MOGA is given by algorithm 1.

Algorithm 1: MOGA Pseudo Code

Generate the initial population Pi;
Evaluate of Pi;
while the stopping criteria is not met do

i=i+1;
Selection of Pi;
Mutation and Crossover of Pi;
Evaluate Pi;

end
Result: non-dominated solutions

2.2 NSGA II

NSGA-II, which was proposed in [10] as a modified version of
NSGA, is among the most commonly used and effective EAs due to

its simplicity and effectiveness. The basic operation of the NSGA-II
is : A random population is created. This generated population is
sorted using the notion of dominance. A fitness function is assigned
to each solution. Therefore, it is assumed that physical fitness is
minimized. At first, selection, mutation and crossover operators are
used to create a new population from the first. The NSGA II algo-
rithm uses the notion of elitism, to compare the current population
with previously found best non-dominated solutions.

NSGA II relies on two major procedures: crowding distance
and fast non-dominated sorting. Both procedures ensure elitism
and feasibility of solutions. Algorithm 2 represents the NSGA II
pseudo-code.

Algorithm 2: NSGA II Pseudo Code
Generate randomly the initial population Pi
while the stopping criteria is not satisfied do

while population in not classified do
Search for non-dominated individuals;
Fitness calculation;
Sharing;

end
Mutation;
Crossover;
Selection;

end

2.3 SPEA2

SPEA2 is a MO algorithm introduced in [12] as an improved version
of SPEA. It is based on the notion of dominating fitness evaluation
to to generate the PF. SPEA2 uses elitist concept maintaining an
external archive of non-dominated solutions. It also uses a near-
est neighbor density estimation method, and an improved archive
Truncation approach.

The SPEA2 is given by algorithm 3.

Algorithm 3: SPEA2 Pseudo Code

Generate randomly population Pi;
Evaluate objective and create external Archive Ai ;
for i = 1, i ≤ Max iterations do

i=i+1;
Evaluate objectives and update Ai by Truncation

operator;
Perform Binary Tournament Selection ;
Crossover of Pi ;
mutation of Pi ;

end
Result: External Archive with non dominated solutions.

3 EA robustness

Before using the proposed algorithms, we evaluated performances
using multi-objective standards ZDT functions [19].

Each ZDT function includes two objectives f1 and f2 with 30
variables, which demonstrates the high complexity of such test func-
tions. All tests are carried out with the algorithms parameters of
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1000 iterations and a population size of 50 and a crossover probabil-
ity of 0.8 and a mutation probability of 0.1. The ZDT benchmark
functions and their expressions are given in the appendix.

Figure 1 shows the PFs obtained for the three chosen algorithms.
As can be clearly seen the generated PFs with the all proposed meth-
ods achieve good approximations to the exact benchmark functions
PFs. Therefore, we can confidently use them for the optimization
problems of the CCII optimal design with guaranteed results.
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Figure 1: Evaluation of algorithms by ZDT benchmark functions

4 CMOS Current Conveyor
In this section, we studied the current conveyor shown in Figure 2,
it has three active ports X, Y and Z, and its main function consists
of

• Current follower between ports X and Z, which can be pro-
vided by the translinear loop formed by transistors M1- M4.

• Voltage follower between ports X and Y, which can be pro-
vided by M5-M6 and M7-M8 current mirrors.

The present current conveyor topology is the most used one for
its good performances and the interest of using a translinear loop
[20]. Therefore, the design optimization of the CCII is performed
considering its main objective functions : the parasitic resistance
at the port X (RX) and the cut-off frequency ( f-3dB). Recall that the
aim is to minimize the first objective to obtain low input resistance
and to maximize the second objective to get high bandwidth.

Figure 2: CMOS Current conveyor.

The CCII sizing is performed as in [14], using CMOS 0.18 µm
process, and with the following conditions VDD = VSS = ±1.8V.
All the transistors are characterized by their geometrical parameters:
the channel length L and the gate width W.

The CCII optimal sizing issue is treated as a MOP. The aim is
to find the best trade-off between a small RX and a high f-3dB as
a function of the transistors parameters. The problem constraints
are given by Eqs. 4 and 5 bellow corresponding to the saturation
transistor regime [15].

