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 The full service life of a technical product or system is usually not completed after an initial 
failure. With appropriate measures, the system can be returned to a functional state. 
Availability is an important parameter for evaluating such repairable systems: Failure and 
repair behaviors are required to determine this availability. These data are usually given 
as mean value distributions with a certain confidence level. Consequently, the availability 
value also needs to be expressed with a confidence level. 

This paper first highlights the bootstrap Monte Carlo simulation (BMCS) for availability 
demonstration and inference with confidence intervals based on limited failure and repair 
data. The BMCS enables point-, steady-state and average availability to be determined with 
a confidence level based on the pure samples or mean value distributions in combination 
with the corresponding sample size of failure and repair behavior. Furthermore, the method 
enables individual sample sizes to be used. A sample calculation of a system with Weibull-
distributed failure behavior and a sample of repair times is presented. 

Based on the BMCS, an extended, new procedure is introduced: the "inverse bootstrap 
Monte Carlo simulation" (IBMCS) to be used for availability demonstration tests with 
consideration of confidence levels. The IBMCS provides a test plan comprising the required 
number of failures and repair actions that must be observed to demonstrate a certain 
availability value. The concept can be applied to each type of availability and can also be 
applied to the pure samples or distribution functions of failure and repair behavior. It does 
not require special types of distribution. In other words, for example, a Weibull, a 
lognormal or an exponential distribution can all be considered as distribution functions of 
failure and repair behavior. 

After presenting the IBMCS, a sample calculation will be carried out and the potential of 
the BMCS and the IBMCS investigated. 
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1. Introduction 

This paper is an extension of work originally presented in the 
course of the Annual Reliability and Maintainability Symposium 
(RAMS 2017) [1]. 

Availability is an important parameter for describing a 
repairable system. This system metric shows the quality of both of 
its major influences: reliability and maintainability. High 
availability is typically demanded from the customer, e.g., if 
capital goods are concerned. The required availability target is 

frequently specified in combination with a certain confidence 
level. The confidence level defines the probability that the actual 
population availability is at least the specified availability. 

To demonstrate that the system or product will operate at a 
certain performance level under specified operating conditions, a 
demonstration test is required. Several reliability demonstration 
tests have been proposed, such as in [2] or [3]. For the 
demonstration of a repairable system's quality, an availability 
demonstration test needs to be carried out. This test shows that the 
system or product will operate with the stated level of availability. 

Descriptions of failure and repair behavior, in addition to their 
demonstration through tests, are important topics for specifying 
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availability. Reliability and maintainability are usually 
demonstrated on the basis of limited sample sizes within a 
reliability test. The evaluation of the test thus yields a mean-value 
failure or repair distribution with a certain confidence level. The 
availability based on this limited information also includes a 
confidence level. Consequently, the confidence level of 
availability also needs to be considered within the course of an 
availability demonstration test. 

Several methods which allow for the availability inference with 
confidence level have been published. Relatively recent 
approaches can be found in [4] and [5]. However, these works 
either require special types of distribution, or are restricted to 
steady-state availability. In [6], the author published three methods 
for availability prediction with confidence level which are not 
restricted to special distribution types and which allow for the 
prediction of time-dependent and steady-state availability with a 
confidence level. 

Many different reliability demonstration tests have been 
proposed to demonstrate that a system will operate with a certain 
reliability [2]. However, only limited work has been conducted to 
develop an availability demonstration test. As a first publication, 
Coppola [7] provided an overview of the topic of availability 
demonstration. In [8], the authors proposed confidence limits on 
availability for exponentially distributed failure and repair times 
and a non-parametric approach. The approach put forward by [9] 
also requires exponentially distributed failure and repair times. In  
[10], the researcher present an initial procedure for conducting an 
availability demonstration tests under the assumption that the 
failure and repair behavior are both exponentially distributed. 
However, all of these works require special distribution types, e.g., 
exponential distribution, or they only allow for the demonstration 
of steady-state availability. Ref [1] provided initial concepts and 
methods for the availability demonstration of time-dependent and 
average availability with confidence level. In [11], [12], the 
authors provided further approaches for availability assessment 
based on Monte-Carlo simulation. These works does not require 
confidence levels and the number of samples are not predefined in 
advance. 

To the authors’ knowledge, no complete procedure has been 
published so far concerning the availability demonstration test 
with consideration of confidence levels for a specific point in time 
or time interval that provides a test plan. The known methods only 
demonstrate availability based on a predefined number of given 
failure and repair times or do not include confidence levels at all.  

In this paper, we present a new procedure named the "inverse 
bootstrap Monte Carlo simulation" (IBMCS) which facilitates the 
availability demonstration with consideration of confidence levels, 
which is based on the basic concept for availability demonstration 
published in [1]. The procedure yields a test plan consisting of the 
required number of failures that must be observed in order to 
demonstrate a certain availability value for a point in time or as an 
average value for a specific time interval. Furthermore, the ratio of 
total observed repair times to total observed failure times will be 
provided. The new procedure is not restricted to special 
distribution types and has the potential to be applied to general 
availability scenarios. 

Firstly, several methods for calculating availability are briefly 
introduced: the Markov process as an analytical method, the 
renewal process as a numerical method and the Monte Carlo 
simulation which provides approximate solutions. Several 

methods for determining confidence levels are also briefly 
outlined. Furthermore, the bootstrap Monte Carlo simulation 
(BMCS) for availability inference and the availability 
demonstration are described in greater detail. The bootstrap 
Markov process (BMP) and the bootstrap renewal process (BRP) 
are also named briefly. A sample calculation of BMCS is presented 
for a system with Weibull-distributed failure behavior and a given 
sample of repair times. All three methods are in the field of 
simulation-based methods like the Monte Carlo simulation based 
approaches. 

After this, the new procedure for conducting availability 
demonstration tests with consideration of confidence levels is 
presented on the basis of the BMCS. The procedure yields a test 
plan comprising the required number of failures that must be 
observed in order to demonstrate a certain availability value. The 
availability value can be given as a specific availability for a point 
in time or as an average availability – specified in combination 
with a confidence level. Furthermore, the procedure yields the 
required ratio of total observed repair times to total observed 
failure times. 

Finally, a sample availability demonstration test is presented 
that takes confidence levels into consideration. In the presented 
example, the failure behavior conforms to a Weibull distribution, 
whereby the repair times are lognormally distributed. Finally, the 
potential of the BMCS and the IBMCS alike is investigated. 

2. Fundamentals of Reliability Engineering 

In this section, several fundamentals of reliability engineering 
are summarized. Firstly, the basic definitions of statistics and 
probability theory are presented before the most common lifetime 
distributions for a reliability description are outlined. 

