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 The objective of this paper is to investigate the use of the 1-D wavelet analysis to extract 
several patterns from signals data sets collected from healthy and faulty input-output 
signals of control systems as a preliminary step in real-time implementation of fault 
detection diagnosis and isolation strategies. The 1-D wavelet analysis proved that is a 
useful tool   for signals processing, design and analysis based on wavelet transforms found 
in a wide range of control systems industrial applications. Based on the fact that in the real 
life there is a great similitude between the phenomena, we are motivated to extend the 
applicability of these techniques to solve similar applications from control systems field, 
such is done in our research work.  Their efficiency will be demonstrated on a case study 
mainly chosen to evaluate the impact of the uncertainties and the nonlinearities of the 
sensors and actuators on the overall performance of the control systems. The proposed 
techniques are able to extract in frequency domain some pattern features (signatures) of 
interest directly from the signals data set collected by data acquisition equipment from the 
control system.  
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1. Introduction  

This paper attention is focused now on the most likely 
actuators prone to failures during operation for a particular case 
study such as for example, an electro-pneumatic control valves 
integrated in the forward path of a neutralization wastewater 
plant control structure. These control valves dose the input flows 
of the acid and base reactants and are controlled by a 
proportional-integral (PI) controller in order to keep the pH-level 
of the neutralized solution at its target value. A pH-probe 
measures pH-actual value of the neutralized solution inside the 
reactor during the transient and steady state neutralization 
process, transmitting its feedback to the controller with time 
delay. Typically, the cause roots of the majority faults in 
neutralization control processes are the result of unexpected 
control valves failures during the frequent opening and closing 

operations, due to the backlash, dead-band, leakage, and 
blocking. In the literature several works are dedicated to identify 
some of the control valve critical failures, as a fuzzy 
classification solution for fault diagnosis of valve actuators in 
2003 well documented in [1]. Also, in 2005 are proposed 
methods to detect and to diagnose faults in HVAC control 
systems, including backlash, based on frequency and spectral 
analysis such as in [2]. Furthermore, in 2006 a graph method that 
describes each fault by three levels of knowledge is suggested in 
[3] by using a structural analysis as a powerful tool for early 
determination of the possibility to detect and isolate the faults. 
The results evaluated on the DAMADICS control valve 
benchmark model reveal “how to determine which faults in the 
benchmark need further modeling to get desired isolation 
properties of the diagnosis system”.  In 2007 was proposed a 
nonparametric statistical method in order to diagnose at least 
four valve failure issues, among them the backlash, dead-band, 
leakage, and blocking, as is mentioned in [4]. Moreover, in 2007 
was proposed a new method for detection and estimation of 
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backlash in control loops such in [5]. The detection procedure is 
automated and based on normal operating data, without 
measuring the backlash output. In addition, the proposed 
detection procedure provides an estimate of the dead-band 
caused by the backlash, in order to offer all information needed 
to compensate for the backlash. The authors from [4] revealed 
also in 2012 an interesting statistic record that confirms again 
that “among the most frequents “loop illnesses”, the valve has 
one major disorder: around of 30% of all valves has any degree 
of damage, being responsible for increase significantly loop 
variability. Two of the most frequent valve injuries are stiction 
and backlash”. The stiction causes limit-cycles in the loop that 
increases its variability, while the backlash increases the loop 
variability, reducing the control performance and inserting limit-
cycles only for integrator plants, similar to stiction failure [4]. 

 The distinction between stiction and backlash that generate 
limit cycles in the case of integrator plants is done based on a 
data-based method developed in [4]. Well, it sounds that the 
closed-loop patterns features provide enough information to 
verify when either stiction or backlash is available [4]. Also in 
2012 a new nonlinear control valve model was developed in [6] 
and its effectiveness in simulating valve stiction using 
MATLAB/SIMULINK software package was demonstrated.  In 
this research defective measurement and control loops 
equipment, in particular a pH and acid concentration loops with 
a control valve as actuator are under investigation. More 
precisely, we assume that the neutralization control process is 
subjected to known deterministic disturbances, and its pH level 
and acid concentration are controlled separately by two negative 
feedback closed-loops by using a state feedback control law 
strategy with two PI separate controllers integrated in the closed-
loop control structures. As a most suitable real time 
implementation and analysis tools are the Wavelet and Signal 
Processing Toolboxes provided by the one of the most powerful 
and well spread tools from the market such as the 
MATLAB/SIMULINK software package. This paper is 
organized as follows: in section 2 a brief control valve 
nonlinearities –terminology is introduced. In section 3 is made a 
brief description of the wavelet. In section 4 is introduced the 
neutralization process as a case study proposed in this paper. In 
section 5 are presented the main results obtained in MATLAB 
SIMULINK in time domain related to process modeling and 
closed-loop control.  In sections 6 and 7 are presented a multi 
signal 1-D wavelet analysis used finally as a basics detection tool 
of the actuators faults in control systems. The paper ends with 
the concluding remarks. 

2. The Control Valve Nonlinearities -Terminology 

To understand better the nonlinearity control valve effects 
during its operation in order to control the input acid reactant 
flow on the overall performance of the neutralization control 
process in open-loop, as well as in closed loop, the key concepts 
that inspire the following discussion of static and dynamic 
friction in control valves need first to be defined. Furthermore, 
the reader gets a better insight of the stiction (static friction) and 
backlash mechanisms and a more formal definition of all 
possible valve actuator nonlinearities well documented in [7]. 
This section reviews the American National Standard 

Institution’s (ANSI) formal definition of terms related to the 
control valve nonlinearity effects, in a similar way as is presented 
in [7]:  

1. Backlash: ‘‘In process instrumentation, it is a relative 
movement between interacting mechanical parts, resulting 
from looseness, when the motion is reversed’’.  

