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 Brain-computer interface (BCI) has extensively been used for rehabilitation purposes. 
Being in the research phase, the brainwave-based wheelchair controlled systems suffer 
from several limitations, e.g., lack of focus on mental activity, complexity in neural behavior 
in different conditions, and lower accuracy. Being sensitive to the color stimuli, the EEG 
signal changes promises a better detection. Utilizing the Electroencephalogram (EEG 
changes due to different color stimuli, a methodology of wheelchair controlled by 
brainwaves has been presented in this study. Red, Green, Blue (primary colors) and Yellow 
(secondary color) were chosen as the color stimuli and utilized in a 2 × 2 color window for 
four-direction command, namely left and right, forward and stop. Alpha, beta, delta and 
theta EEG rhythms were analyzed, time and frequency domain features were extracted to 
find the most influential rhythm and accurate classification model. Four classifiers, namely, 
K- Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest Classifier 
(RFC) and Artificial Neural Networks (ANN) were trained and tested for assessing the 
performance of each of the EEG rhythm, with a five-fold cross-validation. Four different 
performance measures, i.e. sensitivity, specificity, accuracy and area under the receiver 
operating characteristic curve were utilized to examine the wholescale performance. The 
results suggested that Beta EEG rhythm performs the best apart from all the rhythms for 
the color stimuli based wheelchair control. While comparing the performance of the 
classifiers, ANN-based classifier shows the best accuracy of 82.5%, which is higher than 
the performance of the three other classifiers. 
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1. Introduction   

This paper is an extension of work originally presented in 1st 
International Conference on Advances in Science, Engineering 
and Robotics Technology 2019 [1]. The presented paper [1] 
utilized electroencephalogram (EEG) for wheelchair control using 
color stimuli where the current article is expanded further to 
validate the EEG based wheelchair control system using multiple 
machine learning models. Also, this paper examines the utility of 
the different color stimulus on the EEG based wheelchair control 
system. 

EEG is a reflection of our neurons activity which is associated 
with all kind of human behaviours- thoughts, emotional state, eye 
vision etc. Due to its nature, EEG changes its value of features with 
respect to different influencer like eye vision. The EEG rhythms 
are defined by their frequency range, named delta, theta,  alpha, 
beta and gamma corresponds to 1-4 Hz, 4-8 Hz, 8-13 Hz, 13-30 Hz 
and 36-44 Hz respectively.   

To make life easier of the person with quadriplegia and 
paralyzed patients, many initiatives have been taken, but most of 
the latest works are eye blink based control systems [2]. But eye 
blink can not be a good command due to its uneasiness to control. 
In [2], a system is introduced by means of a different range of 
attention level and double eye blink (both identified by EEG) to 
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make a brain-controlled wheelchair. Four range of attention level 
as four direction command and double eye blink as on/off 
command were used at the preliminary level. Nonetheless, retain 
the attention level at an indefinite range requires sophisticated long 
term training, thus making these alike systems less feasible in real-
world application. By using an indefinite number of eye blink as 
logic and cognitive level, a brain-computer interface (BCI) was 
developed with the wireless operation and interfaced with RS-
232C in another study [3]. In order to make more advanced EEG 
based wheelchair, it was tried to be wireless. Depending on 
modification and attention; eye blinking signal the system was 
tried to be constructed in the study. 

In some cases, steady-state visually evoked potentials (SSVEP) 
showed promising results [4]. There are some eye blink pattern-
based works, which are also providing very optimistic results [5,6]. 
Neurosky mindwave headset was utilized in [6], which detected 
the eye blinks, counted and rendered to Arduino UNO by 
Bluetooth to control a DC motor and thus the wheelchair. In [6], 
EEG signal was extracted by MindWave mobile application and 
sent to the Rasberry pi microprocessor. The output of Rasberry pi 
and joystick are taken as input for Arduino Mega to control the DC 
motor through the motor driver. They introduced a virtual map by 
analyzing familiar wheelchair routes as well. In advance, eye 
blinking with glancing a model has been proposed in few studies 
[7,8]. Specifically in [7] autoregressive neural network was built 
to classify EEG eye signals such as eye blinking,  eye glancing in 
left and right. In [8] Steady-State Visual Evoked Potential 
(SSVEP) based work and implementation of artificial neural 
network and support vector machine is introduced to classify 
flickering frequency lights. Here multiclass support vector 
machine worked better than ANN while input features was 
obtained from Fast Fourier Transform.  