2.1. Reliability and Failure Probability 

The failure probability 𝐹𝐹(𝑡𝑡)  is the complement of the 
reliability with 𝐹𝐹(𝑡𝑡) = 1 − 𝑅𝑅(𝑡𝑡) . The reliability 𝑅𝑅(𝑡𝑡)  of a 
component or system is defined as the probability that the 
component or system will not fail prior to time 𝑡𝑡 when operating 
under prescribed functional and environmental conditions [13].  

Besides the reliability and the failure probability as the 
cumulative distribution function (cdf), the probability density 
function (pdf) 𝑓𝑓(𝑡𝑡)  and the failure rate 𝜆𝜆(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)/𝑅𝑅(𝑡𝑡)  are 
often required. The mean lifetime 𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹 (Mean Time To Failure) 
is defined as the expected value of lifetime 𝜏𝜏 [13]: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹 = 𝐸𝐸(𝜏𝜏) = ∫ 𝑡𝑡 𝑓𝑓(𝑡𝑡) 𝑑𝑑𝑡𝑡∞
0 = ∫ �1 − 𝐹𝐹(𝑡𝑡)� 𝑑𝑑𝑡𝑡∞

0   (1) 

Equation (1) yields the 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅 (Mean Time To Repair) if the 
distribution is based on repair times instead of failure times. 

2.2. Lifetime Distributions 

Several lifetime distributions are available in reliability 
engineering for describing the reliability or failure behavior of a 
system or component. In the following section, the most 
commonly used lifetime distributions are described: the 
exponential distribution and the Weibull distribution. 

The exponential distribution is often used for electronic 
components [13]. Its pdf is defined as [14]: 

 𝑓𝑓(𝑡𝑡) = 𝜆𝜆 ∙ 𝑒𝑒−𝜆𝜆∙𝑡𝑡, 𝑡𝑡 ≥ 0 and 𝜆𝜆 > 0 (2) 
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The only parameter of the exponential distribution is the 
constant failure rate 𝜆𝜆. Starting from an initial value, the density of 
the exponential distribution decreases constantly according to an 
inverse exponential function. The mean lifetime described is given 
as [13]: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹 = 1/𝜆𝜆 (3) 

The Weibull distribution is the most common lifetime 
distribution used in mechanical engineering. The pdf for the three-
parameter Weibull distribution is defined as [14]: 

 𝑓𝑓(𝑡𝑡) = 𝑏𝑏
(𝜂𝜂−𝑡𝑡0)

�𝑡𝑡−𝑡𝑡0
𝜂𝜂−𝑡𝑡0

�
𝑏𝑏−1

𝑒𝑒−�
𝑡𝑡−𝑡𝑡0
𝜂𝜂−𝑡𝑡0

�
𝑏𝑏

, 𝑡𝑡 ≥ 𝑡𝑡0 ≥ 0 (4) 

Here, 𝑏𝑏  is the shape parameter and 𝜂𝜂  the scale parameter 
(characteristic lifetime). The failure-free time 𝑡𝑡0  determines the 
point in time from which failure occurs. It is called referred to as a 
two-parameter Weibull distribution, if 𝑡𝑡0 = 0 . The failure rate 
𝜆𝜆(𝑡𝑡) of a Weibull distribution is a function in time. 

3. Maintenance and Availability 

The following section outlines the fundamentals of repairable 
systems. Firstly, the basic definitions of availability and repairable 
systems are summarized. Afterwards, three methods for 
calculating repairable systems are presented: the Markov process, 
the renewal process and the Monte Carlo simulation. Whereas the 
Markov process provides an analytical solution, the renewal is a 
numerical method. The Monte Carlo simulation as a simulation-
based method provides approximate solutions. 

3.1. Availability and Repairable Systems 

Availability is an important parameter for evaluating repairable 
systems. A repairable system can be returned to a function state 
following a failure. Considering a stochastic point process with 
two possible states, the operational state is assigned number 1. If 
the system fails, the state is assigned number 0. A state indicator 
can be established with these definitions: 

 𝑐𝑐(𝑡𝑡) = �1 if the system is "operational" at time 𝑡𝑡
0 if the system is "failed" at time 𝑡𝑡            (5) 

Here, the pdf 𝑓𝑓(𝑡𝑡) describes the transition from 1 to 0 (failure) 
and the pdf 𝑔𝑔(𝑡𝑡) the transition from 0 to 1 repair. Table 1 presents 
further descriptions of the failure and repair behavior. 

The availability is defined as the probability that the system 
will operate satisfactorily at time 𝑡𝑡 [13]. The time-dependent or 
point-availability is defined as the expected value of the state 
indicator according to (5). The following applies [13]: 

 𝐴𝐴(𝑡𝑡) = 𝑃𝑃(𝑐𝑐(𝑡𝑡) = 1) = 𝐸𝐸(𝑐𝑐(𝑡𝑡)) (6) 

Table 1. Description of the failure and repair behavior. 

Failure behavior Repair behavior 

Failure density 𝑓𝑓(𝑡𝑡)  Repair density 𝑔𝑔(𝑡𝑡)  

Failure probability 𝐹𝐹(𝑡𝑡)  Repair probability 𝐺𝐺(𝑡𝑡)  

Failure rate 𝜆𝜆(𝑡𝑡)  Repair rate  𝜇𝜇(𝑡𝑡)  

Reliability 𝑅𝑅(𝑡𝑡)  -----  

Expected lifetime  𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹  Expected repair time 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅  
 

The asymptotic value 𝐴𝐴∞ with 

 𝐴𝐴∞ = lim
𝑡𝑡→∞

𝐴𝐴(𝑡𝑡) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 (7) 

is referred to as steady-state availability. Finally, the average 
availability 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) can be calculated using [13]: 

 𝐴𝐴𝐴𝐴𝐴𝐴(𝑡𝑡) = 1
𝑡𝑡 ∫ 𝐴𝐴(𝑥𝑥)𝑑𝑑𝑥𝑥𝑡𝑡

0  (8) 

3.2. Markov Process 

The Markov method (also called Markov model) is a method 
for analyzing repairable systems. It provides as an analytical 
method exact calculation results. The objective of the model is to 
determine the availability of the repairable system or component. 
The method is subject to a number of requirements [15]. These 
assumptions limit modelled maintenance actions and simplify 
calculations [13]: 

• The unit to be observed switches continually between the 
states of "operational" and "repair", i.e., the state of the 
system or component can only be "operational" or "repair". 

• After each maintenance action or repair, the repaired unit 
is as good as new. 

• The times required for operation and repair for each unit 
observed are continuous and stochastically independent. 

• The influence of any switch devices is not taken into 
consideration. 

The Markov method is based on the Markov process [15], a 
stochastic process with a limited number of states. As a direct 
result of the Markov property, only systems whose elements 
possess constant failure and repair rates can be investigated. Thus, 
the failure and repair behavior need to be exponentially distributed. 