2. Hysteresis: ‘‘Hysteresis is that property of the element 
evidenced by the dependence of the value of the output, for 
a given excursion of the input, upon the history of prior 
excursions and the direction of the current traverse.  It is 
usually determined by subtracting the value of dead-band 
from the maximum measured separation between upscale-
going and downscale-going indications of the measured 
variable (during a full-range traverse, unless otherwise 
specified) after transient have decayed”. ISS 

This concept is illustrated in Figure 1 (a) and (c)[7] for a 
pneumatic control valve with the layout shown in Figure 2 [8]. 

 
Figure 1: The hysteresis, dead-band, and dead-zone valve nonlinearities 
(screenshot view [7], according to ANSI/ISA-S51.1-1979). 

3. Dead-band: ‘‘In process instrumentation, it is the range 
through which an input signal may be varied, upon reversal 
of direction, without initiating an observable change in 
output signal’’, as is shown in Figure 1(b).  

The dead-band is not a bijection relationship; it is 
characterized by an input-output phase lag, expressed in percent 
of its span [7]. Moreover, a combination of the effects of dead-
band and the hysteresis may be met as a new nonlinearity in a 
control valve actuator, as is shown in Figure 1(c). “Some reversal 
of output may be expected for any small reversal of input. This 
distinguishes hysteresis from dead-band’’ [7]. 

4. Dead-zone: ‘‘It is a predetermined range of input through 
which the output remains unchanged, irrespective of the 
direction of change of the input signal’’, as is shown in 
Figure 1(d).  

Unlike dead-band, the dead-zone doesn’t produce an input - 
output phase leg, so it is expressed by a bijective input-output 
relationship. 
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Figure 2: The structure of the pressure control valve (snapshot view [8])  

These definitions reveal that the term ‘‘backlash’’ 
specifically applies to the slack or looseness of the mechanical 
part when the motion changes its direction [7]. In addition, the 
above ANSI (ISA-S51.1-1979) definitions illustrated clearly in 
Figure 1 prove without doubt that hysteresis and dead-band 
nonlinearities have distinct effects on a control valve. More 
precisely, the dead-band can be quantified in terms of x-axis 
input signal span, while hysteresis refers to a separation in the y-
axis measured (output) response [7]. The combined effects of the 
static and dynamic effects of the previous nonlinearities generate 
one of the most complex control valve nonlinearity known under 
the name of control valve stiction (static friction). Its input–
output characteristics consist of four components: dead-band, 
stick-band, slip jump and the moving phase of a stiction faulty 
valve as is shown in Figure 3 [7]. 

 

Figure 3: The characteristics of a sticky faulty control valve (Screenshot view 
[7]) 

The behavior of a sticky faulty valve is completely described 
in [7] as ‘‘a property of an element such that its smooth 
movement in response to a varying input is preceded by a sudden 
abrupt jump called the slip-jump. Slip-jump is expressed as a 
percentage of the output span. Its origin in a mechanical system 
is static friction which exceeds the friction during smooth 
movement’’. In this description the dead-band and stick-band 
represent the behavior of the non-moving control valve, while its 
input keeps changing. The slip jump releases suddenly the 
potential energy stored in the control valve chambers due to its 
stem high static friction in order to balance the kinetic energy as 
the valve starts to move. More precisely, the magnitude of the 
slip jump is one of the main causes in generating the limit cyclic 
behavior by the control valve stiction [7]. Once the valve slips, 
it continues to move until it sticks again (e.g., in the point E from 
Figure 3), and during all this moving-phase was proved that the 

dynamic friction may be much lower than the static friction [7]. 
The definition of the stiction well illustrated in Figure 3 can be 
considered as a rigorous description of the effects of friction in a 
control valve.  Closing, these definitions will be very useful in 
the following sections to characterize the pattern features of the 
impact of several actuators nonlinearities in industrial control 
systems practice; under consideration will be the both 
continuous and discrete time state-space models of healthy and 
faulty open or feedback closed-loop control systems 
configurations. The healthy and faulty control systems responses 
from time domain will be converted in frequency domain by 
using different types of wavelet transforms that will be defined 
in the next section. Based on wavelet analysis in frequency 
domain will be extracted the matching pattern features that 
characterize each control valve nonlinearity under investigation.  

3. Wavelet Signals Processing Technique Approach  

The signal processing approach is one of the most used 
techniques used in practice for signal analysis. It is focused on 
particular signal characteristics, dealing also with the effects of 
the “white” or “colored” noises that contaminate the useful 
signals, by using statistical methods, such as the signals 
correlation and autocorrelation functions, covariance and cross-
covariance, power spectral density, likelihood, or the 
autoregressive-moving-average (ARMA) models [9]. Frequency 
analysis is suitable for detecting the signals that contain 
particular meaningful frequency information, very useful to be 
used for example to detect, diagnose and isolate the healthy or 
faulty behavior of the control systems as response to the effects 
of a particular actuator nonlinearity or sensor faults, known in 
the control system literature as fault detection and isolation (FDI) 
techniques [10].  In this paper work are extracted only some of 
the pattern features of the healthy or faulty responses 
corresponding to control valve (actuator) nonlinearities under 
investigation. The wavelet transform is useful to detect the 
abrupt changes (signals pattern features) in the faulty actuators 
or sensors.  It provides a useful set of time-scale or time-
frequency domain tools and techniques to operate on a large 
range of signals [9]. The wavelet transform carries out a special 
form of analysis by shifting the original signal from the time 
domain into the time–frequency [11]. According to [11] “the 
idea behind the wavelet transform is to define a set of basic 
functions that allow an efficient, informative and useful 
representation of signals”, and first preliminary attempts to 
demonstrate the new theory based on the wavelet analysis started 
with the modeling of “a certain signal by a combination of 
translations and dilations of a simple, oscillatory function of 
finite duration, named wavelet “, and this technique is referred 
to as a continuous wavelet transform (CWT) [9]. In [11] also is 
mention that “Having emerged from advancement in time–
frequency localization from the short–time Fourier analysis, the 
wavelet theory provides facilities for a flexible analysis as 
wavelets figuratively “zoom” into a frequency range. Moreover, 
the “wavelet methods constitute the underpinning of a new 
comprehension of time–frequency analysis”.  Based on CWT 
many other wavelet analysis techniques have been developed in 
the literature [9], among them, due to paper space limitation, 
only one of these it will be considered. Depending on the 
intended purpose, if low-frequency information is required then 
the wavelet analysis deals with long time intervals, otherwise it 
will deal with short time intervals when high-frequency 
information is preferred.  In the following we will give some 
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definitions that can be of real interest for the readers in order to 
have a good insight on all these concepts related to wavelet 
transforms as well as their manipulation in signals analysis and 
processing.  

