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Height estimation of objects is a valuable information for locomotion of 
autonomous robots and vehicles. Even though several sensors such as 
stereo cameras have been applied in these systems, cost and processing 
time have been motivating solutions with monocular cameras. This 
research proposes two new methods: i) height estimation of objects 
using only a monocular camera based on flat surface constraints and ii) 
3 degree-of-freedom compensation of errors caused by roll, pitch and 
yaw variations of the camera when applying the Flat Surface Model. 
Experiments outdoors with the KITTI benchmark data (4997 frames 
and 436 objects) resulted in improved accuracy of the estimated heights 
from a maximum error of 1.51 m to 1.12 m and reduced number of 
estimation failures by 4 times, proving the validity and effectiveness of 
the proposed method.
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1 Introduction

This paper is an extension of work originally pre-
sented in the 2016 IEEE/SICE International Sympo-
sium on System Integration [1]. This previous work
proposed a monocular height estimation method by
chronological correction of road unevenness, which
basic experiments in laboratory and asphalt correct-
ing camera pitch variations proved the validity of the
method. However, since only pitch variations were
considered and experiments were conducted on as-
phalt in one environment, several items remained as
future work. Therefore, we extended our work by the
following:

• Analysis and 3 degree-of-freedom (3DOF) com-
pensation of errors caused by roll, pitch and yaw
variations.

• Extended experiments on asphalt with several
conditions of road and objects, permitting fur-
ther analysis of external disturbances.

Cameras have been applied in many fields such as
robotics and autonomous driving for localization and
object recognition [2]-[7]. Even though stereo cam-
eras can provide the depth to obstacles, their higher

cost and required processing have motivated several
studies to estimate depth or height with monocular
cameras. Height estimation permits the robot to de-
tect and avoid potential obstacles on the road, becom-
ing a valuable information of the surrounding envi-
ronment. Studies [8] and [9] estimate height of objects
with a steady camera. While the first relies on a previ-
ous calculation of the vanishing point, the latter relies
on a known object height in the scene. On the other
hand, other studies focus on height estimation using a
moving camera. Study [10] estimates height by com-
puting the focus of expansion in the scene and seg-
menting ground and plane by sinusoidal model fitting
in reciprocal-polar space. The method proposed in
[11] estimates height of objects on the road by obstacle
segmentation and known camera displacement from
odometric measurements, refining the measurements
with several frames. Although there are many promis-
ing height estimation methods, they still strongly rely
on extra extraction of information from the scene or
external sensors. Moreover, the presented methods
assume that the ground is flat and no discussions or
analyses of eventual pose variations of the camera
were mentioned. In this context, we propose in this
work a height estimation method that requires no pre-
vious information of the scene, nor information from
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external sensors. Furthermore, even though we as-
sume flat surface, we analyze and compensate the ef-
fects of roll, pitch and yaw variations of the camera.

The rest of this paper is organized as follows.
Section 2 introduces the existing issues of monocu-
lar cameras due to depth ambiguity and roll, pitch
and yaw variations. Section 3 explains the proposed
monocular height estimation method and compensa-
tions of roll, pitch and yaw variations. The conducted
experiments are detailed in section 4. The obtained
results are discussed in section 5. Lastly, the conclu-
sions and future work are provided in section 6.
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Figure 1: Conversion between pixels and meters using
the Flat Surface Model.

2 Issues of Monocular Cameras

In this section, two main issues of monocular cameras
are introduced: A) depth ambiguity and B) effects of
roll, pitch and yaw variations.

2.1 Depth Ambiguity

In order to explain this limitation, we first briefly in-
troduce the Flat Surface Model (FSM), a technique
that permits easy relation of pixels (in camera coor-
dinates) and meters (in real world coordinates), and is
commonly applied with monocular cameras [12]-[14].
Figure 1 shows a moving body, a camera and flat sur-
face. The camera is attached to the moving body at a
known height H and angle α in relation to the flat sur-
face. The line connecting the camera center and the
flat surface with angle α is called principal ray. The
coordinate system of the camera is defined by pixels
(u,v), with a known and fixed vertical length V and
a horizontal length W. The maximum angle seen by
the camera (field of view) in both u and v directions
are fixed and defined as angles FOVu and FOVv. The
coordinate system defined by (X,Y,Z) is fixed on the
moving body. If we assume that the surface is flat,
the relation between a pixel (u,v) and its real position
(X,Y,Z) in meters is given by (1) to (3), where β is the
angle in relation to the principal ray.