For an individual system or component with the failure rate 𝜆𝜆 
and repair rate 𝜇𝜇, the availability 𝐴𝐴(𝑡𝑡) can be determined as the 
probability that the item assumes the state "operational". The 
following applies [13]: 

 𝐴𝐴(𝑡𝑡) = 𝜇𝜇
𝜇𝜇+𝜆𝜆

+ 𝜆𝜆
𝜇𝜇+𝜆𝜆

∙ 𝑒𝑒−(𝜆𝜆+𝜇𝜇)∙𝑡𝑡 (9) 

If 𝑡𝑡 tends to infinity (𝑡𝑡 → ∞), the availability converges with 
the steady-state availability 𝐴𝐴∞: 

 𝐴𝐴∞ = lim
𝑡𝑡→∞

𝐴𝐴(𝑡𝑡) = 𝜇𝜇
𝜇𝜇+𝜆𝜆

= 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

 (10) 

3.3. Renewal Process 

One additional method for evaluating repairable systems is the 
renewal process. If the time for renewal, i.e., the repair duration, is 
not disregarded, it is termed an alternating renewal process. In this 
case, the life and repair time succeed each other alternately (see 
Figure 1). The associated graph of the state indicator of an 
alternating renewal process of a single item switches alternately 
between 1 (operational) and 0 (repair) [13]. At time 𝑡𝑡 = 0, the item 
begins operating in a new condition. When the lifetime 𝜏𝜏1,𝑖𝑖 comes 
to an end, it is called the point of failure 𝑀𝑀1,𝑖𝑖. In the ensuing repair 
status, the component is either repaired or replaced. The point of 
renewal 𝑀𝑀0,𝑖𝑖  ends the repair duration τ0,𝑖𝑖 . All points of failure 
constitute the embedded 1-renewal process and all points of 
renewal the embedded 0-renewal-process [15]. 

http://www.astesj.com/


F. Müller et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1565-1576 (2017) 

www.astesj.com     1568 

 
Figure 1. Alternating renewal process [13]. 

The renewal density function (rdf) ℎ0(𝑡𝑡)  and ℎ1(𝑡𝑡)  for the 
renewal points described by 𝑀𝑀0,𝑖𝑖 and 𝑀𝑀1,𝑖𝑖 are given as [16]: 

 ℎ0(𝑡𝑡) = 𝑓𝑓 ∗ 𝑔𝑔(𝑡𝑡) + ∫ 𝑓𝑓 ∗ 𝑔𝑔(𝑡𝑡 − 𝑡𝑡′)ℎ0(𝑡𝑡′)𝑑𝑑𝑡𝑡′𝑡𝑡
0  (11) 

 ℎ1(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) + ∫ 𝑓𝑓 ∗ 𝑔𝑔(𝑡𝑡 − 𝑡𝑡′)ℎ1(𝑡𝑡′)𝑑𝑑𝑡𝑡′𝑡𝑡
0  (12) 

Here, the operator ∗  denotes convolution. The renewal 
functions can be determined by integration of the rdfs [17]: 

 𝐻𝐻0(𝑡𝑡) = 𝐹𝐹 ∗ 𝑔𝑔(𝑡𝑡) + ∫ 𝑓𝑓 ∗ 𝑔𝑔(𝑡𝑡 − 𝑡𝑡′)𝐻𝐻0(𝑡𝑡′)𝑑𝑑𝑡𝑡′𝑡𝑡
0  (13) 

 𝐻𝐻1(𝑡𝑡) = 𝐹𝐹(𝑡𝑡) + ∫ 𝑓𝑓 ∗ 𝑔𝑔(𝑡𝑡 − 𝑡𝑡′)𝐻𝐻1(𝑡𝑡′)𝑑𝑑𝑡𝑡′𝑡𝑡
0  (14) 

There are several possibilities for describing availability with 
the aforementioned definitions [17]. The time-dependent 
availability can be determined as: 

 𝐴𝐴(𝑡𝑡) = 1 + 𝐻𝐻0(𝑡𝑡) − 𝐻𝐻1(𝑡𝑡) (15) 

The difference between the renewal functions is equal to the 
unavailability. The steady-state availability can be determined 
according to (7) by applying the expected values 𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹  and 
𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅 of the life and repair distributions. 

The alternating renewal process has no restrictions with regard 
to the failure and repair rates. Both constant and time-dependent 
failure or repair rates, e.g., with Weibull- or lognormally 
distributed failure and repair times, are allowed. In general, the 
point-availability can only be calculated numerically based on the 
renewal process. An analytical solution can only be derived for 
special types of cdfs like the exponential or Erlang distribution 
[16]. 

3.4. Monte Carlo Simulation 

Besides the Markov process and the renewal process, the 
availability of a system or component can be calculated with the 
help of the Monte Carlo simulation. The Monte Carlo simulation 
is based on the principle of random sampling. It is a numerical 
method for the approximate solution of an analytical problem [18]. 
Thus, no exact values can be determined by Monte Carlo 
simulation but approximate values. The Monte Carlo simulation is 
frequently used for reliability analysis and facilitates the 
calculation of reliability parameters of very complex systems. In 
contrast to the Markov process, the Monte Carlo simulation has no 
restrictions with regard to the distribution functions or parameters 
[19]. The basic principle for calculating the point-availability with 
the help of the Monte Carlo simulation is illustrated in Figure 2 
based on [20]. 

 
Figure 2. Monte Carlo simulation of (point-) availability [20]. 

Firstly, random failure and repair times are generated based on 
the given cdfs of failure and repair behavior. Correspondingly, 
pseudorandom numbers within the bounds 0 and 1 are generated. 
These random numbers are interpreted as the failure 𝐹𝐹(𝜉𝜉) or repair 
𝐺𝐺(𝜉𝜉)  probabilities. The failure and repair times 𝑡𝑡∗  can 
subsequently be determined based on these random failure and 
repair probabilities and using the inversion method [21]: 

 𝑡𝑡∗ = 𝐹𝐹−1(𝜉𝜉) ορ 𝑡𝑡∗ = 𝐺𝐺−1(𝜉𝜉)            (16) 

By alternatively selecting one of the randomly generated 
failure and repair times 𝑡𝑡∗, one trajectory of the state indicator is 
established. As for the renewal process, the starting condition 
𝑐𝑐(𝑡𝑡 = 0) = 1 is assumed: The component is thus starting in a new 
condition at time 𝑡𝑡 = 0. 

After establishing one state indicator throughout the entire 
observation time, the procedure is repeated 𝑛𝑛 times. 𝑛𝑛 is given as 
the number of Monte Carlo replications. As a result, 𝑛𝑛 trajectories 
of the state indicator are calculated. Finally, the time-dependent 
availability 𝐴𝐴(𝑡𝑡)  can be derived as the arithmetic mean of all 
generated state indicators for each time. 