CWT Definition 1: The continuous-time wavelet transform 

of one-dimensional real-valued function, )(2)( RLtf ∈ -Hilbert 

space, measurable and square-integrable, i.e. ∞<∫
+∞

∞−
dttf 2|)(|

, with respect to a wavelet function )(tψ is defined as the sum 
over all time of the signal multiplied by scaled, shifted versions 
of function )(tψ [9]: 

dt
s

ut
tf

s
usWf )(*)(

1
),(

−
∫
+∞

∞−
= ψ   (1) 

where )(* tψ  represents the complex-conjugate of the “mother 
wavelet” )(tψ , a  real or complex-valued continuous time 
function that must satisfy the following two conditions: 

)(tψ  is a function with zero-average: 

 0)( =∫
+∞

−∞
dttψ     (2) 

)(2)( RLt ∈ψ , i.e. is a squared-integrable function, i.e.  

∞<∫
+∞

∞−
dtt 2|)(|ψ

. 

A “mother wavelet” is a waveform for which the most energy 
is restricted to a finite duration [9], with the mention that there 
are an infinite number of the functions that candidate to be 
considered as a “mother wavelet”.  

In Eq. (2) the variable s is a “scale” or “dilation” variable that 
performs  a stretching or compressing action on the “mother 
wavelet” while the variable u is referred as a “time shifting” or 
“translation” that delays or hastens the signal start. 

  More precisely, the function )(*
s

ut −
ψ  means that the 

mother wavelet )(tψ is shifted over time with u units of time and 
s times dilated. Therefore the wavelet analysis is a powerful tool 
that provides a time-scale view of the signal under investigation.   

Denoting by  

 )
1

(
1

)(
ss

ts −= ψψ                                        (3) 

then the  CWT of the continuous function )(2)( RLtf ∈ can 
be expressed by a  the following convolution product (*): 

                     )(*),( usfusWf ψ=                                   (4) 

Also, it is worth to emphasize that the result of applying 
CWT to a signal under investigation is a wavelet coefficient 

vector that is a function of scale and translation g(s, u). An 
interesting interpretation related to a wavelet coefficient vector 
is done in [9], stating that “each coefficient represents how 
closely correlated a scaled wavelet is with the portion of the 
signal which is determined by translation”.  The CWT 
coefficients are nothing else than time-scale view of the analyzed 
signal, and so the CWT is an important analysis tool capable to 
“offers insight into both time and frequency domain signal 
properties” [9].  The results of this interpretation lead to the 
following useful observations [9] that will be considered for 
developing the proposed wavelet signals processing and analysis 
strategy:  

The higher scales correspond to the “most” stretched 
wavelets, furthermore “the more stretched the wavelet, the 
longer the portion of the signal with which is compared, and thus 
the coarser the signal patterns features measured by the wavelet 
coefficients”.   

The “…coarser features called “approximations” providing 
basic shapes and properties of the  original signal under 
investigation correspond to low frequency components, whereas 
the low scale components capture the high frequency 
information, called “details”…”. 

The main drawback of CWT is its computationally 
inefficiency due to the calculation of the CWT coefficients at 
every single scale with an impressive amount of work generating 
a huge bunch of data that must be stored in a considerable 
computer memory space. An alternative to the CWT is the 
discrete wavelet transform DWT, much more efficient and of 
high accuracy.  The DWT is based on the wavelet analysis at 
particular scales and translations that are power of two, such as 
2, 4, 6, 16, and so on [9], [10]. In [9] is stated that “the 
approximations” of the signals under investigation “provide 
basic trends and characteristics of the original signals, whereas 
the details provide the flavor of the signal”, and the result of the 
applying DWT on the analyzed original signal is the so called 
wavelet decomposition around two key coefficient vectors, one 
of them is an “approximation” coefficient vector Ca, and other 
one is a “detail” coefficient vector Cd, representing 
“approximations” and “details”  of the original signals under 
consideration.  If the decomposition is repeated on the 
approximations in each stage, then the multiple stage DWT will 
break down the original analyzed signal into many successively 
lower resolution components, as is shown in [9], section 5.1.2, 
pp.79. According to [9] “at each stage, the approximation 
coefficient Ca represents the signal trend, and the detailed 
coefficient Cd   includes the   information on noise or nuance”.  
The inverse process opposite to decomposition is the signal 
reconstruction by using an inverse discrete wavelet transform 
(IDWT).  More details about sample wavelet definitions known 
as Haar, Mexican Hat, Morlet and Daubechies wavelets are well 
documented in [10]. Using the MATLAB/SIMULINK   Wavelet 
and Processing Toolboxes will be implemented in real time the 
proposed  multifractal and multisignal 1-D wavelet analysis 
strategy following the guidelines from  [13], [14].  