β = atan(
(2v −V )
V

tan(
FOV v

2
)) (1)

Y =
H

tan(α + β)
(2)

X = Y
cos(β)

cos(α + β)
(2u −W )

W
tan(

FOVu
2

) (3)
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Figure 2: Example of application (A) and limitation
(B) when applying the Flat Surface Model.

One common application of the FSM is to esti-
mate the camera displacement by Visual Odometry
(VO) [12]-[14], which is briefly explained in “Case
A” of Figure 2. First, consider the moving body and
camera described in Figure 1 running on a flat sur-
face. In an initial position SN−1, the camera takes a
frame and shoots a point PR on the ground, comput-
ing YN−1 = dR,N−1. Next, consider that the moving
body moves ∆dN in direction I of a coordinate sys-
tem (I,J) fixed on the ground, reaching position SN .
In this new position, it takes another frame, tracks
point PR and YN = dR,N is obtained by the FSM. Us-
ing the computed information YN−1 and YN from the
two positions SN−1 and SN , the real camera displace-
ment ∆CamN can be correctly estimated by (4). By
repeating the previous steps, the displacement of the
moving body can be estimated on the following posi-
tions. Notice that we showed a simple case with only
one point PR and direction I, but many points and di-
rections can be considered in VO.

∆CamN = dR,N−1 − dR,N = ∆dN (4)

The depth ambiguity can be visualized in “Case
B” of Figure 2, which contains an object of height h
on the ground. Let’s assume that in position SN−1 the
camera shoots a point P ′R on the top of the object, and
the projection on the flat surface is point PP ,N−1, ex-
actly on the same location as point PR in “Case A”. Al-
though points PR and P ′R belong to different (X,Y,Z)
in the world, the FSM can’t distinguish this ambigu-
ity and computes YN−1 = d′R,N−1 = dR,N−1. However,
when the camera moves ∆dN in direction I, it tracks
point P ′R and consequently, computes YN = d′R,N at po-
sition SN . Finally, the displacement ∆Cam′N seen by
the camera becomes as (5), what shows that the real
displacement ∆dN is not correctly estimated due to
the presence of the object.

∆Cam′N = d′R,N−1 − d
′
R,N , ∆dN (5)
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Figure 3: Influences of pose variation on the Flat Sur-
face Model.
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Figure 4: Expected errors of the calculated distances
by the FSM in function of pitch (A), yaw (B) and roll
(C).

2.2 Effects of Roll, Pitch and Yaw Varia-
tions

Even though the FSM assumes that the surface is per-
fectly flat, in fact small unevennesses exist. Such in-
fluences are detailed in Figure 3, with a simple anal-
ysis done on a real asphalt. A camera was fixed on a
moving body and moved tracking four points: i) on a
static object with height h (point O), ii) on the ground
far from the camera (point F), iii) on the ground close
to the camera (point C) and iv) on the ground with a
distance between F and C (point M). In each frame,
the distances YN = dW,N obtained by the FSM were

computed. In order to better visualize the influ-
ences of unevennesses, the corresponding displace-
ments ∆dW,N = dW,N − dW,N−1 are also displayed in
the figure. If the surface of the asphalt was really flat,
then the displacements ∆dW,N of each point C, M and
F were expected to be the same in each frame. How-
ever, while this happened in frame fa = 2 for exam-
ple (suggesting that the pose of the camera was ex-
actly the one expected by the FSM), in frames fb = 5
and fc = 17 the displacements were different (suggest-
ing that the pose of the camera was different from
the one expected by the FSM). Moreover, Figure 3
shows another important pattern, which points closer
to the camera have smaller magnitudes of ∆dW,N : the
magnitude of ∆dW,N calculated with C in a deter-
mined frame is smaller than the one calculated with
M, which is smaller than the one calculated with F,
which is smaller than the one calculated with O in the
same frame. This example clearly shows the effect of
unevennesses on the FSM. A further analysis accord-
ing to roll, pitch and yaw variations is presented in
Table 1 and Figure 4.