Most of the previous research on wheelchair control have 
worked with the eye blink, SSVEP or Internet of Things (IoT). But 
sill there are very few works on the EEG based wheelchair control. 
The use of Brain-computer interface (BCI) is currently in the 
research phase. The existing systems suffer from several 
limitations, e.g., lack of focus on mental activity, complexity in 
neural behaviour in different conditions, and lower accuracy. 
Being sensitive to the color stimuli, the EEG signal changes 
promises a better detection. A previous study worked with EEG 
signal for wheelchair control, where time-frequency domain 
features were extracted from the signals and used for the 
wheelchair control with a color stimuli pattern. By applying 
artificial neural network, the study found the beta EEG band as the 
most influential frequency band where alpha as the least influential 
band [1]. This study showed promising results but utilized only one 
classifier (ANN without hyperparameter tuning) for the 
classification approach and only one performance measure (mean 
square error) for the assessment of the system [1]. However, 
considering the sensitivity and specificity metrics are most 
important for an EEG based control system. As higher sensitivity 
with lower specificity leads to the higher false decision and the 
opposite trend causes the missing of a lot of negative states, a 
compromise between the two metrics is crucial. 

The proposed study examines the EEG based wheelchair 
control using a 2 × 2 matrix shape color screen with the 
combination of four different colors, being Red, Green, Blue and 

Yellow. These four different colors have been proven to be 
sensitive to the EEG signal changes [1], which were designed to 
indicate the left/right/forward/stop functioning, and were assigned 
as four numerical values (0,1,2,3) to be considered as ground truth. 
The principal component analysis (PCA) was conducted to 
separate the background effect of color stimuli on the EEG signal. 
After the rhythm separation from EEG, the data analysis and 
classification was done. The data was recorded using the 
BIOPAC® data acquisition unit, and the pre-processing and feature 
extraction was done using the Acqknowledge-4.1® software [9,10].  

So far, there is no specified classification model to be used for 
a specific dataset. Considering the computational complexity and 
the learning mechanisms, four supervised classification models, 
namely, K- Nearest Neighbor (KNN), Support Vector Machine 
(SVM), Random Forest Classifier (RFC) and Artificial Neural 
Networks (ANN) were trained, tested, and compared for 
evaluating the performance of each of the EEG rhythm. Being a 
smaller datest with respect to the number of features, five-fold 
cross-validation uas used to validate the performance of the 
classifiers. Four different performance measures (sensitivity, 
specificity, accuracy, and area under the receiver operating 
characteristic curve) were utilized to examine the system 
performance. 

 The following part of this paper is organized as follows- a brief 
methodology, including experimental design and tools, then the 
result section with the findings. Last, the paper was concluded 
followed by a short discussion on the outcomes. 

 
Figure 1: Block diagram for the proposed EEG based wheelchair control system 
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2.  Methodology 

2.1. Experimental Design 

The roadmap for building an electroencephalogram based 
wheelchair by color stimuli is shown in figure 1. From the selected 
three participants, EEG were obtained by the BIOPAC® signal 
acquisition system. The eye blink artefacts were removed using the 
EOG blink removal techniques, with the help of Acqknowledge 
4.1® software. Then FIR bandpass filter was used to separate bands 
while PCA for demolishing background effect. Afterwards, total 
twenty features were extracted for each of the EEG band, which 
are sensitive to color stimuli and the selected features were 
supplied towards the machine learning tools as the independent 
variable. The four different colors were coded to 0-3 as the 
dependent variable and were labeled for four different color 
detection. Four different classification models, namely K-nearest 
neighbours (KNN), support vector machines (SVM), artificial 
neural network (ANN) and random forest classifier (RFC) 
classifier models were developed in python 3.6.9 platform in 
Google Colab platform. Best classifier and rhythm were evaluated 
by their performance.  