The design problem can be formulated as:

Minimize RX(x) and − f-3dB(x).
x = {Wn,Wp, Ln, Lp, I0}.

subject to
g1,2(x) ≤ 0,

(1)
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where

• The resistance RX is

RX =
1

gmn + gmp
=

1√
2µnCox

Wn
Ln

I0 +

√
2µpCox

Wp

Lp
I0

(2)

gmn(p) is the transconductance for N(P) channel transistor. µn

(µp) and Cox are the electrons (holes) mobility and the gate oxide
capacitance per unit area, respectively. I0 is the bias current.

• The cut-off frequency f-3dB is

f-3dB =
ω-3dB

2π
(3)

The saturation constraints g1 and g2 are given by :

• The constraint of M2 and M8 transistors:

g1 = VS S − Vx(min) + Vtn +

√
2I0

µnCox
Wn
Ln

+

√√
2I0

µpCox
Wp

Lp

(4)

• The constraint of M4 and M5 transistors:

g2 = Vx(max) − VDD − Vtp +

√
2I0

µnCox
Wn
Ln

+

√√
2I0

µpCox
Wp

Lp

(5)

where Vtn(Vtp), VDD(SS) are the threshold voltage for NMOS(PMOS)
and the supply voltage, respectively. Wn (Wp), Ln (Lp) are the gate
width and the channel length for n-channel (p-channel) transistors,
respectively.

5 Results and discussion
All the CCII transistors with the same channel type have the same
parameters (Wn, Ln for NMOS and Wp, Lp for PMOS). To respect
the industrial design constraints, we also used identical channel
length (L) for all transistors.

5.1 CCII optimization results

The optimal MOS transistors sizes are reached using EAs by mini-
mizing RX and maximizing f-3dB in two ways:

First, the optimization process is performed by MOGA, SPEA2
and NSGA II using three I0 values, i.e., 20µA, 40µA and 80µA.
For these experiments, we use the minimum channel length Ln =

Lp = Lmin. The generated PFs (RX and - f-3dB) by the algorithms for
different bias currents are shown in Figure 3. From this figure, we
can see that the best trade-off between RX and - f-3dB is obtained for
the PF with the large bias current I0=80µA. Therefore, designers
have to select the best trade-off solution depending on the circuit
design and its application requirements.
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Figure 3: Pareto fronts obtained by the three algorithms for three bias currents

Second, the optimization process is performed by the same al-
gorithms using three channel lengths Lmin, 2Lmin and 3Lmin. For
these experiments, we use I0 = 80µA. The generated PFs for these
cases are shown in Figure 4. From this figure, we can see that the
best trade-off between performances is achieved for the PF with a
minimum channel length Lmin. Unlike digital circuits, the channel
length for analog circuits is usually at least 3Lmin, which is why
we tested all three channel lengths. This relatively large channel
lengths minimizes the effects of channel modulation.
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Figure 4: Pareto fronts obtained by the three algorithms for three channel lengths.

Based on the results in both scenarios, we can see that the best
performances are obtained with a smaller channel length and a
higher bias current. Considering the effects of channel modula-
tion, power consumption and the circuit design and application
requirements, IC designers should select the appropriate solution.

We run all algorithms 10 times, to evaluate the weakness and
strength of each algorithm in all the performed experiments. To
evaluate the diversity and the distribution of Pareto solutions, we
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use the hyper volume metric [21]. This metric shows the covered
area by the Pareto front. In case of minimization, of the problem,
the lager hyper-volume value, the good is the quality of Pareto front
solutions.

The hypervolume results are shown in Table 1. The optimiza-
tion procedure required a mean CPU time of approximately 6.707 s,
67.25 s, and 148.412 s for NSGA II, MOGA and SPEA2, respec-
tively.

Compared to the others algorithms, the NSGA II has the rapid
CPU time and a good convergence rate confirmed by the higher
hypervolume value.

Table 1: The Hypervolume Values.