2.2.1 Pitch

Figure (a) of Table 1 shows the influence of pitch vari-
ations on the FSM. Consider that in a certain frame
N a moving body that is shooting a point OR on a
static object on the surface has its pitch changed (rep-
resented by σp,N ) by an unevenness. This variation
shifts height H to Hp,N and therefore the camera com-
putes the distances by the FSM in relation to a new
wrong flat surface, FSp,N . In this wrong surface,
the projection of point OR becomes Pp,N and conse-
quently, YN = dp,N is calculated. However, the cor-
rect distance in such configuration is the one com-
puted with GR, the projection of OR on the real sur-
face on the ground, resulting in YN = dR,N . The rela-
tion between the wrong (dp,N ) and correct (dR,N ) dis-
tances is shown by (6), (7) and (8), where lp is the axis
of rotation and γp,N is the angle between the camera
height H and lp. It is important to notice that the
presented equations don’t explicitly contain the object
height h. It happens because the computed YN = dp,N
itself contains this information, since it is function of
OR, Pp,N and h. We define the error caused by pitch
variation σp,N as εp,N , which is the difference between
the wrong estimated distance (dp,N ) and correct one
(dR,N ), according to (9). Figure 4 (A) quantifies this er-
ror εp,N by adopting as example H = 1.65 m, lp = 1.03
m, several camera pitch variations (σp,N ) and appar-
ent distances to a point by the FSM (YN = dp,N ). The
adopted values of the constant parameters H and lp
are the same as the ones used in the experiments sec-
tion for easier analysis of the obtained results. We can
observe that εp,N increases with the increase of σp,N
and YN . Even for a pitch variation of σp,N = 0.1 rad,
the error εp,N can reach nearly 50 m when YN = 20 m,
what shows that εp,N is very sensitive even to small
σp,N .
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Table 1: Error compensation of the calculated distances by the FSM caused by variations of roll, pitch and yaw.

2.2.2 Yaw

Figure (b) of Table 1 describes the influence of yaw
variations on the FSM. Consider that in a certain
frame N, a moving body that is shooting a point OR
on a static object on the surface has its yaw changed
(σy,N ). In the former pose (pose′N ), the camera com-
putes the distance to point GR as YN = dy,N and XN =
Xy,N . However, the correct distance in Y direction
in the new pose (poseN ) is dR,N . Equations (10) and
(11) show the relation between the wrong and correct
distances, where φy,N is the angle in which the cam-
era sees the object in the former pose. The error εy,N
caused by σy,N is defined as (12). Figure 4 (B) shows
error εy,N in function of yaw variation (σy,N ), φy,N and
apparent distance to the point (YN = dy,N ). First, when
φy,N = 0 rad, we can observe that εy,N increases with
the increase of YN and absolute value of σy,N . For sim-
ilar conditions of YN and σy,N , when φy,N , 0 the er-
rors are shifted to the left or right according to the
value of φy,N . From this analysis we can observe that
small yaw variations such as σy,N = 0.1 rad results in

εy,N > 0.1 m for the adopted range of the parameters
in the example, what shows that yaw variations cause
smaller errors in the distances computed by the FSM
comparing to the pitch variations.

2.2.3 Roll

Finally, Figure (c) of Table 1 shows the influence of
roll variations on the FSM. Consider a camera track-
ing a point OR on a static object of height h on the
surface in a certain frame N. In the same frame, the
moving body is affected by an unevenness on the flat
surface, varying its roll (σr,N ). This variation changes
height H to Hr,N and the camera computes the dis-
tances by the FSM in relation to a wrong flat surface,
FSr,N . In this wrong surface, the projection of point
OR becomes Pr,N and YN = dr,N is calculated. How-
ever, the correct distance is the one computed with
GR, the projection of OR on the real surface on the
ground, resulting in YN = dR,N . The relation between
the wrong (dr,N ) and correct (dR,N ) distances is shown
by (13), (14) and (15), where lr is the axis of rotation
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and γr,N is the angle between the camera height H and
lr . We define the error caused by roll variation σp,N
as εp,N , which is the difference between wrongly esti-
mated distance (dr,N ) and correct one (dR,N ), as shown
in (16). Figure 4 (C) shows error εr,N in function of
camera roll variation (σr,N ), Xr and apparent distance
to the point (YN = dr,N ). We can observe that εr,N in-
creases with the increase of σr,N , Xr and YN . For roll
variations of σr,N = 0.1 rad, εr,N > 2.0 m can occur for
the adopted range of the parameters in the example,
but those errors are still smaller than the ones caused
by pitch variation.

3 Proposed Method

This section is divided into three parts: A) proposed
height estimation method, B) compensation of roll,
pitch and yaw variations and C) proposed algorithm.