2.2. Experimental Equipment 

2.2.1. Hardware tool 

 In this experimentation, BIOPAC MP 36 was used at 
Biomedical Engineering (BME) lab, KUET, which is shown in 
figure 2 [1]. 

2.2.2. Pre-processing and feature extraction software tool 

BIOPAC® student Lab Pro and Acqknowledge 4.1® software 
was used for PCA and feature extraction. Machine learning based 
classification models were used in the python 3.6.9 version in 
Google Colab platform. 

2.3. Participants 

In this experiment, three subjects participated who were male, 
healthy and not suffering from any color blindness or 
psychological illness. and they were The color blindness was 
tested using the Ishihara 38 Plates CVD Test [11,12], to check their 
vision and to ensure they are not suffering from difficulties in 
choosing colors, especially the deuteranopic vision (red-green 
color blindness). Then, the Color stimulus matrix was shown in a 
computer monitor (21.5" with a 1920 ×1080 resolution). The color 
stimuli was consisting of Red, Green, Blue (primary colors) and 
yellow (one of the secondary colors), which were utilized in a 2 × 
2 dimension color window for four-direction command, namely 
left and right, forward and stop. The participants were instructed 
to focus on each of the color for 15 seconds long, with their normal 
blinking. It took 60 seconds (1 minute) in total to complete a full 
visualization of the four colors. The color matrix sub windows for 
the specific color were programmed to give a pulse after every 15 
seconds, such that the participants can automatically focus on the 
specified sub-window. In total, 20 trials of 20 minutes were taken 
for visualization of the four colors sequentially, i.e., red, green, 
yellow and blue. The electrodes were placed on the right central 
(C4), and the right occipital (O2) position, with a reference 
electrode in A2 position. 

 
(a) 

 
(b) 

Figure 2. Representational view while conducting an experiment in BME lab, 
KUET (a) EEG electrode positions (b) Color arrangement in the screen for the 

wheelchair control system 

2.4. Experimental Procedure 

2.4.1. Signal Preprocessing 

Because of muscle movement, eye blinking, hand movement 
and the background effect behind the colour stimulus, the 
primarily obtained EEG signals could have contained noise. Along 
with line frequency was 50 Hz. To pre-process raw EEG was gone 
through bandpass finite impulse response (FIR) filter with a range 
of 0.5 to 44 Hz, as it removes the non-linear trends of the signals. 
Later the signal was further smoothed, taking a moving average 
over a small period of the signal. Figure 3 shows the EEG signal 
representation with in Acqknowledge software. 

Left Right 

Forward Stop 
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Figure 3. EEG signal representation in Acqknowledge-4.1® software 

2.4.2. Principal Component Analysis 

As a data reduction tool PCA decomposes input signal to a new 
signal, removing the components which are not significant. After 
the signal pre-processing and feature extraction, the PCA was used 
to select the most significant features, which included standard 
deviation (STDDEV), skew (sk), kurtosis (k), power spectrum 
density (PSD) mean, PSD max, PSD skew, Fast Fourier Transform 
(FFT) mean, FFT max, FFT skew. Total of nine features were 
chosen out of 20 features based on the PCA analysis. The features 
were selected based on the threshold that was put on 'k' principal 
components. It is worth noting that most of the selected features 
were frequency domain features. 

2.4.3. Separation of the frequency sub-bands 

The build-in bandpass filter was used in Acknowledge 4.1® 

software to find alpha, beta, delta and theta rhythm. The frequency 
ranges used for delta, theta, alpha and beta EEG bands are 1-4 Hz, 
4-8 Hz, 8-13 Hz, 13-30 Hz, respectively. 

