
Advances in Science, Technology and Engineering Systems Journal
Vol. 2, No. 4, 180-188 (2017)

www.astesj.com

ASTES Journal
ISSN: 2415-6698

Kalman filter Observer for SoC prediction of Lithium cells
Faten Ayadi*, Mongi Lahiani,Nabil Derbel

University of Sfax, Electrical Engineer, Sfax Engineering School, 3000, Tunisia

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 09 August, 2017
Accepted: 29 August, 2017
Online: 23 September, 2017

The SoC estimation of Li Ion batteries presents a difficult task for almost 
applications in order to ensure their higher energy density and their 
safety. Hence, there have been several methods to optimize the state of 
charge of the Lithium cells such as observer strategies which have been 
considered in this work. Kalman filter observer has been selected for 
state optimization. It has been considered to stabilize the error 
estimation of battery state thanks to its gain through the following non 
linear fractional model. The fractional model has been deduced from 
analysis of Impedance Spectroscopy data and it has been well defined by 
Fractional Order Calculus. The performance of Kalman filter has been 
evaluated through the simulation results. They have improved the 
efficiency and limits of Kalman theory to determine the actual internal 
state of cells.
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1 Introduction

The optimization of state of charge for Lithium batter-
ies presents the main effect on their internal states in
several applications [1]. It leads to maintain the activ-
ities of applications in permanent way.
The state of charge (SoC) is meaningful parameter
that is defined in case of discharge of the battery [2].
It presents the shift time of battery capacity through
the following expression [3]:

SoC(t) = 100 ∗
∫ t

t0

Ib(τ)
Q

dτ (1)

with Ib: the current of the battery, Q: the nominal ca-
pacity of the battery and τ : Time of energy storage.
The SoC optimization is a difficult issue for different
domains due to its dependency on some factors such
as battery capacitance, temperature and internal re-
sistance and also the problem of defining it easily [4].
Therefore, many researches have focused on the possi-
bility to estimate the SoC of the Lithium cells through
different techniques [5,6,7] such as Direct measure-
ments [8], Book keeping estimation [9], SoC estima-
tion based on models [10].
The most considered technique for SoC optimization
is Observer techniques [11,12].
This method is based on puting the following battery
model to the observer and update the optimization of
the states by calculating their erros which are the set
of difference data between the measured and desired

state [13]. The model based methods presents among
the diagnosis technology and especially fault diagno-
sis. They are designed for extraction parameter from
impedance spectra and optimization the state of the
electrochemical systems. It has been described in fig-
ure 1.

Fault Diagnosis technology

Parameter estimation

System parameter Fault parameter Observer

State estimation

Filter

Model based method

Figure 1: Properties of the model based method for
fault mechanism and diagnosis

The equivalent battery models permit to make
conformity between electrochemical impedance and
electric impedance measured by Electrochemical
Impedance Spectroscopy (EIS). They own medium
mathematical complexity and they ensure good pre-
cision in field of optimization.
In general, there is a fractional order aspect of equiv-
alent models for electrochemical systems [14, 15,
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16]. Moreover, the fractional models have been well
defined by Fractional Order Calculus (FOC) [17].
Thanks to fractional order calculus, the several dy-
namic and chemical phenomena of Lithium battery
have been perfectly characterized. Many researches
have improved the efficiency of fractional order in
electrochemical fields [18] for example: according to
Ichise et al., fractional calculus has been used for anal-
ysis of electrode processes through an analog simula-
tion of non-integer order transfer functions [19].
SoC estimation based on model for electrochemical
systems requires an accurate fractional descriptor ob-
servers [20]. In addition, there are some researchers
who have focused on this direction like Yan Ma and
Xiuwen Zhou have considered the fractional kalman
filter observer to optimize the state of charge of Li Ion
batteries [21] and also Fei Zhang et al. has proposed
the extended Kalman filter to ensure the stability of
error estimation of SoC [22].