It should be mentioned that the calculated availability 
represents an approximate solution. The statistical quality of the 
values determined by means of the Monte Carlo simulation can be 
estimated. According to the central limit theorem [21], (17) is valid 
for the random number 𝜏𝜏̅ according to (18) [22]. 

 lim
𝑛𝑛→∞

𝑃𝑃 ��𝜏𝜏̅ − 𝐸𝐸(𝜏𝜏) ≤ 𝑥𝑥𝑥𝑥
√𝑛𝑛
�� = 1

√2𝜋𝜋
∫ 𝑒𝑒−�

𝑢𝑢2
2 �+𝑥𝑥

−𝑥𝑥 𝑑𝑑𝑑𝑑 (17) 

where −∞ < 𝑥𝑥 < ∞ 

 𝜏𝜏̅ = 1
𝑛𝑛
∑ 𝜏𝜏𝑖𝑖𝑛𝑛
𝑖𝑖=1  (18) 

This means that the estimated random number normally 
follows an asymptotic distribution, with the expected value 𝐸𝐸(𝜏𝜏) 
and the variance 𝜎𝜎2/𝑛𝑛. Based on this thesis, the statistical quality 
of the mean value determined with the help of the Monte Carlo 
simulation can be specified as a level of statistical quality. 
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4. Confidence Intervals 

Selected fundamentals for determining confidence levels are 
presented in this chapter. After the basic definition, the bootstrap 
method is presented in greater detail. 

4.1. Basic Definition of Confidence Level 

The confidence level 𝑃𝑃𝐴𝐴 of availability 𝐴𝐴𝐿𝐿 can be determined 
in an analogous manner to the reliability [23]. According to (19), 
it can be calculated using the integral of the density with the 
considered value 𝐴𝐴𝐿𝐿 as a lower limit: 

 𝑃𝑃𝐴𝐴 = 𝑃𝑃(𝐴𝐴𝐿𝐿 ≤ 𝐴𝐴 ≤ 1) = ∫ 𝑓𝑓(𝐴𝐴′)𝑑𝑑𝐴𝐴′1
𝐴𝐴𝐿𝐿

 (19) 

The calculation is based on the density 𝑓𝑓(𝐴𝐴) of the availability. 
The confidence level describes the fact that a minimum availability 
value 𝐴𝐴𝐿𝐿  is reached with a probability of 𝑃𝑃𝐴𝐴 = 1 − 𝛼𝛼 . One 
inherent part of a certain confidence level is the specification of the 
probability 𝑃𝑃𝐴𝐴. As a sample, the 95% confidence level implies that 
the observed value is at least the certain value 𝐴𝐴𝐿𝐿 in 95 out of 100 
cases. Usually, a confidence interval lies symmetrically to the 
median. This means that a 90% confidence interval is bounded by 
the 5% and 95% confidence level. 

There are several methods for determining the confidence 
intervals of a distribution function. Table 2 shows the most 
commonly used methods, which can be divided into “analytical 
methods”, “approximate methods” and “simulation-based 
methods”. The table itself is based on [24]. 

An analytical description of the availability function is required 
in order to determine a confidence interval with analytical or 
approximate methods. However, if general scenarios are 
considered or the Monte Carlo simulation is used, this analytical 
description is not present or modelled implicitly into an algorithm. 
Even in the case that the analytical formulation is absent, the 
bootstrap methods are suitable for determining confidence levels 
of availability. However, the confidence level determined by 
bootstrapping is also an approximate solution. 

Table 2. Most commonly used methods for determining a confidence interval. 

Analytical 
methods 

Approximate 
methods 

Simulation-based 
methods 

• Beta-binomial 
distribution 

• Likelihood ratio 
Interval 

• Bayes confidence 
interval 

• Fisher matrix 

• Wald method 

• Wilson score 
interval 

• Bootstrapping: 

Non-parametric 
bootstrapping 

Parametric 
bootstrapping 

4.2. Bootstrapping 

Bootstrapping [25] is a method of resampling and suitable for 
statistical evaluation, especially if the parameters of a given sample 
cannot be determined using other analytical methods [26]. The 
method was first introduced by Bradley Efron [27]. There are two 
different types of bootstrapping according to Figure 3: non-
parametric and parametric bootstrapping. 

Non-parametric bootstrapping starts with a given sample 
𝑀𝑀 = {𝑡𝑡1, 𝑡𝑡2, …, 𝑡𝑡𝑛𝑛} with sample size 𝑛𝑛. First, a bootstrap sample 𝑀𝑀�  
is established by drawing 𝑛𝑛  random numbers from 𝑀𝑀  with 
replacement and without regard to the order. Afterwards, using 

well-known standard parameter estimators such as the Maximum 
Likelihood Method (MLE) [13], the parameters 𝜃𝜃 of the bootstrap 
sample are estimated so that the cdf obtained by bootstrapping 
Φ�(𝑡𝑡), named as realization, can be identified. 

 
Figure 3. Non-parametric (left) and parametric (right) bootstrapping [28]. 

In contrast to non-parametric bootstrapping, the parametric 
bootstrap method is based on a given distribution function Φ(𝑡𝑡). If 
this cdf is not given in advance, it can be estimated using well-
known estimators such as the MLE or by employing the non-
parametric bootstrap method. The first step of parametric 
bootstrapping is to generate 𝑛𝑛 random failure times from the given 
distribution function. This is performed in the same manner as for 
the Monte Carlo simulation: with the help of pseudorandom 
numbers and the inversion method. The distribution function by 
means of bootstrapping Φ�(𝑡𝑡) will subsequently be determined in 
the same manner as non-parametric bootstrapping, i.e., using 
standard parameter estimators. 

Several bootstrap confidence intervals are available for 
analyzing the confidence level by bootstrapping [2]. The 
evaluation can be carried out as [29]: 

• An empirical bootstrap confidence interval 

• A standard bootstrap confidence interval 

• A percentile bootstrap confidence interval 

• A bootstrap-t-confidence interval 

• A BCα confidence interval 

• etc. 

Irrespective of the type of bootstrap confidence level, the 
bootstrap method needs to be carried out 𝐵𝐵 (number of bootstrap 
replications) times. As a consequence, 𝐵𝐵  realizations of the 
distribution function Φ�𝑖𝑖(𝑡𝑡) , 𝑖𝑖 = 1(1)𝐵𝐵  can be identified. This 
array of trajectories subsequently has to be evaluated. Figure 4 
shows the procedure for determining a confidence level using the 
bootstrap method. 