4. Case Study: pH Neutralization Plant 

http://www.astesj.com/
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For simulation purpose the experimental setup for the pH 
neutralization process and the dynamic model coefficients are 
the same as in [15]. The tank layout is shown in Figure 3.  

 
Figure 4: The reactor tank layout (screen shot view [11], pp. 41, Section 4) 

Of technical viewpoint as the piping and instrumentation 
diagram layout, the tank and the overall architecture we preferred 
the simplified representation shown in Figure 4 to Figure 7 
reproduced from [11] for their simplicity and better insight. They 
are related to the same pH neutralization process, only the 
coefficients of the models make the difference due to the changes 
in reactors geometry, flow rates and concentrations of acid and 
alkaline reactants. 

 
Figure 5: Piping and Instrumentation Diagram of pH neutralization plant (screen 
shot view [11], pp. 37, Section 3) 

 
Figure 6: The picture of the neutralization pilot plant (snapshot view [11], pp. 38, 
Section 3) 

 
Figure 7: Overall architecture of the pH neutralization pilot plant (screen shot 
view [11], pp. 39, Section 3)  

In Figure 8 is shown the block scheme of the both control 
loops, i.e. pH concentration value, and level of the solution inside 
the neutralization reactor.  

 
Figure 8: The SIMULINK model of the solution level control inside of the 
neutralized reactor and pH control closed-loops [15] 

In Figure 9 is shown the SIMULINK model of the pH- 
controller with a back-propagation windup reset to avoid the 
saturation of the integrator due to the saturation nonlinearity of 
the control valve actuator. In Figure 10 and Figure11 is shown in 
detail the PI level controller with a windup reset from the same 
raison as for PI pH-controller. 

 
Figure 9: The SIMULINK model of pH controller with windup integrator [15] 
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Figure 10: The simplified SIMULINK model of the Level PI   Controller Block 
[15] 

5. MATLAB and SIMULINK Simulations Results in Time 
Domain 

In this section we will present the simulation results of the 
control system performance in closed-loop, in time domain.  

A. Healthy Control System with Pump and Control Valve 
Actuator Enabled 

The pH step response is shown in Figure 11, for which the 
input profile changes the initial step input from pH12 after 5000 
seconds (1h23min) to standardized pH8, the total simulation 
time taking 10000 seconds (2h46min). 

      

(a) 

 

(b) 

Figure 11: The step response of the pH concentration of the neutralized solution 
inside the reactor. 

Legend: a. Control valve enabled  

               b. Pump enabled    

From performance analysis prospective the simulation 
results reveal a very accurate performance for the both PI 
controllers with windup reset. All these simulation results are 
carried out in a MATLAB SIMULINK simulation environment 
based on the SIMULINK model of the overall control system 
structure with the both feedback closed-loops, shown in Figure 
12, similar as is developed in [16]. The step response of the level 
of neutralized solution inside the reactor controlled by a PI 
controller with windup reset is shown in Figure 12.  In Figure 13 
is presented the step response of the neutralized solution level 
inside the reactor. The controller efforts for pH and level are 
shown in Figure 14 and Figure 15.  

 
Figure 12: The SIMULINK model of the overall closed-loop control system [15] 

 

Figure 13: The step response of the neutralized solution level inside the reactor. 

Let us now to consider the presence of a time delay in the pH 
control loop, i.e. pH sensor transmits the pH measured value to 
the input of the pH controller with certain amount of transport 
delay, let say for example 10 seconds, same value as is the time 
constant of the pH controller, you can see in Figure 16 that the 
pH control loop starts to oscillate at beginning of the simulations 
reaching the target steady-state for a while (2000 seconds) since 
after the first switching moment in setting point the closed-loop 
reaches the limit of stability around the second target setting 
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point, thus the controller becomes now inadequately. In this case 
is required a simple adaptive Smith-Predictor control structure 
for controlling time-delay systems, such is developed in [16].  

 
(a) 

 
(b) 

Figure 14:  The SIMULINK simulations of the pH controller effort in closed-
loop  

 Legend: a. Control valve enabled 

               b. Pump enabled     

 

Figure 15:  The SIMULINK simulations of the controller level effort in closed-
loop  

A considerable control effort of pH controller can be seen in 
this case in Figure 17. During these simulations no interferences 
between the two controls loops were noticed, thus the level 
control loop still remains very accurate.  

 
Figure16:  The SIMULINK simulations of the pH concentration in closed-loop 
with 10 seconds time delay in signal transmission  

 
Figure 17:  The SIMULINK simulations of pH controller effort in the     presence 
of 10 seconds time delay in signal transmission   

B. Faulty Control System with Control Valve Actuator 
Enabled 

In this subsection we analyze the impact of control valve 
actuator nonlinearities on the overall control system performance. 

1. Backlash control valve actuator nonlinearity shown in 
Figure 18 with dead-band width = 0.7, SIMULINK model. 

In Figure 19 is shown the impact of the control valve 
backlash nonlinearity on the pH closed-loop control for the same 
set point input profile setup and the same tuning values for the 
pH controller parameters as for healthy control system structure. 
In this case the overall performance of pH control closed-loop 
degrades significantly. This is the first pattern feature extracted 
from measured pH output signal in time domain that will be 
analyzed in frequency domain by using a fractal analysis based 
on the wavelet transforms. The control effort is considerable also 
in this case, as is shown in Figure 20.  

2. Coulomb and Viscous friction nonlinearity in control 
valve actuator shown in Figure 21 with the coefficient of viscous 
friction (gain) = 0.1, the Coulomb friction value (offset) = 1, 
SIMULINK model. 

http://www.astesj.com/


N. Tudoroiu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1693-1710 (2017) 

www.astesj.com     1700 

 

Figure 18:  SIMULINK model of the control valve actuator with backlash 
nonlinearity (dead-band width = 0.7) 

 

Figure 19: The impact of backlash control valve actuator nonlinearity on the pH 
evolution in closed-loop (dead-band width = 0.7, SIMULINK model).  