The objective of this research work consists on pre-
senting new strategy for SoC estimation based on ob-
server for Lithium cells.
Kalman Filter has been proposed to determine cor-
rectly the state of Lithium batteries. It has been
more explained and described in section 4.2 . Indeed,
Kalman filter has been theoritically checked and there
has been improved that it is efficient method in field
of prediction of State of Charge (SoC).

2 Dynamic model for Lithium
battery

The Lithium battery considered in this paper is
Lithium cell LiFePO4, model (SP-LFP40AHA). This
part has focused on defining the dynamic phe-
nomenon of selected Lithium battery by analysis
of Impedance spectroscopy data in each frequency
range.

In fact, Impedance Spectroscopy (IS) has been the
most considered strategy in field of estimation of state
of charge of electrochemical systems thanks to its ben-
efits. It is direct measurement that precises a suitable
circuit related to characteristics of impedance curve
at the level of frequency domain [23]. The measure-
ment of impedance has been carried out in frequency
range from 0.01 Hz to 1 KHz. Futhermore, impedance
spectroscopy may identify the parameters of the sev-
eral components for the equivalent circuit such as dif-
fusion coefficient and kinectic variables [24, 25, 26].
The Lithium battery is closely non linear system and
there is difficulty to identify its chemical coefficients
and variables. So, thanks to impedance spectroscopy,
there is possibility to determine the several chemical
internal reactions which then can be defined by equiv-
alent model.

Figure 2 shows the measured impedance diagram
in 50% of SoC for wide range of frequencies. The
several dynamic phenomena of Lithium battery have
been appeared in each frequency range.:

• Parasitic effects and electro migration in the
electrolyte and connectors at high frequency
part (300Hz < f < 355 Hz).

• Charge transfer inside the battery and exactly
in the interface between the electrode and elec-
trolyte at mid frequency part
(354.8Hz < f < 3.54 Hz). It is identified by ZCP E
which is defined in next section.

• Diffusion phenomena of ionic species in low fre-
quency (f < 3.54 Hz). It is identified by Zw
which is defined in next section.
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Figure 2: Measured Impedance spectra for LiFePO4,
model (SP-LFP40AHA) in 50% of SoC

Hence, the topology of equivalent model for chosen
Lithium cell has been presented in figure 3. Dynamic
battery has been modelled by set of electrical compo-
nents.

Ub

I
L

r

Re CPE

Rct

Zω

Z

Figure 3: Topology of equivalent model for Lithium
cell LiFePO4, model (SP-LFP40AHA)

With I : the Current of LiFePO4 battery, Z:
Impedance of LiFePO4 battery , Ub: the terminal of
LiFePO4 battery.

The several effects over frequency range have been
illustrated as:

• High frequency effects have been defined by in-
ductance L in parallel with his interne resistance
r .

• Electrode effects have been presented by ohmic
resistance Re.

• Mid frequency effects have been defined by par-
allel circuit constant phase element CPE- trans-
fer resistance Rct .
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• Low frequency effects have been identified by
Warburg impedance Zω

Li Ion cells is non linear electrochemical system
and there is difficulty to deduce its appropriate prop-
erties. So, in order to obtain the optimal values of bat-
tery model variables which have been shown in figure
3, there has been used the genetic algorithm (G.A) as
fitting procedure.
The optimal values of model have been deter-
mined through mechanism of evolutionnary algo-
rithm which is described in figure 4.

Figure 4: Mechanism of Genetic Algorithm

The dynamic model for LiFePo4 has been de-
scribed in figure 5 and its structure is based on hys-
terisis phenomenon which is presented by open cir-
cuit voltage OCV and from impedance spectroscopy
analysis.

OCV

Re CPE

Rct
V1 Ib

Zω

+
V2

-

Vbat

Figure 5: Dynamic Model topology for Lithium cell

The inductance element L hasn’t been involved in
the battery model because the Lithium ion cells are
less applied in high frequencies range.