2.4.4. Feature Extraction  

Total twenty features were extracted in time and frequency 
domain, including maximum value (Emax), standard deviation 
(STDDEV), skew (sk), kurtosis (k), moment of order from one to 
five, Lyapunov exponent, mutual information (m), correlation 
coefficient (c), power spectrum density (PSD) mean, PSD max, 
PSD skew, Fast Fourier Transform (FFT) mean, FFT max, FFT 
skew were extracted for each subject, color, rhythm using the 
Acknowledge 4.1® software. An epoch size of 1 second was 
utilized to extract all the EEG features. 

2.4.5. Feature Scaling 

The features extracted from time and frequency domains have 
a different range in their magnitude. Different machine learning 
models work with various features putting them in the same 
matrix; it is necessary to put all the features in a same range, which 
is referred to as feature scaling. There are two common types of 
feature scaling that is done in preliminary data: standardization and 
normalization [13]. 

As a part of the normalization process, MinMaxScaling was 
done in this study in python platform using the MinMaxscaler() 
function from sklearn library. Here the data is shrunk within a 
range between [-1,1].  

 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑥𝑥− 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚− 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

               (1) 

The min-max scaling can be defined by the equation (1), 
where, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 is the normalized value of a feature point x, within a 
range 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 [13]. 

2.5. Classification 

To control a wheelchair on the decision of the appropriate 
movement, classification is the final step which is done with the 
help of machine learning models. Machine learning is the 
application of artificial intelligence, which provides a system 
capable of learning nature from a given data. There are three 
categories of Machine Learning models and applications, 
supervised learning, unsupervised learning and reinforcement 
learning [14]. Supervised learning is extensively used for the 
classification and regression problem [14]. Previous studies 
worked with EEG have used supervised learnings, especially K-
Nearest Neighbour [15], Support Vector Machine [16], Random 
Forest Classifier [17] and Artificial Neural Network [18]. Based 
on the previous studies, these four classifiers were chosen for the 
data classification in this research. 

2.5.1. K-nearest neighbours (KNN) 

KNN is a simple supervised learning algorithm which is very 
popular and widely used for classification and regression 
problems. At the very starting point, KNN read the value of K, type 
of distance D and test data; then it finds the K nearest neighbours 
D to the test data and thus sets the maximum label class of K to 
test data. The same process is gone through as an iterative process 
named looping. In details, it's algorithm initializes the value of K 
from 1 (setting as initial iteration value). After loading data, 
iteration from initial K =1 (generally) to total number of training 
data point. Then, distances specifically Euclidean distance 
between test data and each row of training data is measured and 
sorted in ascending order to get topmost k rows from the sorted 
array and the most frequent class is returned as the predicted class 
[19]. The value of K was tuned, and the K for best efficiency was 
chosen in the classifier model in this research to reduce overfitting. 

2.5.2. Support Vector Machines (SVM) 

SVM aims to obtain a hyperplane which classifies the data 
point (data points can be at any side of hyperplane) in feature 
dimensional space while depending on both linear and non-linear 
regression. Data points distance across to hyperplane are called 
support vector whose detection can exchange hyper plane's 
location [19]. The model used a Gaussian kernel for SVM 
classifier in this research due to the non-linear trend of the dataset. 
Two parameters- 'C' and 'gamma' was adjusted within a set of 
values using the grid search algorithm to reduce overfitting. 

2.5.3. Random Forest Classifier (RFC)  

Random forests are made of individual decision trees with a 
logic of group of weak learners to finally make a strong learner 
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while the decision trees operate as divided or conquer. A class is 
predicted from every decision tree and a final class is predicted by 
model depending on their vote [19]. Two parameters were tuned 
in the RFC models, namely, 'n_estimate', which implies the 
number of trees in the forest and 'max-depth' which signifies the 
depth of each tree. 