 

Figure 20:  The pH control effort in the presence of backlash nonlinearity in the 
control valve actuator integrated in the pH control closed-loop (dead-band width 
= 0.7).  

3. Dead-zone nonlinearity in control valve actuator shown 
in Figure 23 with a symmetric dead-zone width = 1, SIMULINK     
model. 

 
Figure 21: SIMULINK model of the control valve actuator with Coulomb and 
Viscous friction nonlinearity, SIMULINK model 

Similar, compared to backlash nonlinearity case the overall 
performance of pH control closed-loop degrades drastically, as 
is shown in Figure 22. This is the second pattern feature extracted 
from measured pH output signal in time domain that will be 
analyzed in frequency domain by using a fractal analysis based 
on the wavelet transforms.  

 

Figure 22: The impact of Coulomb and viscous friction nonlinearity of control 
valve actuator on the pH evolution in closed-loop (Coefficient of viscous friction 
(gain) = 0.1, the Coulomb friction value (offset) = 1, SIMULINK model).  

 

Figure 23 SIMULINK model of the control valve actuator with Dead-zone 
nonlinearity, SIMULINK model (dead-zone width =1) 

The impact of dead-zone nonlinearity on the overall 
performance is shown in Figure 24. This is the third pattern 
feature extracted from measured pH output signal in time domain 
that will be analyzed in frequency domain by using a fractal 
analysis based on the wavelet transforms. 
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Figure 24: The impact of Dead-zone nonlinearity of control valve actuator on the 
pH evolution in closed-loop (dead-zone width = 1, SIMULINK model). 

4. Saturation nonlinearity in control valve actuator 
shown in Figure 25 with superior limit = 0.5 [Pa], and the inferior 
limit = 0[Pa], SIMULINK model. 

 
Figure 25: SIMULINK model of the control valve actuator with saturation 
nonlinearity, SIMULINK model  

Figure 26: The impact of saturation nonlinearity of control valve actuator on the 
pH evolution in closed-loop (dead-zone width = 1, SIMULINK model).  

6. Multisignal 1-D Wavelet Analysis - MATLAB 
Simulations Results 

1-D Multisignal Definition 2: A 1-D multisignal is a set of 1-D 
signals of same length stored as a matrix organized rowwise (or 
columnwise) [14]. In the proposed case study all the signals are 
stored in a matrix with two rowwises, in a first row is stored the 
healthy signal and in second one is stored the corresponding 
faulty signal representing the impact of each actuator 
nonlinearity on the overall performance of healthy control 
system.  The purpose of this section is to make a wavelet analysis 
of the 1-D multisignal set containing all the nonlinearities 
described in the previous section. How you will see the wavelet 
analysis is a precious analysis tool to denoise, compress and 
cluster different representations or their simplified versions. In 
first step a deeply analyze is made for all  the signals collected 
in the previous section from the closed-loop control system, and 
then we will find some representations and also simplified 
versions for  these signals by reconstructing their approximations  
at given levels,  denoising and compressing them.  

Denoising and compressing are two of the main applications of 
wavelets, often used as a preprocessing step before clustering 
[14]. The last step performs several clustering strategies and 
compares them. It allows summarizing a large set of signals 
using sparse wavelet representations. In Figure 27 you get an 
overall image about the impact of all control valve actuator 
nonlinearities on the closed-loop performance of the 
neutralization control system discussed in previous section.  

 

Figure 27: The impact of the control valve nonlinearities on the closed-loop 
performance of pH control system  

The same overall image you can get as more attractive in a 
3-D representation of all these nonlinearities including also the 
healthy control system, as a reference for  the severity of each 
impact, is offered in Figure 28, The 3-D representation is 
preferred  in addition to highlight  the periodicity of the 
multisignal. 
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Figure 28: The 3-D representation of the impact of several control valve 
nonlinearities, on the closed-loop control system performance. 

In 3-D representation each nonlinearity impact can be seen more 
clearly. In Figure 29 is shown the row decomposition of the 
multisignal related to the following fields of the generated 
structure in MATLAB R2013a: 
dirDec: 'r' (row decomposition) 
         Level of decomposition: 7 
         wname: 'sym4'(near symmetric wavelet, as is shown 
                      in Figure 29)  
         dwtFilters: [1×1 struct] 
         dwtEXTM: 'sym' 
         dwtShift: 0 
         dataSize: [35 1440] 
            ca: [35×18 double] 
            cd: {1×7 cell} 

 
Figure 29: The symlet wavelet (“sym4’) representation  

MATLAB Wavelets Toolbox offers you more facilities to get 
information about all these wavelets functions using the 
MATLAB command waveinfo(‘name’), where ‘name’ is the 
assigned short name for the wavelets families such as ‘sym’, 
‘morl’, ‘haar’, ‘db’, and so on.  The reconstruction of the 
approximations at level 7 for each row signal is shown in Figure 
30.  The signals reconstructed are also compared in the same 
graph to the original signals. Furthermore, to get a better insight 
about the control valve nonlinearities under investigation in 
Figure 31 the signals are split in two groups, in the first group 
the healthy signal, the backlash and Coulomb viscous friction, 
and in second group the last two nonlinearities, control valve 
dead-zone and saturation.  

 

Figure 30: The original signals and the reconstruction of the approximations at 
level 7 for each row.  

The top plot shows all the original signals and the bottom one 
shows all the corresponding approximations at level 7. As it can 
be seen, the general shape is captured by the approximations at 
level 7, but sometimes some interesting features are lost, as for 
example, the bumps at the beginning and at the end of the signals 
could disappear.  