 
Figure 4. Determining a confidence level using bootstrapping. 
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In the following, only the “empirical bootstrap confidence 
interval”, the “standard bootstrap confidence interval” and the 
“percentile bootstrap confidence interval” are presented in greater 
detail. If an empirical bootstrap confidence interval is calculated, 
the trajectories are evaluated by performing an empirical bootstrap 
density function 𝜑𝜑 �Φ��𝑡𝑡𝑗𝑗��  for each time 𝑡𝑡𝑗𝑗 . Based on the 
percentiles of these density functions, the confidence level of the 
original distribution function can be determined. 

It is likewise possible to calculate a “standard bootstrap 
confidence interval”. Under the assumption that the realizations 
Φ�𝑖𝑖(𝑡𝑡)  are roughly normally distributed, the upper and lower 
confidence limit of the 100(1-2α)% standard bootstrap confidence 
interval can be calculated for each time 𝑡𝑡𝑗𝑗 as: 

 �Φ��𝑡𝑡𝑗𝑗� − 𝑧𝑧𝛼𝛼 ∙ 𝑠𝑠𝑑𝑑 �Φ��𝑡𝑡𝑗𝑗�� , Φ��𝑡𝑡𝑗𝑗� + 𝑧𝑧𝛼𝛼 ∙ 𝑠𝑠𝑑𝑑 �Φ��𝑡𝑡𝑗𝑗��� (20) 

Φ�(𝑡𝑡𝑗𝑗) is the arithmetic mean value of the 𝐵𝐵 realizations Φ�𝑖𝑖(𝑡𝑡), 
where 𝑠𝑠𝑑𝑑 �Φ��𝑡𝑡𝑗𝑗��  is given as the standard deviation of these 
realizations. 𝑧𝑧𝛼𝛼  is the αth quantile of the standard normal 
distribution. 

On the other hand, the percentile bootstrap confidence interval 
can be selected based on the given 𝐵𝐵 realizations Φ�𝑖𝑖(𝑡𝑡). They have 
to be sorted in ascending order. Consequently, the Φ𝑖𝑖

∗(𝑡𝑡𝑗𝑗) is the ith 
smallest element. Afterwards, the 100(1-2α)% percentile bootstrap 
confidence interval can be determined according to (21). Here, [𝑥𝑥] 
equals the largest integer less than or equal to 𝑥𝑥. 

 �Φ[𝛼𝛼∙𝐵𝐵]
∗ �𝑡𝑡𝑗𝑗�, Φ[(1−𝛼𝛼)∙𝐵𝐵]

∗ (𝑡𝑡𝑗𝑗)� (21) 

In general, the input parameters of the bootstrap parameter can 
be variously interpreted as failure or repair times. As an example, 
the given cdf Φ(𝑡𝑡) can either be a failure or a repair distribution 
function. The confidence interval calculated using the bootstrap 
method can thus be the confidence interval for a failure distribution 
function or a repair distribution function. The confidence level of 
a reliability function or other distribution functions using the 
bootstrap method is calculated in the same way. 

5. Bootstrap Monte Carlo Simulation 

This section presents the bootstrap Monte Carlo simulation as 
a new method for availability inference and demonstration with a 
confidence level. Using this highlighted method, the confidence 
level of point-availability as well as the confidence level of average 
and steady-state availability can be determined. 

5.1. Basic Concept 

The bootstrap Monte Carlo simulation (BMCS) combines 
bootstrapping as a method for determining confidence levels with 
the Monte Carlo simulation. Figure 5 shows the basic principle of 
BMCS for calculating point-availability with a confidence level. 
With this basic principle, it is possible to use the information 
concerning the confidence level of the input data, i.e., of the failure 
and repair distributions. 

The BMCS can be carried out based on pure samples or on the 
distribution functions (cdfs) of failure and repair behavior. It is also 
possible to shuffle both types of input data, such as by providing 

the failure behavior as a cdf and the repair behavior as a sample of 
repair times or vice versa. The basic procedure also facilitates 
individual sample sizes for lifetime and repair data. In other words, 
the sample sizes do not have to be equal. 

In the first step of the BMCS, one realization 𝐹𝐹�𝑖𝑖(𝑡𝑡)  of the 
failure behavior and one realization 𝐺𝐺�𝑖𝑖(𝑡𝑡) of the repair behavior 
are generated using the bootstrap method and based on the input 
data. Depending on the type of input data, non-parametric or 
parametric bootstrapping is employed. After this, these realizations 
are used to calculate one realization of the point-availability �̃�𝐴𝑖𝑖(𝑡𝑡) 
using the Monte Carlo simulation, according to Figure 2. After 
repeating the entire calculation 𝐵𝐵  times, 𝐵𝐵  realizations of point-
availability �̃�𝐴𝑖𝑖(𝑡𝑡), 𝑖𝑖 = 1(1)𝐵𝐵 can be calculated. 𝐵𝐵 corresponds to 
the predefined number of bootstrap replications. Finally, this array 
of trajectories of point-availability subsequently has to be 
evaluated. 

As shown in the previous chapter, it is possible to determine an 
empirical bootstrap confidence interval, a standard bootstrap 
confidence interval, a percentile bootstrap confidence interval or 
another type of bootstrap confidence interval. If an empirical 
bootstrap confidence interval is chosen, an empirical bootstrap 
probability density function 𝜑𝜑𝑗𝑗(�̃�𝐴�𝑡𝑡𝑗𝑗�)  is derived from the 
individual function values of the realizations of point-availability.  

 
Figure 5. Basic procedure of bootstrap Monte Carlo simulation (BMCS) for 

calculating point-availability with a confidence level. 

The confidence interval can be derived based on the percentiles 
of these density functions. Figure 6 illustrates this step of the 
statistical evaluation. On the other hand, the standard bootstrap 
confidence interval can be determined according to (20) or the 
percentile bootstrap confidence interval according to (21). 
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Figure 6. Statistical evaluation of the realizations of point-availability. 

The BMCS is an approximation method as the Monte Carlo 
simulation is used: The calculated confidence interval is thus also 
an approximation. The BMCS can only provide accurate 
approximations from a certain threshold number of replications. 
As shown in [28], the number of bootstrap replications should not 
be fewer than 200. If at least 200 bootstrap replications are carried 
out, the approximation of the BMCS is very thorough. On the other 
hand, the number of Monte Carlo replications should be chosen in 
the range of 1,000-10,000 Monte Carlo replications. Generally 
speaking: The higher the numbers of replications, the better the 
approximation of BMCS. It should be mentioned that the 
simulation time increases sharply in line with higher numbers of 
replications. 

If the Markov process is used in place of the Monte Carlo 
simulation to calculate point-availability within the basic 
procedure according to Figure 5, the bootstrap Markov process 
(BMP) is established (see [1] or [6], for example). The BMP 
combines the bootstrap method with the calculation of availability 
using the Markov method. The BMP therefore has the same 
restrictions as the Markov process. In other words, the failure and 
repair behavior needs to be exponentially distributed. 