2.1 Parameters of battery model

There are different parameters related to equivalent
model such as:

• The double layer capacitance CPE models the
imperfect capacitors that appear in experimen-
tal spectra. It is defined by its fractionnary
impedance through the following expression
[24]:

ZCP E =
1

Q(jω)β
(2)

with : Q > 0 , 0 ≤ β ≤ 1

• Zω is fractionnary impedance for warburg el-
ement. Its main characteristic consists in its
straight line with constant slope at the level of
Nyquist diagram in low frequency values. The
impedance Zω can be written as in semi infinite
diffusion [25]:

Zω(jω) =
α
√

2
(jω)σ

(3)

with : α : the diffusion parameter and σ = 0.5 .

• OCV : Open Circuit Voltage and it is considered
as crucial variable that expresses many criterias
of performance for the battery. The open circuit
voltage is used for SoC estimation [26].

A non linear relationship between OCV and
SoC has been illustrated in the litterature. In
fact, some recent works have proposed some ap-
proximations for this relationship in order to fa-
cilitate its calculation.

Among these approximations, the relation be-
tween OCV and SoC is considered as [27]:

OCV (z) = K0 +K1
1

eλ1(z−Θ1)
+K2

1
eλ2(z−Θ2)

+K3
1

eλ3(z−1)
+K4

1
eλ4z

+K5z
(4)

with z is the state of charge of the battery, Ki=1...5
are the linear parameters and λi=1..4 , Θi=1..2 are
the non linear parameters.

Table 1 presents each values of the following co-
efficient Ki in order to fit the measured curve
OCV . This set of values has been determined by
Genetic Algorithm and it has been considered as
optimal results by the process.

Table 1: Values of coefficient Ki

K0 K1 K2 K3 K4 K5
2.67 2.7 2.85 2.93 3.1 3.4

This approximation relationship has been plot-
ted in figure 6.
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Figure 6: Diagram of OCV over SoC range

The objectif of battery model is defining the sev-
eral electrochemical reactions which own the frac-
tional criterias. They are expressed by Fractional Or-
der Calculus (FOC).

3 Non Linear fractional model

The dynamic model which has been shown in fig-
ure 5 is considered as non linear fractional model.
The fractional order calculus is a tool for defining the
fractional models. The fractional aspect in general
presents among the characteristics of electrochemi-
cal systems. They have been developed and eval-
uated through fractional order calculus in some re-
searches [28]. Besides, by recent works, the FOC
has been defined as mathematic operator using differ-
entiation with integration to non integer order aDtq

where q: the order, a and t : the bounds of the op-
eration. It is applied in science fields like bioenge-
neering [29], electronics [30, 31] and control theory
[32]. In addition, almost engineer applications have
focused on FOC startegies which are based generally
on describing the aspects of dynamic systems by con-
densed expressions and considering non local charac-
teristics such as thermal diffusion phenomenon [33]
and botanical electrical impedances [34].

Fractional order calculus is denoted as [35]:

aDt
q =


dq

dtq if q > 0
1 if q = 1∫ t

0 dτ
−q if q < 0

(5)

with aDtq is initialized qth order differintegration.

At the level of this work, FOC is fractional differ-
entiation and according to Grunwald-Leitnikov, it can
be written as [36, 37]:

Dqx(t) = lim
4T→0

1
T q

t
4T∑
i=0

(−1)i
(
q
i

)
x(t − i4T ) (6)

with 4T : the sampling time, q: the order Grunwald-
Leitnikov fractional derivative of x(t).(

q
i

)
=

Γ (q+ 1)
Γ (i + 1)Γ (q − i + 1)

(7)

where Γ (q) is the generalization of factorial function
[38]. It is expressed as:

Γ (q) =
∫ ∞

0
yq−1e−ydy (8)

In this part, the constant phase element CPE and
the warburg element Zω have been considered as frac-
tional elements [39].