In order to perform a more subtle simplification of the 
multisignal preserving these bumps a denoise operation of  the 
multisignal is useful. The denoising procedure is performed in 
MATLAB R2013a following three steps, namely [15]: 

• Decomposition: First is required to select a wavelet 
function and to set up the level of its decomposition N, 
and then compute the wavelet decompositions of the 
signals at level N. 

• Thresholding: For each level from 1 to N and for each 
signal, a threshold is selected and thresholding is 
applied to the detail coefficients. 

• Reconstruction: Compute wavelet reconstructions 
using the original approximation coefficients of level N 
and the modified detail coefficients of levels from 1 to 
N. 

If a slightly change will be made at the level of 
decomposition by changing N from 7 to N = 5 in Figure 32 can 
be seen similar results as in Figure 30, but now the quality of the 
results is better since the bumps at the beginning and at the end 
of the signals are well recovered. Conversely, in the same figure 
the residuals look like a noise except for some remaining bumps 
due to the signals. Furthermore, the magnitude of these 
remaining bumps is of a small order. 

In Figure 33 are shown the results of the signals compression 
operation that follows the same three steps as in denoising case, 
a slightly difference in terms of the procedure is found only in 
step 2 that where  two compression approaches are available 
[15]: 
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Figure 31: The signals and approximations at level 7 of row decomposition split 
in two groups 

In the first approach the wavelet signals are expanded and 
keep the largest absolute value coefficients; in this case, a global 
threshold, a compression performance, or a relative square norm 
recovery performance can be set [15]. Therefore, for this 
approach only a single signal-dependent parameter needs to be 
selected. In the second approach a determined level-dependent 
threshold is chosen visually. The compression performance can 
be evaluated by calculating the corresponding densities of 
nonzero elements, as is shown in Figure 34.  

For all the control valve nonlinearities under investigation 
that causes faulty signals, as well as for healthy signal, the 
percentage of required coefficients to recover 99% of the energy 
is the same, approximately   0.75%.  This is one of the stronger 
wavelets features to prove a high capacity to concentrate all 
signal energy in few coefficients [15].  

The last step is the clustering of the wavelets signals that 
offers a convenient procedure to summarize a large set of signals 
using sparse wavelet representations (with small number of 
elements). In Figure 35 the wavelets signals are clustered by 3. 
The first one is related to  the Coulomb viscous friction  
nonlinearity  of the control valve, the second cluster is related to  
the  healthy and baclash nonlinearity, and the third cluster is 
related to dead-zone and saturation nonlinearities.  

Figure 32: The original signals, their approximations at level 5 of row 
decomposition, and the residuals. 

 
Figure 33:  The original and compressed signals and the  corresponding residuals 

 
Figure 34: The percentage of nonzero coefficients for all the control valve 
nonlinearities wavelet signals 
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Figure 35: The three clusters of  the wavelets signals correspondin to the healthy 
and control valve nonlinearities 

 
Figure 36: The partition of each cluster in healthy and faulty control valve signals  

7. 1-D Wavelet Analysis as a Detection Tool of the 
Actuators Faults in Control Systems 

In this section we investigate how to use the 1-D wavelet 
analysis to detect changes in the variance of a process control. 

 Changes in signal variance provide precious information 
anytime when something fundamental has changed about the 
data-generating mechanism that is basically the main idea of 
implementation for Fault Detection Diagnosis and Isolation 
(FDDI) strategies capable for detection, diagnosis and isolation 
of the faults that occur in actuators and sensors in a lot of control 
systems applications. In this section we investigate the 
effectiveness of using the 1-D wavelet analysis to detect some 
anomalies caused by malfunctioning of the equipment or 
different control system parts, especially actuators and sensors 
more likely prone to the errors.  Encouraged by the experience 
and the preliminary results obtained in the control systems field, 
such as modeling and process identification, state estimation and 
FDI control strategies,   a new FDI approach based on signal 
processing analysis to improve the accuracy, robustness and 

implementation design of these techniques is a big challenge. For 
simulation purpose we analyze only the impact on the overall 
closed-loop control performance of two control valve actuator 
nonlinearities, namely the backlash and Coulomb viscous 
friction, met frequently in the control industrial applications, as 
is shown in the Figures 37 and 38. In the Figure 37 is shown the 
SIMULINK model of the backlash nonlinearity that occurs often 
in control valve actuator, with the injection mechanism of the 
related fault at the instant tfault_injection = 7000 seconds. The set 
point input profile changes also at the instant tSP1=5000 seconds, 
from pH12 to pH8. Similar, in the Figure 38 is shown the 
SIMULINK model of the Coulomb viscous friction control valve 
nonlinearity and the injection mechanism of the related fault. 
Similar, in Figure 39 is presented the mechanism of generating 
the values for the backlash width using the clock block and if-
then with separate triggered action block. 

 
Figure 37: The SIMULINK model of backlash nonlinearity in the  faulty control 
valve and  the injection mechanism 

In the Figures 40 and 41 are shown the injection instant of 
the both faults (backlash and Coulomb viscous friction), and also 
the faulty behavior of the control system after this instant. 

 Precious information about the time detection and the 
severity of the faults in each case is provided by the residuals 
defined as a difference between the healthy signal output (free 
fault) of the control system and faulty signal output, as is shown 
in Figure 42 and 43.  

 
Figure 38: The SIMULINK model of Coulomb viscous friction  nonlinearity in 
the  faulty control valve and  the injection mechanism. 
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Figure 39: The SIMULINK model of   generating the width  values for backlash 
nonlinearity in the  faulty control valve required in  the injection mechanism. 