Besides the BMCS and the BMP, the bootstrap renewal process 
(BRP) [6] combines the bootstrap method with the renewal process 
[1]. In other words, the availability calculation of the basic 
procedure according to Figure 5 is carried out using the alternating 
renewal process. All three methods – the BMCS, the BMP and the 
BRP – facilitate the availability prediction and demonstration with 
confidence level, whereby the BMCS has the highest potential to 
be extended to more general scenarios of availability prediction 
and demonstration. 

5.2. Steady-State and Average Availability with Confidence Level 

It is likewise possible to estimate a confidence interval for 
steady-state and average availability using the bootstrap Monte 
Carlo simulation provided in Figure 5. The basic concept needs to 
be amended so that steady-state or average availability is 
determined for each bootstrap replication 𝑖𝑖  with 𝑖𝑖 = 1(1)𝐵𝐵 , as 
opposed to point-availability. The calculation of steady-state 
availability is performed using (7), whereas the average 
availability is calculated according to (8). In total, 𝐵𝐵 realizations 
of the value of steady-state availability �̃�𝐴∞,𝑖𝑖  or 𝐵𝐵 realizations of 
the curve of average availability �̃�𝐴𝐴𝐴𝐴𝐴,𝑖𝑖(𝑡𝑡) are generated.  

Exactly as with point-availability, both the 𝐵𝐵  realizations of 
steady-state availability and the 𝐵𝐵  realizations of average 
availability are evaluated statistically. An empirical, standard or 
percentile bootstrap confidence interval can thus be constructed.  

5.3. Sample Calculation 

In the following section, a sample calculation using the BMCS 
is presented. The sample calculations determine point-availability, 
steady-state availability and average availability with a confidence 
level. The availability values are calculated with a 90% confidence 
interval for the sample failure and repair behavior listed in Table 
3. 

Table 3. Sample failure and repair behavior. 

Failure behavior 𝑭𝑭(𝒕𝒕) Repair behavior 𝑮𝑮(𝒕𝒕) 

• Weibull-distributed 

• 𝑏𝑏 = 3.0 

• 𝜂𝜂 = 1,119.85 h 

• 𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹 = 1,000 h 

• 𝑛𝑛𝑓𝑓 = 10 

• Sample (𝑛𝑛𝑔𝑔 = 20) of repair 
times [h]: 

154.0 
171.5 
183.0 
193.0 
201.5 

209.5 
217.0 
224.0 
231.0 
239.0 

246.0 
254.0 
262.0 
271.0 
280.5 

291.5 
304.0 
320.0 
342.5 
382.0 

The failure behavior 𝐹𝐹(𝑡𝑡) is given as a cdf, whereby the repair 
behavior 𝐺𝐺(𝑡𝑡) is based on a given sample. As shown in Table 3, 
the sample sizes of the failure and repair behavior are not equal. 
The BMCS is carried out with 200 bootstrap and 10,000 Monte 
Carlo replications. Within the last step of the BMCS, an empirical 
bootstrap confidence interval is determined. 

To begin with, Figure 7 shows the 𝐵𝐵 = 200 realizations of the 
point-availability calculated during the BMCS. Furthermore, the 
mean availability and the 90% confidence interval of the time-
dependent availability are illustrated. Some empirical density 
functions 𝜑𝜑(�̃�𝐴) of the confidence interval are also plotted on the 
graph. The color of the pointed density functions clarifies the 
frequency 𝑛𝑛𝐵𝐵. In other words, this color illustrates the number of 
availability curves going through the point (𝑡𝑡𝑖𝑖,𝐴𝐴(𝑡𝑡𝑖𝑖)) in absolute 
terms. 

 
Figure 7. Point-availability with 90% confidence interval and selected density 

functions of confidence level. 

Figure 8 builds on Figure 7 to show the steady-state availability 
as well as the average availability. Both availability graphs are 
clarified with a 90% confidence interval. The confidence interval 
of all graphs expands slightly with shorter durations and converges 
to a constant range at longer ones. For long operation times, the 
confidence intervals of all types of availability coincide with each 
other and lead to a constantly wide range. 
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Although it is not necessary to carry out this investigation 
because non-parametric bootstrapping is applied to the sample of 
the repair behavior, the analysis of the repair times using the 
Maximum Likelihood method provides a lognormally distributed 
repair behavior (𝜇𝜇 = 5.4902, 𝜎𝜎 = 0.25, 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅 = 250 h). 

As shown in [1] and [6], the confidence interval of all types of 
availability becomes narrower or smaller as the sample sizes 
increase. Independently of the sample sizes, the confidence 
interval of point-availability, steady-state availability and average 
availability harmonizes very well within a constantly wide range 
for long operation times. A first verification of the BMCS as well 
as an investigation about the accuracy of the BMCS is provided by 
Müller et al. [30]. If the numbers of bootstrap and Monte Carlo 
replications are high enough, the BMCS provides acceptable 
results as an approximate method. First parameter studies of the 
input parameters of the BMCS are carried out in [1], [20] or [30]. 

 
Figure 8. Point-availability, steady-state availability and average availability with 

90% confidence interval. 

6. Availability Demonstration Test with Consideration of 
Confidence Level 

In this section, the inverse bootstrap Monte Carlo simulation 
(IBMCS) as a new procedure is presented. The IBMCS enables an 
availability demonstration test with consideration of confidence 
levels to be conducted. Firstly, the basic concept of IBMCS is 
presented in detail before a sample calculation is carried out. 

6.1. Inverse Bootstrap Monte Carlo Simulation 

An availability demonstration test needs to be carried out in 
order to demonstrate the quality of a repairable system. This test 
provides the demonstration that the system will operate with a 
stated level of availability. As a consequence of the availability 
description with confidence level using the BMCS, the availability 
demonstration tests also need to be specified with a confidence 
level. The inverse bootstrap Monte Carlo simulation (IBMCS) 
enables such availability demonstration tests with consideration of 
confidence levels. The new procedures provide a test plan 
comprising the required number of failures that must be observed 
to demonstrate a certain availability value 𝐴𝐴(𝑡𝑡∗) at a specific point 
in time 𝑡𝑡∗. The IMBCS can be seen as the inversion of the BMCS. 

Figure 9 shows the basic concept of the inverse bootstrap Monte 
Carlo simulation. 