2.5.4. Artificial Neural Network (ANN)  

An ANN consists of neurons which assess the weighted sum of 
the inputs contemplating that there is a bias and passes the sum 
applying activation function such as sigmoid, RBF etc. The 
research used a feed-forward neural network model (with 
backpropagation algorithm) which relates input with appropriate 
output to obtain low squared error (output v/s expected output) by 
applying gradient descent. The number of hidden layers and the 
number of neurons in each hidden layer was tuned here in the ANN 
model. Regularisation was done using the dropout layer with a 
dropout rate of 0.5 to reduce overfitting. 

2.6. Performance Measures  

2.6.1. Sensitivity or True Positive Rate (TPR) 

Sensitivity is the proportion of the true positives (desired 
factor), which is correctly identified from the given test set [20]. 
The definition of sensitivity can be provided by equation (2), 
where, TP = True Positive and FN = False Negative. 

Sensitivity = TP
TP+ FN

                 (2) 

2.6.2. Specificity or True Negative Rate (TNR) 

Specificity is the proportion of true negative (undesired factor) 
in which was correctly excluded from the given test sets [20]. The 
definition of specificity can be provided by equation (3), where  
TN = True Negative and FP = False Positive. 

Specificity = TN
TN+ FP

                  (3) 

2.6.3. Accuracy 

Accuracy is defined as the proportion of true results (either true 
positive or true negative) in an experiment [21,22]. The definition 
of accuracy can be provided by equation (3), given that TP = True 
positive, TN= True Negative, FP= False Positive and FN = False 
Negative 

Accuracy = TP+TN
TP+TN+FP+FN

                 (4) 

2.6.4. Area under the receiver operating characteristic (ROC) 
curve (AUC) 

To find out the best compromise between sensitivity and 
specificity, ROC is plotted. It is a plot of the sensitivity (true 
positive rate) against the (1- specificity) or false positive rate, 
where all the possible combination of TPR and FPR are plotted, 
showing the trade-off between them [16,20,23]. As sensitivity and 
specificity are two major parameters of performance measures, 
AUC under ROC always provide a compromise between them. 

Five-fold cross-validation was done while evaluating the 
performance measures. For each of the validation, the dataset was 
divided in a ratio of 4:1 for training and test data, respectively. The 

mean value and the standard deviation (SD) were noted, 
considering the five experimental validations. As the classification 
is a four-class problem, one versus all method was used in all the 
classification approach, splitting the four-class problem in binary 
class. Thus, the mean sensitivity, specificity and AUC was 
calculated from the obtained confusion matrix. 

3. Results 

3.1. Data Visualization 

The data points found from the selected features were plotted 
in violin plots to observe the range of each of the features. The 
following Figure 4 shows that the time and frequency domain 
features are having a versatile variation in the range in the 
horizontal box plot. The plots were done for the observation of the 
entire feature sets. The Maximum value/magnitude (of EEG 
signal) and the power spectral density maximum value show a 
greater range than the other features while the PSD mean and FFT 
(max) are showing the lowest range. Range of the difference 
features varies among themselves either in the time domain or in 
the frequency domain. Thus, feature scaling was done on the given 
dataset. 

 
Figure 4: Box plot of part of the EEG beta rhythm features showing the varying 

magnitude of different features 

3.2. Classification Performance 

After necessary feature extraction and scaling, all the features 
were scaled and were supplied towards the machine learning 
models with necessary parameter tuning. Four different 
performance measures were evaluated, namely, sensitivity or true 
positive rate (TPR), specificity or true negative rate (TNR), 
accuracy and area under the receiver operating characteristic curve 
(AUC). The obtained results are listed below in Table 1. 