 
Figure 40: The MATLAB simulation results for healthy and faulty behavior 
caused by the backlash nonlinearity in the  control valve actuator 

Amongst the wavelets families functions the Morlet wavelet 
function shown in Figure 44 is suitable for continuous analysis 
using a continuous wavelet transform (CWT) [10], [17].  There 
is no scaling function associated with the Morlet wavelet. In 
many signal processing applications the Daubechies wavelet 
family functions are most used, especially for discrete wavelet 
transforms (DWT) [19].  To display detailed information about 
the Daubechies’ least asymmetric orthogonal wavelets is used 
the MATLAB command waveinfo('sym'). To compute the 
wavelet and scaling function (if available), use wavefun( ): 

             [psi,xval] = wavefun('morl',10); 
             plot(xval,psi); title('Morlet Wavelet'); 

 
Figure 41: The MATLAB simulation results for healthy and faulty behavior 
caused by the Coulomb viscous  friction in the  control valve  actuator 

 

Figure 42: The MATLAB simulation results for output control system residual 
caused by the  backlash nonlinearity in the  control valve actuator 

 

Figure 43: The MATLAB simulation results for output control system residual 
caused by the  Coulomb viscous friction in the  control valve actuator 

For wavelets associated with a multiresolution analysis can 
be computed both the scaling function and wavelet. The 
following MATLAB code returns the scaling function and 
wavelet for the Daubechies’ extremal phase wavelet with 4 
vanishing moments [17], as is shown in Figure 45: 

[phi,psi,xval] = wavefun('db4',10); 

subplot(211); 

plot(xval,phi); 

title('db4 Scaling Function'); 

subplot(212); 

plot(xval,psi); 

title('db4 Wavelet'); 
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Figure 44: The Morlet wavelet function representation with 10 vanishing 
moments 

 
Figure 45: The Daubechies’ extremal phase wavelet with 4 vanishing moments 

In discrete wavelet analysis, the analysis and synthesis filters 
are of more interest than the associated scaling function and 
wavelet. For filter design and implementation you can use 
wfilters( ) to obtain the analysis and synthesis filters. For 
example, in order to obtain the decomposition (analysis) and 
reconstruction (synthesis) filters for the Bspline biorthogonal 
wavelet is required to  specify 3 vanishing moments in the 
synthesis wavelet and 5 vanishing moments in the analysis 
wavelet with the following MATLAB cod lines to generate and 
to  plot the filters’ impulse responses, very useful in this section 
for fault detection based on the wavelets filters analysis and 
synthesis (Low Pass Filters and High Pass Filters, used for low 
frequencies and high frequencies signals filtration respectively) 
[17]:   

[LoD, HiD, LoR, HiR] = wfilters('bior3.5'); 
subplot(221); 
stem(LoD); 
title('Lowpass Analysis Filter'); 

subplot(222); 
stem(HiD); 
title('Highpass Analysis Filter'); 
subplot(223); 
stem(LoR); 
title('Lowpass Synthesis Filter'); 
subplot(224); 
stem(HiR); 

                                 title('Highpass Synthesis Filter'); 

The simulation results are shown in Figure 46.  

 
Figure 46: The Daubechies’ extremal phase wavelet with 4 vanishing moments 

The Daubechies wavelets (dbN) are the Daubechies’ 
extremal phase wavelets, for which N refers to the number of 
vanishing moments. These filters are also referred to in the 
literature by the number of filter taps, which is 2N [17], [21]. 
The Symlet wavelets (symN) are also known as Daubechies’ 
least-asymmetric wavelets. The symlets are more symmetric 
than the extremal phase wavelets. In symN, N is the number of 
vanishing moments. These filters are also referred to in the 
literature by the number of filter taps, which is 2N [17], [21].To 
obtain a survey of the main properties of this family, you must 
enter waveinfo('bior') at the MATLAB command line. More 
precisely, the orthogonal and biorthogonal filter banks are 
arrangements of lowpass, highpass, and bandpass filters that 
divide the signals data sets into subbands [17], [21]. If the 
subbands are not modified, these filters enable perfect 
reconstruction of the original data. In most applications, the data 
are processed differently in the different subbands and then 
reconstruct a modified version of the original data. Orthogonal 
filter banks do not have linear phase. Biorthogonal filter banks 
do have linear phase [17], [21]. The wavelet and scaling filters 
are specified by the number of the vanishing moments, which 
allows removing or retaining polynomial behavior in the signals 
data sets. Furthermore, lifting allows designing perfect 
reconstruction filter banks with specific properties. In order to 
obtain and use the most common orthogonal and biorthogonal 
wavelet filters can be used Wavelet Toolbox™ functions [17].  
The design of custom perfect reconstruction filter bank can be 
performed through elementary lifting steps. In addition, can also 
be added your own custom wavelet filters. However, by using 
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the wavelet filter bank architecture depicted in Figure 47 it is 
possible to obtain residues that change in a noticeable manner in 
order to offer precious information about the time detection of 
the faults and its severity [19, 20]. The subband model is 
suggested in [19] of the form: 

           𝑀𝑀(𝑧𝑧) = (1 − 𝑧𝑧−1)−𝑠𝑠(𝑎𝑎 + 𝑏𝑏𝑧𝑧−1)                                  (5) 

where s is an integer number and a, b are real numbers. In [19] 
is used the ‘db8’ wavelet for wavelet filter bank design of level 
3 decomposition [19] for a  Single-Input Single-Output (SISO) 
plant  extended in [20] for a Multivariable (MIMO) plant. A 
wavelet based-frequency subband analytical redundancy scheme 
to calculate the residuals for different faults is shown in Figure 
48, and used for wavelet filter bank synthesis and analysis of 
level 3 decomposition in [19, 20] , and also in our case study. In 
this scheme G(z) and H(z) represent the z-transforms of the low 
pass filter (LPF) and high pass filter (HPF) respectively.  A two-
channel critically sampled filter bank filters the input signal 
using a lowpass and highpass filter [21].  The subband outputs 
of the filters are downsampled by two to preserve the overall 
number of samples. To reconstruct the input, upsample by two 
and then interpolate the results using the lowpass and highpass 
synthesis filters. If the filters satisfy certain properties, a perfect 
reconstruction of the input is achieved [21].  In Figure 49 is 
proved this perfect reconstruction by representing in the same 
graph the original faulty pH output signal (in the top) and the 
reconstruction faulty ph waveform response.  