In fact, the fractional element is defined as [39]:

Zf ractional =
1

Y (jw)δ
(9)

where: Y is the coefficient; −1 ≤ δ ≤ 1 : the arbitrary

order of the fractional element which can be an inte-
ger or a fraction. It is characterized by straight vertical
line in Nyquist plot for low frequency domain.

For CPE, its fractional model is given as [20]:

ZCpe =
1

C1(jω)β
(10)

For Zω, its fractional model is given as [20]:

Zwarburg =
1

W (jω)σ
(11)

where: W is the coefficient and β, σ are the arbi-

trary orders of the fractional elements: 0 ≤ σ ≤ 1 and
0 ≤ β ≤ 1.

In this work, the double layer capacitance CPE has
treated as perfect capacitor C1 and then its following
equation is given as:

ZCpe =
1

C1(jω)
(12)

Among the effectiveness of FOC for electrochem-
ical systems, it defines precisely the chemical phe-
nomenon of Lithium batteries. It has been improved
in figure 7 for measured impedance spectrum in 50%
of SoC of Lithium batteries.
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Figure 7: Measured Impedance vs Impedance model
presented by FOC

The dynamic behavior of the battery which has
been presented by FOC has been given as:

www.astesj.com 183

http://www.astesj.com


F. Ayadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 4, 180-188 (2017)

• For diffusion phenomenon: It has been defined
by Zwarburg .

• For charge transfer phenomenon: It has been de-
fined by capacitorC1 in parallels with resistor R.

According to figure 7, the diffusion phenomena
has been obvisiouly well defined by FOC. The straight
line of Zwarburg is similar to line with constant slope of
Zω.

Thanks to FOC, the equivalent circuit of the bat-
tery can be deduced and hence the chemical reactions
can be identified through many parameters related to
different circuit components.

3.1 Fractional battery model

The equations of the fractional model from figure 4
has been expressed as in the following form:

DβV1 =
Ib
C1
− V1

RctC1
(13)

where V1: the voltage at the level of RctC1 parallel cir-

cuit.
DσV2 =

Ib
W

(14)

where V2: the voltage at the level of warburg element.

D1z =
Ib
Cn

(15)

where Cn : the capacity of the Li Ion battery .

The voltage of Lithium battery Vbat is the sum of
open voltage and voltages at the level of the electrode
resistance Re , the RC parallel circuit and warburg el-
ement.

It can be written as:

Vbat =OCV (z) +ReIb +V1 +V2 (16)

3.2 State space for Lithium battery model

Through the different equations (13)-(16), the state
space for Lithium cell can be given as:

Dqx(t) = Ax(t) +Bu(t)

y = Cx(t) +Du(t)
(17)

where: x(t): the vector of the following states;

x =
(
z V1 V2

)
T

A, B, C, D: The matrices with:

A=


0 0 0
−1

RctC1
0 0

0 0 0

 , B=


1
Cn
1
C1
1
W

 , C=
(
K5 1 1

)
,

D= Re, q =
(
1 β σ

)
, y= Vbat : Output of state

space.

u(t): Input of state space with u=Ib (The current
of the battery).

4 SoC optimization using frac-
tional observer

The observers have been considered as an alternat-
ing tool for some problems which exist in practice
like: the high cost of installation of the devices and
long time of measurements of the missing variables.
The main role of observers is determining the un-
known variables related to the state vector and reduc-
ing the use of expensive sensors [40]. This area has
been attractive by many researches [41,42] and many
kind of observer strategies have been evolved espe-
cially for several classes of chemical systems to esti-
mate their internal states [43, 44]. In addition, the
use of observers becomes a challenge in front of many
requirements of accuracy and suitable estimation per-
formances. For the recent workers, there was set of
types of observers which have been cited in electro-
chemical fields [45].

The design of observers owns an appropriate
methodolgy. It has been firstly based on linear forms
with presence of noises [46]. Then, there has been
a developpement at the level of their forms due to
the complexity of the systems. Hence, non linear ob-
servers have been widely considered [47]. They have
based on mathematical models and they are evaluated
by observer’s equations. Indeed, the gain and the op-
timization of error dynamics are the main properties
for model based observers.