3.1 Proposed Height Estimation

Although the FSM has the ambiguity limitation when
computing VO, in fact, the difference of the obtained
displacements caused by the object (∆CamN , ∆Cam′N )
contains useful information. First, the presence of
objects in the scene influence the apparent displace-
ments in pixels seen from the camera. Such difference
in apparent displacements is explored in [12] to find
irregularities in the optic flow and detect precipices.
On the other hand, no further information can be ex-
tracted by existing techniques. Here, our method is
based on the principle that since the FSM assumes
known H and α, then we can assume that the result-
ing projections are also function of these dimensions.
If we further observe the geometrical relations caused
by the FSM and triangulation in two positions (Case
B in Figure 2), we can in fact obtain geometrical rela-
tions in function of H and α, as shown in (17), (18) and
(19). From these equations and (4), we obtain (20) to
(22). Several relations can be observed from the equa-
tions. First, the object causes an extra amount of ap-
parent displacement, defined as mN , and it is propor-
tional to the object height h and camera height H. Sec-
ond, the object height is function of the correct camera
displacement ∆CamN and wrong apparent displace-
ment ∆Cam′N . As afore mentioned, ∆CamN can be es-
timated by traditional VO and even though this tech-
nique will be applied, it is not the focus of this work.

H
dR,N−1

=
h

mN +nN
(17)

H

d′R,N
=

h
nN

(18)

d′R,N = dR,N −mN (19)

∆Cam′N = dR,N−1 − dR,N +mN = ∆CamN +mN (20)

mN =
h(dR,N−1 − d′R,N )

H
=
h(d′R,N−1 − d

′
R,N )

H
(21)

h =H(1− ∆CamN
∆Cam′N

) (22)
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Figure 5: Flowchart of the proposed height estimation
method and compensations.

3.2 Compensation of Roll, Pitch and Yaw
Variations

The equations displayed in Table 1 show that the com-
pensation of the influences caused by roll, pitch and
yaw are straightforward and can be easily done if σp,N ,
σy,N are σr,N are known. Thus, for each acquired
frame by the camera, we compute these variations and
substitute them with the constant and known param-
eters of the vehicle (lp, lr ) and the FSM (α, H, FOVu ,
FOVv) in (8), (11) and (15), obtaining the compen-
sated value dR,N . The main steps of the proposed com-
pensations are illustrated in the bottom part of Figure
5.

3.3 Proposed Algorithm

Figure 5 summarizes the flow of the proposed algo-
rithm. Frames are acquired, features are extracted and
tracked in two frames. Next, the corresponding val-
ues of X and Y are computed by the FSM. Roll, pitch
and yaw variations (σp,N , σy,N , σr,N ) are estimated by
VO and we compensate their influences using (8), (11)
and (15), as explained in the previous section. The
camera displacement (∆CamN ) and compensated ap-
parent displacement of the object (∆Cam′N ) are calcu-
lated by the FSM. Here, we propose to apply two fil-
ters. First, a filter based on displacement constraints
to verify the applied compensations. Even though
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the compensations strongly rely on the estimated roll,
pitch and yaw, wrong estimations on the contrary lead
to high errors. The filter works according to the ob-
served in Figure 3. If a tracked point belongs to an
object above the surface, then its apparent displace-
ment must be bigger than the camera displacement
(∆CamN < ∆Cam′N ). Therefore, we check this condi-
tion by calculating the apparent displacement of the
object with (∆Cam′cN ) and without (∆Cam′ncN ) com-
pensations. If one of them satisfies the condition,
then we adopt this displacement as ∆Cam′N . If both
or none of them satisfies the condition, then we use
the average of the two displacements to estimate the
height, as show in (23). Finally, the median (h∗N ) of
the previous estimations (h1,h2, ...,hN−1,hN ) is also ap-
plied to filter eventual noises, as (24).

∆Cam′N =
∆Cam′cN if ∆Cam′cN > ∆CamN > ∆Cam′ncN
∆Cam′ncN if ∆Cam′cN < ∆CamN < ∆Cam′ncN
∆Cam′ncN +∆Cam′cN

2 otherwise
(23)

h∗N =median(h1,h2, ...,hN−1,hN ) (24)

4 Experiments

The proposed method was evaluated with data from
the KITTI Vision Benchmark Suite (called hereon as
“KITTI”) [15] and processed with a computer In-
tel(R) Core(TM) i7-4600, 2.10 GHz, operating system
Ubuntu (TM) 14.04, Eclipse (TM) development envi-
ronment and OpenCV libraries [16]. Here, we want to
verify the validity and effectiveness of the proposed
height estimation and the proposed compensations of
errors caused by roll, pitch and yaw variations. Thus,
all estimated heights were done with two methods for
later comparison: i) with roll, pitch and yaw compen-
sation and ii) without compensation.