SPEA2 MOGA NSGA II

L m
in

20 µA 0.750 0.752 0.752
40 µA 0.825 0.824 0.826
80 µA 0.873 0.875 0.876

80
µ

A 1 Lmin 0.873 0.875 0.876
2 Lmin 0.824 0.823 0.825
3 Lmin 0.782 0.784 0.785

5.2 CCII validation results

Table 2 presents the solutions to be validated by the CADENCE
tool, they are defined by their cutoff frequencies, their values of RX

and the corresponding transistors parameters. They are randomly
chosen from the PF that corresponds to I0 = 80µA and Ln=Lp=Lmin.

Table 2: Parameters to be validated by Cadence, obtained in the PF that gives the
best trade-off (RX, f-3dB).

Test Wn(µm) Wp(µm) f-3dB(GHz) RX(Ω)

MOGA 1 1.08 4.26 5.11 926.5
2 3.77 13.38 3.08 481.26

SPEA2 1 0.86 3.54 5.63 1018.6
2 4.30 17.85 2.66 439.07

NSGA II 1 0.80 3.08 6.04 1073.3
2 4.65 15.77 2.64 443.26

Figures 5–8 show the simulation results of the selected solutions
in table 2. The maximum (minimum) deviation between the sim-
ulation and the theoretical results is 10.1% (1%) and 9.4% (4.7%)
for RX and f-3dB, respectively. This interval of variations is quite
narrow and makes it possible to consider that the simulation results
are in good agreement with the theoretical ones, obtained by the
algorithms.

Table 3 presents a qualitative comparison of the obtained CCII
performance with works previously published but with 0.35µm pro-
cess. From the data given in this table, it is clear that the achieved
performances are higher than reported, i.e, very higher frequency
and much lower power consumption and good X-port resistance.
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Figure 5: Cadence simulation results of parasitic resistance for the used algorithms
(Tests 1 in table 2).
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Figure 6: Cadence simulation results of parasitic resistance for the used algorithms
(Tests 2 in table 2).
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Figure 7: Cadence simulation results of cut-off frequency for the used algorithms
(Tests 1 in table 2).
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Table 3: CCII performance comparison with works previously published.

This work [22] [23] [24]
Algorithms NSGA II PSO-2S MODE EGO-PEI
Technology (µm) CMOS 0.18 CMOS 0.35 CMOS 0.35 AMS 0.35
VDD/VSS (V) ±1.8 ±2.5 ±2.5 –
Ibias (µA ) 80 300 300 –
Power (µW ) 288 1500 1500 –
f-3dB(max) (GHz) 6.04 2.121 2.132 1.2255
RX(min) ( Ω) 247 225 221 259.53
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Figure 8: Cadence simulation results of cut-off frequency for the used algorithms
(Tests 2 in table 2).

6 Conclusion
In this paper, we presented the usefulness of applying EAs, namely
MOGA, SPEA2 and NSGA II, for the automatic optimization of
high performances CCII. Several optimization experiments were
carried out with three bias currents and three channel lengths, mini-
mizing the parasitic resistance and maximizing the cut-off frequency.
In all experiments, the achieved results show that these methods can
provide Pareto Fronts with greater solutions diversity. The simula-
tions are performed by Cadence using the CMOS 0.18µm process,
showing good accuracy with the theoretical results. The best per-
formances achieved with EAs in this work can be summarized in a
power consumption of 288µW, a minimum parasitic resistance of
about 247Ω and a maximum frequency of about 6.04GHz.

Appendix

• ZDT1 function:

g(~x) = 1 + 9
Dim∑
i=2

xi

30 − 1
and h(~x, f1, g) = 1 −

√
f1(~x)
g(~x)

f1(~x) = x1

f2(~x) = g(~x).h(~x, f1, g)

(6)

• ZDT2 function:

g(~x) = 1 + 9
Dim∑
i=2

xi

30 − 1
and h(~x, f1, g) = 1 −

(
f1(~x)
g(~x)

)2

f1(~x) = x1

f2(~x) = g(~x).h(~x, f1, g)

(7)

• ZDT3 function:

g(~x) = 1 + 9
Dim∑
i=2

xi

30 − 1

h(~x, f1, g) = 1 −
(

f1(~x)
g(~x)

)
sin(10π f1(~x)) −

√
f1(~x)
g(~x)

f1(~x) = x1

f2(~x) = g(~x).h(~x, f1, g)

(8)
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