 

 
Figure 47:  Original wavelet analytical redundancy architecture for (a) input-
output and (b) output-output consistency (snapshot view from [19], [20]) 

At each successive level, the number of scaling and wavelet 
coefficients is downsampled by two so the total number of 
coefficients is preserved. In order to obtain the level three DWT 
of the pH faulty signal is using the 'sym4' orthogonal filter bank, 
using the MATLAB code line [21]: 

                           [C,L] = wavedec(wecg,3,'sym4'); 
 

G(z)
   2  

H(z)
  2

G(z)
 2

H(z)   2

G(z)
 2

H(z)
  2

LEVEL 3 LOW PASS AND HIGH PASS 
WAVELETS FILTERS BANK

NEUTRALIZATION 
WASTEWATER  PLANT

LEVEL 3 LOW PASS AND HIGH 
PASS WAVELETS FILTERS BANK

LEVEL 3 LOW PASS AND HIGH 
PASS WAVELETS FILTERS BANK

SUBBAND MODEL
1D

SUBBAND MODEL
2D

SUBBAND MODEL
3D

SUBBAND MODEL
3A

SUBBANDS MODELS

        DpH,1D
 DpH,2D
 DpH,3D

 DpH,3A

Res 1D

Res 2D

Res 3D

Res 3A

DpH,1Dest

DpH,2Dest

DpH,3Dest

DpH,3Dest

ESTIMATES

u=MV_pH

u=MV_pH

pH

Du,1D

Du,2D

Du,3D

Du,3A

YPLANT OUTPUT-

Figure 48: A wavelet based-frequency subband analytical redundancy scheme 
(suggested in [19, 20]) 

 
Figure 49:  The original and reconstruct pH faulty signals 

The number of coefficients by level is contained in the vector 
L. The first element of L is equal to 256, which represents the 
number of scaling coefficients at level 3 (the final level). The 
second element of L is the number of wavelet coefficients at level 
3. Subsequent elements give the number of wavelet coefficients 
at higher levels until the final element of L is reached. The final 
element of L is equal to the number of samples in the original 
signal. The scaling and wavelet coefficients are stored in the 
vector C in the same order. In order to extract the scaling or 
wavelet coefficients, the MATLAB commands appcoef ( 
) or detcoef.( ) can be used. All the wavelet coefficients are 
extracted in a cell array and final-level scaling coefficients [21]. 
In the Figures 50 and 51 are shown all these coefficients for 
faulty pH signal caused by backlash nonlinearity and for healthy 
pH signal (free faults) respectively.  
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Figure 50: The detailed vectors coefficients D1, D2, D3 and approximation 
vector coefficients A3 for faulty pH signal caused by the backlash in control 
valve actuator. 

The residuals of the detailed coefficients Res1D, Res2D, 
Res3D and also of the approximation coefficients Res3A are 
shown in the Figures 52 until 55. All these figures reveal a good 
detection of the fault injection instant, and also provide useful 
information about the fault severity, as is shown in Figure 55. 
The residuals for detailed vectors coefficients are almost zero if 
the noise will be filtrated. Similar, for the second nonlinearity in 
the control valve actuator the detection procedure of the faults is 
the same. The simulation results are shown in Figures 56 until 
61.  

 

Figure 51: The detailed vectors coefficients D1, D2, D3 and approximation 
vector coefficients A3 for healthy  pH signal  

 

Figure 52: The residual of the detailed vector coefficients Res1D 

 

Figure 53: The residual of the detailed vector coefficients Res2D 

 

Figure 54: The residual of the detailed vector coefficients Res3D 
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Figure 55: The residual of the approximation vector coefficients Res3A 

 
Figure 56:  The original and reconstruct pH faulty signals caused by a Coulomb 
viscous friction in the control valve actuator.  

 

Figure 57: The detailed vectors coefficients D1, D2, D3 and approximation 
vector coefficients A3 for faulty pH signal caused by the Coulomb viscous 
friction  in control valve actuator. 

 

Figure 58: The residual of the detailed vector coefficients Res1D 

 

Figure 59: The residual of the detailed vector coefficients Res2D 

 

Figure 60: The residual of the detailed vector coefficients Res3D 

8. Conclusions 

In this research paper we open a new research direction in 
control systems applications field by performing a lot of 
investigations on the use of multisignal 1-D wavelet analysis to 
improve the accuracy, robustness, the design and the 
implementation in real-time of FDI techniques. These 
investigations are performed on the particular case study, mainly 
chosen to evaluate the impact of the uncertainties and the 
nonlinearities of the sensors and actuators on the overall 
performance of the control systems, namely a neutralization of 
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wastewater plant, in an attractive MATLAB SIMULINK 
simulation environment. The preliminary simulation results are 
encouraged and extensive investigations will be done in future 
work to extend the applications area.  The 1-D wavelet analysis 
proved its effectiveness as a useful tool for signals processing, 
design and analysis based on wavelet transforms found in a wide 
range of control systems industrial applications. Based on the 
fact that in the real life there is a great similitude between the 
phenomena, we are motivated to extend the applicability of these 
techniques to solve similar applications from control systems 
field, such is done in our research work. 
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Figure 61: The residual of the approximation vector coefficients Res3A 
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