4.1 Applied VO

In order to estimate the camera displacement ∆CamN
in each frame, we adopted a simple VO with rota-
tion estimation by Nister’s 5-point algorithm [17] and
translation by the FSM using features in a ground re-
gion close to the camera (details in the Appendix sec-
tion), similarly to [12]. The parameters (FOVu ,FOVv ,
W, V, H, etc) necessary for the experiments were
adopted according to the provided by the KITTI. The
camera inclination in relation to the ground was not
directly provided, but we estimated that α = 1.1o us-
ing the provided velodyne data. The feature extractor
applied was FAST [18]. The features were automat-
ically extracted when their number was bellow 1500
features. In order to evaluate the proposed monocular
height estimation method, only the left images of the
grayscale camera of the KITTI were used.

4.2 Evaluation Criteria

The evaluation was based on the error (εN ) between
the ground truth (hGT ,N ) and the estimated height
(h∗N ) in each frame N, according to (25). The ground
truth adopted was mainly the height provided by the
velodyne, available in the KITTI. Further details can
be found in the Appendix section.

εN = |hGT ,N − h∗N | (25)

We also adopted a criterion to consider if the
height estimation in a frame failed or not. For ex-
ample, since we considered only objects above the
ground surface, the estimated heights must be higher
than 0 m (i.e., hmin = 0). Furthermore, since the FSM
considers objects below the horizon line, all objects
used in the experiment should have maximum height
equal to the camera height (hmax = H). All estimated
heights outside this maximum and minimum were
considered as failure, as detailed in (26).

height estimation =

success hmin ≤ h∗N ≤ hmax
failure otherwise

(26)

4.3 Results

Experiments were conducted with 10 video sequences
of the KITTI, which contained many static objects
(parked cars, poles, fences, houses, people, boxes, etc)
in the scene. In total, height was estimated 4561 times
with 436 objects. Objects with height 0 ≤ h ≤ H and
distance from 4 to 31 m from the camera were used.
The obtained results are summarized in Table 2, Table
3 and Figure 6.

Data Video sequence Valid Valid
(KITTI) frames objects

1 00 1103 85
2 05 384 35
3 07 229 18
4 08 373 29
5 09 228 23
6 13 347 43
7 15 471 32
8 16 361 35
9 18 407 32

10 19 1094 104
total - 4997 436

Table 2: Summary of the conducted experiments.

without with
comp. comp.

comp. parameter - pitch, yaw, roll
average εN [m] 0.23 0.20

maximum εN [m] 1.51 1.12
number of failures 283 65

Table 3: Comparison of the obtained errors with and
without the proposed compensations.

www.astesj.com 1448

http://www.astesj.com


A. M. Kaneko et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1443-1452
(2017)

0

1

2

-0.1 -0.05 0 0.05 0.1

0

1

2

-0.1 -0.05 0 0.05 0.1

0

1

2

-0.1 -0.05 0 0.05 0.1

0

1

2

0 400 800 1200

0

1

2

0 400

p,N [rad] 

y,N [rad] 

r,N [rad] 
compensated not compensated 

u [pixels] v [pixels] 
N [m] 

N [m] 

N [m] 

N [m] N [m] 

Average: 0.20 Average: 0.23 

Maximum: 1.51 Maximum: 1.12 

Figure 6: Obtained errors of the estimated heights of
all data in the experiments. The results are displayed
according to pixels (u,v) and unevennesses (σp,N , σy,N ,
σr,N ).
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Figure 7: Maximum error cases with and without
compensation.