Figure 8 presents the procedure of observer de-
sign.

Figure 8: Procedure of observer design

Moreover, the observer is among elements of con-
trol theory and it estimates in real time the state of
given system from measurements of its inputs and
outputs. Its principle has been described in figure 9.
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Figure 9: Reconstruction of state space involving the
state observer

4.1 Observability of non linear fractional
model

The observability is criteria for control approach. It
is based on defining the behavior of internal states
of the system by knowledge of its measured outputs
[48]. The observability condition is main part for ob-
server designing and especially it depends on the for-
mulation of the given system where there is choice of
type of observability. Futhermore, there is two kinds
of observability conditions: observability matrix and
observability Gramian. In this work, the observability
Gramian [49] has been considered to detect the aspect
of given system.

The state space (17) for non linear fractional sys-
tem has been firstly evaluated for its observability and
then it has been put into the state observer. It is effec-
tively observable at time t if there is θ < t where the
state at time t can be finded by knowing its outputs
over the interval [θ t] [50].

The observability Gramian matrix W(θ, t) is de-
fined as [51]:

W (θ,t) =
∫ t

θ
Eγ (AT (t − τ)γ )CTCEγ (A(t − τ)γ )dτ (18)

where Eγ is Mittag-Leffler function which is ex-
pressed as follows [52]:

Eγ (x) =
∞∑
k=0

Ak

Γ (1 +γk)
(19)

with γ > 0
According to the battery model, the observability

matrix W(θ, t) is expressed as:

W(θ, t)=

 6.100 5.8965 5.9512
5.75 5.9512 6.110

5.9512 6.12 7.110


This matrix is invertible and thus its inverse

W −1(θ,t) exists.

Futhermore, the non linear fractional model is ob-
servable and there is possibility to estimate its in-
ternal state from knowledge of its external outputs.
Hence, this model would be synthetized through an
observer by following method which has been shown
in figure 10 :

Figure 10: Battery model based on SoC estimation
through the feedback method Kalman filter observer

As described in figure 10, SoC estimation is en-
sured by feedback method Kalman Filter which has
been explained in next sections.

4.2 Fractional Kalman filter (FKF) ob-
server design

Model battery variables are not available directly to
measure them. Hence, they need an accurate optimal
tool to determine them which is fractional kalman fil-
ter (FKF).

Kalman filter is an estimator algorithm based on
the informations about the given model and input,
output signals in presence of noise [53]. Its opera-
tion can be done in real time using the actual input
measurements and the previously calculated states.
Kalman filter doesn’t need past informations during
its run where it tries to find the minimum mean
square error optimization states of the actual Lithium
states.

The objectif of fractional Kalman filter is getting
an appropriate optimization results by reducing the
cost function in the following steps [54]:

argmin
x

[(x̂k −x)P̂k
−1

(x̂k − x)T +(yk +Cx)Rk
−1(yk +Cx)T ]

(20)
with x̂k is the state vector prediction and P̂k is the er-

ror covariance of state estimation.
The FKF is recursive algorithm and the form of

state space (17) has been expressed as discrete form
from stochastic theory:

For k ≥ 1 : x(k + 1) = [4qTA+ diag(q)I]x(k)

−
N+1∑
i=2

(−1)i
(
q
i

)
x(k + 1− i) +4qT Bu(k)

+w(k)

y(k) = Cx(k) +Du(k) + v(k)

(21)

with
(
q
i

)
= γi = Cqi = q!

i!(q−i)!

w(k): Stochastic disturbance; v(k): Output noise.
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Fractional Kalman filter owns two main steps
where the state estimate is evaluated through several
equations presented in figure 11:

- Prediction step: permits to compute and up-
date the state estimate and error covariance through
mathematical relation between the priori estimation
(x̂k−, P̂k−) and the posterior estimation (x̂k+, P̂k

+).