3.2.1. Scenario 1: Delta Rhythm 

The plots of the performance measures (mean ± SD) obtained 
from the classification of colours using the delta rhythm features 
from four different classifiers, KNN, SVM, RFC and ANN, are 
shown in the following Figure 5. The plots show that the gap 
between sensitivity and specificity is higher in KNN (gap = 15.3%) 
and RFC (gap = 7.9%). The gap is less in SVM (2.2%) and ANN 
(0.3%). Overall, ANN gives an accuracy of 62.8%, which 
performs the best. 
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Table 1: Performance measures (mean value) for EEG based wheelchair control 
using four different classifiers, with a five-fold cross-validation 

EEG 
Rhythm 

Performance 
Metrics KNN SVM RFC ANN 

Delta 

Sensitivity 60.8 55.4 55.1 63.3 

Specificity 45.5 57.6 47.2 63 

Accuracy 53.5 56.2 54.6 62.8 

AUC 53.9 56.7 57 69.6 

Theta 

Sensitivity 63.6 66 60.2 80.8 

Specificity 55.6 62.8 60.6 62.1 

Accuracy 59.6 63.9 60 71.5 

AUC 59 64.5 70.6 73.2 

Alpha 

Sensitivity 92.3 82.1 55.7 62.1 
Specificity 25 62.5 60.7 52.9 
Accuracy 59.2 72 58.2 72 
AUC 55.1 71.8 68.1 63.4 

Beta 

Sensitivity 82.7 78.2 79 88.5 

Specificity 68.4 67.2 77.5 75.3 

Accuracy 75.4 72.7 77.5 82.5 

AUC 75 76.9 88.3 89.1 

3.2.2. Scenario 2: Theta Rhythm 

The plots of the performance measures (mean ± SD) obtained 
from the classification of colours using the Theta rhythm features 
are shown in the following Figure 6. The plots show that the gap 
between sensitivity and specificity is higher in ANN (18.8%), 
KNN (8.05%), and SVM (3.16%). Less gap is observed in the case 
of RFC (0.4%). Overall, ANN gives an accuracy of 71.5%, which 
performs the best. 

 
Figure 5: Performance measurement of delta rhythm 

 
Figure 6: performance measurement of theta rhythm 

3.2.3. Scenario 3: Alpha Rhythm 

The plots of the performance measures (mean ± SD) obtained 
from the classification of colours using the Alpha rhythm features 
are shown in the following Figure 7. The plots show that the gap 
between sensitivity and specificity is higher in KNN (67.3%), 
SVM (19.7%) and ANN (9.19%). The gap is lees in RFC (5%). 
Overall, ANN gives an accuracy of 72%, which performs the best. 

 
Figure 7: performance measurement of alpha rhythm 
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3.2.4. Scenario 4: Beta Rhythm 

The plots of the performance measures (mean ± SD) obtained 
from the classification of colours using the Beta rhythm features 
are shown in the following Figure 8. The plots show that the gap 
between sensitivity and specificity is higher in KNN (14.3%), 
ANN (13.2%), and SVM (11%). The gap is lees in RFC (1.45%) 
and Overall, ANN gives an accuracy of 82.5%, which performs the 
best. 

 
Figure 8: performance measurement of beta rhythm 

 
Figure 9: Comparison of accuracy matrics for four different classifiers 

3.3. Choosing the best EEG Rhythm  

To choose the best EEG frequency band, the overall accuracy 
measure was considered as the reference metrics as it is difficult to 
compare different classifiers using several factors. The plots of the 

accuracy for four different classifiers corresponding to the four 
different frequency band are shown in Figure 9. From the given 
figure, it is evident that the accuracy for beta rhythm is better than 
any other frequency bands for all the four classifiers.  So, in the 
rest of the paper, the Beta EEG rhythm will be considered for 
further analysis. 

3.4. Choosing the best classifier 

The plots for the area under the ROC curve for the classifiers 
built using the Beta EEG features are shown in Figure 10 below. 
The figure illustrates that the ANN classifiers show the best 
compromise between sensitivity and specificity, with covering the 
highest area under the ROC curve (AUC = 0.89). Thus, the next 
part of the paper will compare the performance of the frequency 
bands considering ANN classifier. 

 
Figure 10: Comparison of AUC for four different classifiers built using the 

Beta EEG Features. 