The procedure begins by defining the input data. The objective 
is to determine the required number of observed failure and repair 
times, i.e., the required sample size 𝑛𝑛𝑓𝑓 and 𝑛𝑛𝑔𝑔 of failure and repair 
behavior to demonstrate the availability value 𝐴𝐴𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜(𝑡𝑡∗)  at 
time 𝑡𝑡∗ with confidence level 𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜 . It is assumed that the 
failure behavior 𝐹𝐹(𝑡𝑡) and repair behavior 𝐺𝐺(𝑡𝑡) of the repairable 
system or product is known, but not its corresponding sample 
sizes. Furthermore, the ratio of sample sizes of failure and repair 
behavior is predefined: 

 𝑛𝑛𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑜𝑜 = 𝑛𝑛𝑓𝑓
𝑛𝑛𝑔𝑔

  

Besides the ratio of the sample sizes, the minimum 𝑛𝑛𝑓𝑓,𝑚𝑚𝑖𝑖𝑛𝑛 and 
maximum number of observed failure time 𝑛𝑛𝑓𝑓,𝑚𝑚𝑟𝑟𝑥𝑥  are also 
predefined. These numbers correspond with the minimum and 
maximum number of reliability tests that could be carried out. 
Frequently, the maximum number of possible tests is fixed by 
other limitations, e.g., the number of available test benches. The 
minimum number is usually fixed by the corporate strategy or 
normative rules. These requirements frequently require a certain 
minimum number of reliability tests to be carried out. 

Finally, the calculation parameters 𝐵𝐵  (number of bootstrap 
replications of the BMCS) and 𝑛𝑛𝑀𝑀𝑀𝑀  (number of Monte Carlo 
replications of the BMCS) are required. 

In the first step of the IBMCS, a BMCS is carried out based on 
the input data. In other words, an availability value 𝐴𝐴𝑚𝑚𝑖𝑖𝑛𝑛(𝑡𝑡∗) with 
confidence level 𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜  is calculated using the BMCS and 
under the assumption of the minimum sample size of failure 
behavior 𝑛𝑛𝑓𝑓,𝑚𝑚𝑖𝑖𝑛𝑛 . The same calculation is carried out under the 
assumption of the maximum sample size 𝑛𝑛𝑓𝑓,𝑚𝑚𝑟𝑟𝑥𝑥 , so that the 
availability value 𝐴𝐴𝑚𝑚𝑟𝑟𝑥𝑥(𝑡𝑡∗) with confidence level 𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜  can 
be determined. 

It should be noted that the corresponding sample size of the 
repair behavior can be calculated for each step of the IBMCS using 
the predefined value of ratio 𝑛𝑛𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑜𝑜  according to (22) using the 
actual sample size of failure behavior. 

After determining both values 𝐴𝐴𝑚𝑚𝑖𝑖𝑛𝑛(𝑡𝑡∗) and 𝐴𝐴𝑚𝑚𝑟𝑟𝑥𝑥(𝑡𝑡∗), it must 
be verified whether the objective availability value 𝐴𝐴𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜(𝑡𝑡∗) 
lies within these ranges. In other words, a check is conducted as to 
whether (22) is valid or not. 

 𝐴𝐴𝑚𝑚𝑖𝑖𝑛𝑛(𝑡𝑡∗) ≤ 𝐴𝐴𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜(𝑡𝑡∗) ≤ 𝐴𝐴𝑚𝑚𝑟𝑟𝑥𝑥(𝑡𝑡∗) (22) 

There is no solution if (22) is not valid, since the objective 
availability value does not lie within the interval of possible 
availability values [𝐴𝐴𝑚𝑚𝑖𝑖𝑛𝑛(𝑡𝑡∗),𝐴𝐴𝑚𝑚𝑟𝑟𝑥𝑥(𝑡𝑡∗)]. Values which are not 
included in this interval cannot be achieved with the predefined 
limitations of minimum and maximum failure time figures. 

If the calculation can be advanced further, as (22) is valid, a 
binary search is performed to determine the required number of 
observed failure and repair times. Therefore, in the first step, 
a new sample size number is chosen according to (23), where 
𝑛𝑛1 = 𝑛𝑛𝑓𝑓,𝑚𝑚𝑖𝑖𝑛𝑛  and 𝑛𝑛2 = 𝑛𝑛𝑓𝑓,𝑚𝑚𝑟𝑟𝑥𝑥. 

  𝑛𝑛𝑓𝑓,𝑛𝑛𝑜𝑜𝑛𝑛 = 𝑛𝑛1+𝑛𝑛2
2

         (23)
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Figure 9. Basic procedure of the inverse bootstrap Monte Carlo simulation (IBMCS).

The new value 𝑛𝑛𝑓𝑓,𝑛𝑛𝑜𝑜𝑛𝑛  is derived as the mean of the previous 
sample sizes due to the binary search. After this, a new calculation 
using the BMCS gives the availability value 𝐴𝐴𝑛𝑛𝑜𝑜𝑛𝑛(𝑡𝑡∗)  with 
confidence level 𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜  based on the new sample size 𝑛𝑛𝑓𝑓,𝑛𝑛𝑜𝑜𝑛𝑛 . 

If this value is not approximately equal to the required demanded 
availability value 𝐴𝐴𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜(𝑡𝑡∗), the sample size requires further 
adaptations. Therefore, two case distinctions have to be made. 
One distinction investigates if the objective availability value 
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𝐴𝐴𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜(𝑡𝑡∗)  with confidence level 𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜  is greater than 
the actual calculated availability value 𝐴𝐴𝑛𝑛𝑜𝑜𝑛𝑛(𝑡𝑡∗) with confidence 
level 𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜 . 

Furthermore, the second distinction has to be made with 
regard to the demanded confidence level 𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜 . As shown in 
Figure 10, the availability value with a constant confidence level 
increases in line with increasing sample sizes if the confidence 
level is lower than 50%. On the other hand, if 𝑃𝑃𝐴𝐴 > 50%, the 
availability value decreases as sample size 𝑛𝑛 increases. 

 
Figure 10. Confidence intervals with varying sample sizes. 

After performing both case distinctions, the sample size of the 
failure behavior is adapted according to the equations shown in 
Figure 9. The corresponding number of observed repair times is 
calculated according to (22). A new availability value 𝐴𝐴𝑛𝑛𝑜𝑜𝑛𝑛(𝑡𝑡∗) 
with confidence level 𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜  based on the new sample sizes is 
subsequently determined using the BMCS. 