- Correction step: updates the measurements of
state estimate and error covariance.

The formulation of FKF designed for state opti-
mization [20, 55, 56] has been summarized in figure
11:

Figure 11: Fractional Kalman Filter for state optimiza-
tion

5 Simulation results and analysis

The performance of fractional Kalman filter has been
evaluated for SoC estimation of the battery by Logi-
ciel Matlab Simulink and the run time of simulation
is about 1000 secondes.

The several simulation results have been performed
through set of conditions:

• The fractional model of Lithium battery is ob-
servable

• The initial SoC value has been considered as
0.88.

• Presence of stochastic disturbance and output
noise w(k) and v(k).

5.1 Analysis of error for SoC estimation

Figure 12 shows the SoC optimization by proposed
observer Kalman filter and its error estimation.
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Figure 12: SOC estimation and its error by Fractional
Kalman filter observer

According to figure 11, Kalman filter well opti-
mize the SoC of the battery . It provides good state of
charge estimation error thanks to its accuracy for pa-
rameter estimation. Hence, the stability between the
model and the observer has been perfectly ensured by
Kalman filter.

Besides, the dispersion of error of SoC estimation
for fractional kalman filter is not totally concentrated
at zero error. It is more dispersed and tends to -0.005
due to the problem of choice of initial parameters.
This explains that the optimal values of SoC are not
exactly equal to real SoC values.

5.2 Analysis of rise time for SoC estima-
tion

The rise time of proposed estimation method may ex-
plain about its speed responses and improves its dy-
namic performance.

The desired state of charge by Kalman filter ob-
server converges slowly to real state. Thus, it isn’t con-
sidered for real time applications.

Kalman filter owns limits for convergence of the
variables. It takes a long period to reach to real values
of the following state of charge (SoC) due to its slowly
operations. According to figure 11, the estimated state
has been firstly fluctuated in narrow range and then it
has been converged to real SoC. Hence, Kalman Fil-
ter observer is very slow method and it owns long rise
time for SoC estimation.

So, Kalman filter doesn’t operate perfectly in term
of estimation rise time and it yields to get bad quality
of state optimization for electrochemical systems.
It has high time consumption due to the long time of
calculation of the covariances (Pk , Qk , Rk).
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5.3 Discussion

The dynamic performance of Kalman filter has been
synthetized through simulation results. Kalman filter
observer can estimate the state of charge of Lithium
battery despite of its limits.

In fact, it has high time consumption which de-
pends on two reasons:

• The first reason: It is related to calculation of
feedback coefficients. For Kalman filter, its gain
is determined through the equations related to
prediction and correction steps.

• The second reason: There is long time of calcula-
tion of complex covariances which makeS a big
time consumption for Kalman filter.

Besides, Kalman filter has high estimation rise time
due to its slow responses for SoC prediction of
Lithium batteries.

In order to get better the state estimation for bat-
teries, the extension form of these proposed tech-
niques can be considered.

6 Conclusion and Outlook

A new strategy for SoC estimation has been de-
scribed in this work which has based on state observer.
Its main principle is using the equivalent fractional
model of Lithium battery and determining from it the
state of charge through observer methods. The battery
model has been defined from impedance spectroscopy
analysis. Each chemical property of the battery has
been modelled through set of electrical components.
The selected technique for state optimization is Frac-
tional Kalman filter. Its operation for SoC estimation
has been explained. The performance of this method
and several aspects of SoC estimation (Rise time and
time consumption) have been evaluated theoretically
and there has been improved that Kalman filter ob-
server has benefits and limits to predict the internal
state of the batteries due to its long rise time and time
consumption.

Future goals of this work is overcoming the lim-
its of Kalman filter by considering its extension form
or a robust and fast observer tool for SoC estimation
which is Proportional Integral Observer (PIO). It well
defines through its operations the actual states of elec-
trochemical systems.
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