The plot of the area under the AUC curve for 5 different 
experiments in 5-fold cross-validation with the Beta rhythm using 
ANN classifier (see Figure 11). The AUC for beta rhythm-based 
models ranged from (0.75-0.92), with a mean of 0.89 and standard 
deviation of 0.07. This signifies that, the beta rhythm shows an 
excellent performance than the other frequency bands of EEG 
signal in EEG based wheelchair control using the color stimulus. 

 
Figure 11: ROC Plots for Beta rhythm-based ANN model with 5-fold CV 

4. Discussion 

This study used four different classifiers for assessing the 
performance of the EEG rhythms for EEG based wheelchair 
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control using colour stimuli. The results revealed that Beta rhythm 
performs the best among the other rhythms while the Alpha rhythm 
performs the worst. The delta and theta rhythm showed an average 
performance. The reason behind the better performance of the beta 
rhythm could be it is more prominent in the concentration while 
the theta and alpha are responsible for drowsiness and relaxation, 
respectively.  It also revealed that the maximum performance was 
obtained using the ANN Classifier, with a sensitivity, specificity 
and accuracy of 88.5%, 75.3% and 82.5%. Moreover, ANN based 
model with beta EEG based dataset shows promising AUC (0.89), 
which is a good compromise between sensitivity and specificity. 
The finding of this study is consistent with the previous study [1], 
where the authors found the Beta band as the best performing 
rhythm, though they have used only one classifier (ANN), and one 
performance metrics (Accuracy). The possible reason behind the 
best performance of ANN could be the backpropagation 
algorithms, which is strong enough to learn the inherent features 
and complex structure of the data. This is likely due to the 
simultaneous update of the weights while running every iteration 
for each forward pass and backward pass. The study [1] also 
achieved a higher accuracy than the current study, which is 
probably due to not using the cross-validation techniques.  Rather, 
a hold-out validation was used in the previous study [1], which 
most probably created overfitting problem. The given problems 
were overcome in the current study. 

On the other hand, the Delta rhythm performs the worst (ANN 
accuracy = 62.8%). However, some difference is found in the 
obtained results due to different parameter setting in the neural 
network (such as hidden layers, and the number of neurons). For 
future implications, three major issues are recommended. First, 
using the four-colour stimuli that we have used and validated using 
EEG sub-bands. Second, using the Beta EEG-band power while 
utilizing the brain-computer interface system for wheelchair 
control, as it shows comparatively higher performance in 
identification of the different color stimuli. Third, it is 
recommended to use the color codes in a small monitor attached 
with the wheelchair handle, which would help the user to focus on 
the screen and thus enhance the detection accuracy of the control 
system.  However, the scope of the paper is not out of limitations. 
The correlation of the EEG signal with different color stimuli was 
out of the scope of the study; however it could be considered for 
future research. The study consisted of only three healthy subjects, 
who are not paralysed. The lower sample size may lack the 
generalization for proper implication; however future research 
could be done on large number of sample and involving peoples 
suffered by paralysis. The background effect is one of the main 
challenges while using the color stimulus. Inter-individual 
difference among participants is another factor, which is needed to 
be considered. As the paper represented a novel methodology of 
EEG based wheelchair control using four different colours (for 
left-right/ forward/backward action), research is required to find 
out the feasibility in real-world condition as well. 

5. Conclusion 

 In order to develop EEG controlled user-friendly wheelchair, 
using this proposed model, an analysis was done in this study to 
find out the feasibility of the time and frequency domain features. 
Here the designed system was obtained after applying several 
steps- feature scaling, tuning of classifiers and finally with five-

fold cross-validation of the developed models. The analysis from 
the results of the study shows that beta rhythm shows the best 
accuracy with KNN (75.4%), SVM (72.7%), RFC (77.5%) and 
ANN (82.5 %).  On the other hand, the Beta EEG rhythm offers 
the lowest accuracy with all classifiers. However, the experiment 
could be done on a greater number of participants to validate the 
model based on leave one participant out approach. Also, 
efficiency will increase with the addition of more EEG channels 
which can be considered for future work.    
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