These calculation steps are repeated until the actual determined 
availability value 𝐴𝐴𝑛𝑛𝑜𝑜𝑛𝑛(𝑡𝑡∗) with confidence level 𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜  and 
corresponding sample sizes 𝑛𝑛𝑓𝑓,𝑛𝑛𝑜𝑜𝑛𝑛   and 𝑛𝑛𝑔𝑔,𝑛𝑛𝑜𝑜𝑛𝑛 = 𝑛𝑛𝑓𝑓,𝑛𝑛𝑜𝑜𝑛𝑛/𝑛𝑛𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑜𝑜   
is approximatively equal to the objective availability value 
𝐴𝐴𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜(𝑡𝑡∗) with confidence level 𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜 . If this is the case, 
the required number of failures and repair actions that must be 
observed in order to demonstrate a certain availability value is 
determined as: 

 𝑛𝑛𝑓𝑓,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜 = 𝑛𝑛𝑓𝑓,𝑛𝑛𝑜𝑜𝑛𝑛  (24) 

 𝑛𝑛𝑔𝑔,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜 = 𝑛𝑛𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟

 (25) 

As a derivation of the IBMCS, it is possible to conduct an 
availability demonstration test with consideration of the 
confidence level. It is therefore possible to demonstrate a specific 
availability value for a point in time and a given confidence level. 
The procedure yields the required number of failures as well as the 
required number of repair actions that must be observed within a 
reliability test of the investigated repairable system or product with 
a known failure and repair behavior type. The availability test plan 
can subsequently be conducted and several availability 
requirements can be demonstrated with a confidence level. 

The IBMCS can be adapted further so that it is not the value of 
point availability 𝐴𝐴𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜(𝑡𝑡∗)  at time 𝑡𝑡∗with confidence level 
𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜  is demanded within the objective, but rather the value 
of average availability 𝐴𝐴𝐴𝐴𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜(𝑡𝑡∗) at time 𝑡𝑡∗with confidence 
level 𝑃𝑃𝐴𝐴,𝑜𝑜𝑏𝑏𝑗𝑗𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝐴𝐴𝑜𝑜 . In this case, the point-availability value is not 
calculated, but rather the average availability value within the 
inherent steps of BMCS. The IBMCS procedure is carried out in 
the same manner. 

If the BMP or BRP is used within the basic procedure 
according to Figure 9 as opposed to the BMCS, the inverse 
bootstrap Markov process (IBMP) or the inverse BRP (IBRP) are 
established. 

6.2. Sample Calculation 

In the following section, a sample calculation of the IBMCS is 
presented. The procedure is applied to the system already 
investigated in the previous sample calculation. In other words, 
the failure behavior of the system is given from 
previous investigations as being Weibull-distributed with 𝑏𝑏 = 3.0, 
𝜂𝜂 = 1,119.85 h  and 𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹 = 1,000 h . The repair behavior 
is given as being lognormally distributed with 𝜇𝜇 = 5.4902 , 
𝜎𝜎 = 0.25 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅 = 250 h. 

The IBMCS is carried out with 200 bootstrap replications and 
10,000 Monte Carlo replications. It is assumed that an availability 
of 75% should be present at an operating time of 5,000 h. The 
availability should be indicated with a confidence level of 95%. It 
is possible to carry out a maximum of 100 reliability tests. In other 
words, the maximum number of sample sizes for the failure 
behavior is 100. The ratio between both sample sizes is predefined 
as 2, i.e., the sample size of the repair behavior should be half of 
the sample size of the failure behavior. 

On the basis of the IBMCS, it is possible to determine the 
required sample size of failure behavior to 𝑛𝑛𝑓𝑓 = 16 and the sample 
size of the repair behavior 𝑛𝑛𝑔𝑔 = 8 . Assuming that the failure 
behavior is known and constant as given, 16 failures need to be 
observed during the reliability test in order to demonstrate the 
demanded availability of 75% with a 95% confidence level at a 
time of 5,000 h. In other words, the analysis of the given failure 
behavior must be based on 16 failure times. Conversely, the 
analysis of the repair behavior must simultaneously be based on 8 
observed repair times. 

Figure 11 shows point-availability with a 90% confidence 
interval. The confidence interval is determined with input data 
from 𝑛𝑛𝑓𝑓 = 16  and 𝑛𝑛𝑔𝑔 = 8 . As illustrated in this figure, the 
requirements of 75% availability with a 95% confidence level at 
an operating time of 5,000 h can be demonstrated with the given 
sample sizes. 

 
Figure 11. Point-availability with 90% confidence interval based on 16 failure and 

8 repair times. 
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7. Potential of the Bootstrap Monte Carlo Simulation and 
the Inverse Bootstrap Monte Carlo Simulation 

Both the bootstrap Monte Carlo simulation (BMCS) and the 
inverse bootstrap Monte Carlo simulation (IBMCS) have a high 
potential to be applied to more general availability scenarios. 
Beyond the consideration of preventive maintenance, the BMCS 
and the IBMCS are not restricted to selected maintenance 
strategies. It is possible to investigate technical systems with 
general maintenance strategies. 

As given in [31], different maintenance strategies are 
conceivable. In general, the maintenance strategy defines the type 
and planning of the intended maintenance activities [31]. Possible 
strategies include corrective, preventive or condition-based 
maintenance actions. Furthermore, combined strategies are 
possible. Besides the aspect of maintenance, the BMCS and 
IMBCS have a high potential to take system aspects, failure 
dependencies or limited maintenance resources into consideration. 

The BMCS and the IBMCS are very innovative in terms of the 
possibility of applying them to more general scenarios. This also 
includes transferring the procedures to predict and demonstrate 
reliability with a confidence level, e.g., for systems with periodical 
maintenance (see [28] or [30]). 

8. Summary & Conclusions 

In this paper, the bootstrap Monte Carlo simulation (BMCS) is 
highlighted as a new method for availability inference and 
demonstration with a confidence level. Besides the BMCS, the 
bootstrap Markov process (BMP) and the bootstrap renewal 
process (BRP) are briefly outlined. The BMCS facilitates analysis 
based on a sample of failure and repair times or on a mean value 
distribution with corresponding sample sizes of failure and repair 
behavior. The BMCS has no restrictions concerning the 
distribution function. 

The inverse bootstrap Monte Carlo simulation (IBMCS) is 
presented in detail alongside the BMCS. The IBMCS enables the 
planning of availability demonstration tests with consideration of 
confidence levels. The procedure is based on the BMCS. Using the 
IBMCS, it is possible to determine the required number of failures 
and repair actions that must be observed in order to demonstrate a 
certain state of availability with a predefined confidence level. 

Firstly, the fundamentals of reliability engineering and a basic 
definition of repairable systems and availability were given. After 
this, the bootstrap method for determining a confidence level of a 
distribution function was shown in more detail. After describing 
the BMCS in detail, a sample availability calculation with a 
confidence level was carried out. Based on the BMCS, the IBMCS 
was derived. The basic procedure was outlined on the basis of a 
sample calculation, too. Finally, the potential of the BMCS and the 
IBMCS was investigated. 

The BMCS and the IBMCS have high potential for application 
to more general scenarios concerning general systems. Besides 
corrective maintenance actions, other maintenance strategies can 
be included within the procedure. Both the BMCS and the IBMCS 
are very innovative. In addition to availability with a confidence 
level, further parameters of reliability engineering, e.g., reliability, 
can be integrated into the BMCS and IBMCS. 
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