5 Discussions

Table 2 shows the 10 data and corresponding video se-
quence belonging to the KITTI. The number of valid
frames and objects used in each data are also dis-
played. The estimated heights of all objects chosen
within this data are presented in relation to the pixel
positions (u,v) in Figure 6. We can observe that the
objects were well distributed along pixel u direction,
covering many possible positions during the experi-
ments. On the other hand, due to the geometrical

limitations of the FSM only pixels below the horizon
line (i. e., v > 200 pixels) were used, but we can also
observe objects distributed along this interval. Next,
the used data is displayed in relation to σp,N , σy,N and
σr,N . Variations of roll (σr,N ) and pitch (σp,N ) in the
used data were smaller than those of yaw (σy,N ): while
the magnitude of roll and pitch variations were within
0.03 rad, the magnitude of the yaw variations were
over 0.05 rad. The average error of all used data re-
sulted in 0.20 m with the 3DOF compensations and
in 0.23 m when no compensations were done. The
maximum error resulted in 1.12 m for the compen-
sated case an 1.51 m for the non-compensated one.
Since both average and maximum errors were im-
proved with the compensations, we can affirm that the
proposed method is valid and effective. These cases
of maximum errors are illustrated in Figure 7. In (a),
the case of maximum error with compensations is dis-
played. The point was chosen too close to the horizon
line, becoming very sensitive to noises and causing the
high error. However, for the same case, the method
without compensation failed to estimate the height.
In (b), the case of maximum error without compensa-
tion occurred when the camera estimated the object
height while climbing a slope. As presented in the
previous sections, pitch variations cause higher errors
comparing to yaw and roll, and a high error of 1.51
m was expected. Nevertheless, when the proposed
compensations were applied in the same data, the es-
timation error dropped to 0.56 m. Furthermore, the
distribution of σp,N , σy,N and σr,N in the experiments
(Figure 8) shows that even though the data was taken
on public roads, most of the pose variations were be-
low 0.01 rad: 98.8% of the σp,N , 76.6% of the σy,N
and 99.7% of the σr,N . We can observe that the er-
rors were higher for higher values of pitch variation
σp,N when no compensation was done, as expected
by Figure 4. Even though in average the compen-
sated and non-compensated methods had similar er-
rors (0.20 and 0.23 m), the difference of both errors
was higher for higher variations of σp,N , σy,N and σr,N .
During the experiments objects with distances further
than 20 m were used, what was enough to cause more
than 5 m error according to Figure 4. Since the ob-
tained errors were below this expected ones, we can
affirm that the obtained results were satisfactory. Ex-
amples of cases with higher yaw variations are shown
in the Appendix section. We can observe a signifi-
cant difference of the proposed method in terms of
number of successful height estimations. During the
experiments, the compensated method failed to esti-
mate height 65 times, while the non-compensated one
failed 283 times (4 times more). Such failures require
further analysis in future work, but the effectiveness
of the proposed compensations became clear.

Although this work relied on VO, it didn’t focus on
improving its accuracy. However, we estimated that
the applied VO had around 13% error per frame and
influenced directly the results, what means that the
proposed method becomes more accurate with the im-
provement of VO itself. Such VO errors led to wrong
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estimation of camera pose, generating higher height
estimation errors and examples are shown in the Ap-
pendix section. Even though the proposed method
improved the average and maximum error of the esti-
mated heights, some limitations still exist. The small
camera pose variation per frame suggests that further
evaluation with higher variations is necessary, by for
example, increasing the moving body’s velocity and
analyzing the relation between camera frame rate and
obtained height estimation errors. Finally, the experi-
ments made evident another necessary correction: we
considered angular variations (rotation) during the
proposed compensations, however translations in Y
also occurred. According to the FSM, such transla-
tions change the camera height H and must be con-
sidered when computing the distance to objects. We
believe that this consideration can further increase the
accuracy of our height estimation method.
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Figure 8: Distribution of the pose variation detected
in the used data.

6 Conclusions and Future Work

A novel method of monocular height estimation with
3DOF compensation of roll, pitch and yaw variations
was proposed. The method can estimate height of ob-
jects with only two frames of a monocular camera. Ex-
periments outdoors with the KITTI benchmark data
(4997 frames and 436 objects) resulted in improved
accuracy of the estimated heights from a maximum
error of 1.51 m to 1.12 m and reduced number of esti-
mation failures by 4 times, proving the validity and ef-
fectiveness of the proposed method. This method can
be enhanced by improving monocular visual odom-
etry techniques and considering translational varia-
tions of the camera during height estimation. Further
investigation about influences of frame rate, moving
velocity and robustness are planned in the future.
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Appendices

In this section, we provide further details of the exper-
imental conditions and examples of compensations.

A Experimental Conditions

We further explain the experimental conditions
adopted in the paper. The experiments were con-
ducted according to Figure 9. The algorithm exe-
cuted VO automatically for each frame (a), which
were shifted manually by a human operator. Among
all the extracted feature points, the operator chose
with the mouse any point on a desired object (b).
Here, since the FSM has geometrical restrictions, only
points below the horizon (approximately in v = V

2 )
were chosen. The chosen point (in red) was tracked
over the frames until the last frame possible (c), and
its height and ground truth were computed and stored
in each frame. The estimated position, stored data and
extracted points of the current object were reseted af-
ter the heights were estimated (d) and the process re-
peated for all used data.

a) Visual odometry only (frame 1) 

b) Start of height estimation (frame 2) 

c) End of height estimation (frame N-1) 

d) Reset (frame N) 

input 

ground region 

u 

v 

Figure 9: Adopted sequence to estimate the height of
an object during the experiments.

First, all estimated heights and relevant data were
saved and later verified for validity. Frames whose
ground region contained few or no features (due to
light conditions for example) or had a moving object
were considered invalid (Figure 10). Tracking was
also verified (Figure 11). Although we needed only
two frames per estimation, we focused on features
consistent in many frames (a minimum of 3 estima-
tions per object). Thus, in case the tracking failed
before the fourth frame, that object and estimations
were considered invalid. If the tracking failed af-
ter the fourth frame, only the estimations before that
were considered valid.

dark region (few/none 

extracted features) 

interference from a 

moving object 

Figure 10: Examples of frames considered invalid:
dark regions (right) and moving object (left).

frame N-1 frame N (error) 

drift 

Figure 11: Example of tracked feature considered in-
valid.

We adopted as ground truth the height from the
velodyne. The necessary information for converting
the camera-velodyne coordinates were also provided
by the KITTI. Due to limitations of the sensor resolu-
tion, we chose as ground truth the closest pixel with
available velodyne data. This search was also auto-
matically done by the algorithm in each frame. How-
ever, since the velodyne fails in some situations, we
also computed the height by the disparity from the
left and right images of the camera, using Semi Global
Block Matching [19] in OpenCV. For each point cho-
sen by the operator, its corresponding velodyne data
was recorded. Since the camera was moving forward
and approaching the object, we considered that the
depth from the velodyne to the object on the next
frame should become smaller than the one in the pre-
vious frame. In case it wasn’t, we considered that the
height estimated by the velodyne was also not consis-
tent, and the one calculated by the stereo camera was
used instead (Figure 12). In case both depths from the
sensors were not smaller than the previous one, then
the current estimation and frame were considered in-
valid. Since we considered the initial frame of each
object as reference, variations in Y of the camera itself
were also compensated when computing the ground
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truth.
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Figure 12: Example of adopted ground truth and cor-
rection. Data from the stereo camera was used when
the velodyne data was considered inconsistent.

B Further Examples of Compensa-
tions

Even though there were few occurrences of yaw vari-
ations higher than 0.01 rad per frame during the ex-
periments, we can further observe the benefits of the
compensations in the example in Figure 13, which ex-
emplifies the estimated heights during a curve. In the
first frames, the camera was mostly moving forward
so that εN was small for both compensated and not
compensated cases. When the yaw variation started to
increase the errors also increased. However, in frame
10 we can see εN decreasing to a minimum due to the
decrease of φy,N , increasing again when φy,N started
increasing, as foreseen by Figure 4.

Figure 14 presents other examples of compensa-
tion. The cases in Figure 14 (iii) to (vi) had smaller
average errors per frame after the compensations. On
the other hand, even though the proposed method im-

proved the average and maximum error of the esti-
mated heights, some limitations as in Figure 14 (i) and
(ii) still exist. We believe that such errors were caused
by the errors of the adopted VO itself (13 % error) and
improvements will be further investigated in future
work.

0

0.25

0.5

0 5 10 15 20

frame 1 frame 5 

frame 10 frame 15 

frame 

N [m] 

compensated 

not compensated 

Figure 13: Example of yaw compensation.

294.8 mm 257.7 mm (i) (ii) 

(iii) (iv) 

(v) (vi) 

111.3 mm 83.4 mm 

8.8 mm 197.3 mm 216.3 mm 279.0 mm 

226.2 mm 294.4 mm 7.1 mm 106.5 mm 

Figure 14: Examples of objects and average εN per
frame. The numbers in blue (right) are the non-
compensated cases and the numbers in red (left) are
the compensated ones.
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