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A new coupled structure identification of Multi-Input Multi-Output 
(MIMO) Hammerstein models with separate nonlinearities is proposed. 
It is based on the use of the Recursive Least Squares (RLS) algorithm. A 
comparative study between a decoupled and coupled structures 
identification of MIMO Hammerstein models is discussed.
A quadruple-tank process is used to illustrate the e
ectiveness of the new structure.

Keywords:
Parametric identification
Hammerstein model
Separate nonlinearity
Quadruple-tank process

1 Introduction

This paper is an extension of work originally pre-
sented in Conference on Science of Electronics, Tech-
nologies of Information and Telecommunications
(SETIT 2016) [1].
The latter work presented two methods of parametric
identification of decoupled multivariable Hammer-
stein model.
It consists of one nonlinear static block and one linear
dynamic block. Many process (chemical and biologi-
cal process, signal processing, etc.) have this structure,
for example: pH neutralization processes [2], poly-
merization reactor [3], distillation columns [4] and
dryer process [5].
Many system identification methods have been used
to identify the single-input single-output (SISO)
model. They can be divided into stochastic meth-
ods [6,7], iterative methods [8], over-parameterization
methods [9], separable least squares methods [10,11],
blind identification methods [12] and frequency do-
main methods [13].
It is possible to transform the SISO Hammerstein
model to MISO and MIMO model which is linear
in the parameters [14]. Serval approches have been
proposed to identify MIMO Hammerstein model. In
[15,16,17], neuronal networks and fuzzy logic have
been used to deal with more general nonlinearities.
An approach based on multivariable cardinal cubic
spline functions to model the static nonlinearities

have been proposed in [18]. The Least Squares Sup-
port Vector Machines (LS-SVMs) have been presented
in [19,20]. A generalized Hammerstein model con-
sisting of a static polynomial function in series with
time-varying linear model is developed in order to
model the Hammerstein-like multivariable processes
whose linear dynamics vary over the operating space
in [21]. In this work, we propose a new coupled struc-
ture identification of MIMO model with separate non-
linearities. It is organized as follows: SISO Hammer-
stein system is presented in part 1 of section 2. A new
coupled structure for MIMO Hammerstein system is
developed in part 2 of section 2. Simulation results of
a quadruple-tank process is given in section 3. Finally,
a conclusion is made.

2 Parametric identification
of Hammerstein model

2.1 Parametric identification
of SISO Hammerstein model

Assume that the Hammerstein model of Figure 1 is
composed of a nonlinear block F (.) associated with a

linear sub-system
B(q−1)
A(q−1) . It is described by:

 yk =
B(q−1)
A(q−1)vk +wk

vk = F (uk)
(1)
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with:

A
(
q−1

)
= 1 + a1q

−1 + a2q
−2 + . . .+ anAq

−nA

B
(
q−1

)
= b1q

−1 + b2q
−2 + . . .+ bnBq

−nB

vk = λ1 uk +λ2 u
2
k + . . .+λN u

N
k

q−1 delay operator, uk input of the system, yk output,
vk the unmeasurable internal signal andwk represents
the modeling error, external disturbances, etc.

In order to have a unique parameterizations of the
Hammerstein model structure, the first coefficient of
the nonlinear function F (.) equals to 1, λ1 = 1 [11,22].
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Figure 1: SISO Hammerstein model

The output yk is given by:

yk = −
nA∑
i=1
ai yk−i +

nB∑
i=1
bi

uk−i +
N∑
ρ=2

λρ uρk−i

+wk
(2)

Equation (2) can be written in the following form:

yk = ΦT
k θk +wk (3)

with:

Φk =
(
Yk
Uk

)
, θ =

 ab
s

 ,
Φk and θk ∈ RnR where nR = nA +N nB,

Yk =
(
−yk−1,−yk−2, . . . ,−yk−nA

)
∈ RnA ,

Uk =
(
U1k ,U2k , . . . ,UN k ,

)
∈ RNnB ,

Uj k =
(
uj k−1,u

j
k−2, . . . ,u

j
k−nB

)
∈ RnB ,

for j = 1, 2, . . . , N

a =
(
a1, a2, . . . , anA

)
∈ RnA ,

b =
(
b1,b2, . . . , bnB

)
∈ RnB ,

s =
(
λ2b,λ3b, . . . ,λNb

)
∈ RNnB .

The parameter vector θ can be estimated using the
RLS algorithm. It is described by the following equa-
tions: 

θ̂k = θ̂k−1 + Pk Φk εk

Pk = Pk−1 −
Pk−1 Φk Φ

T
k Pk−1

1+ΦT
k Pk−1Φk

εk = yk − θ̂Tk−1 Φk

(4)

where Pk is the adaptation gain matrix, Φk is the ob-
servation vector and θk is the parameters vector.

2.2 Parametric identification
of MIMO Hammerstein model

Two structures are used to identify MIMO Hammer-
stein models in the literature: with separate nonlin-
earities [21] or with combined nonlinearities [23]. The
second case is the most general, but it can cause a very
challenging parameter estimation problem because of
the large number of parameters to be estimated.

In this paper, we developed a new coupled struc-
ture for MIMO Hammerstein model with separate
nonlinearities. They are presented in Figure 2 and 4
where uj , vi,j , yi for i = 1, 2, . . . ,p and j = 1, 2, . . . ,m
are the system input, internal signal and system out-
put. Fi,j (.) are nonlinear function.

2.2.1 A decoupled structure identification
of MIMO Hammerstein model

The decoupled structure of MIMO Hammerstein
model is given in Figure 2. Each output yi,k , i =
1, 2, . . .p, of the multivariable system corresponds to
a linear model, which at its input are introduced a
nonlinear functions, Figure 3.
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Figure 2: Decoupled structure of MIMO Hammer-
stein model
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Figure 3: Structure of first model

Each output yi,k , i = 1, 2, . . .p, of the MIMO
Hammerstein model is proposed as:
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Ai

(
q−1

)
yi,k =

m∑
j=1
Bi,j

(
q−1

)
vj,k

vi,j,k = Fi,j
(
uj,k

)
= uj,k +

N∑
ρ=2

λi,j,ρu
ρ
j,k

(5)

with:
Ai

(
q−1

)
= 1 + ai,1q−1 + ai,2q−2 + . . .+ ai,nAi q

−nAi

Bi,j
(
q−1

)
= bi,j,1q−1 + bi,j,2q−2 + . . .+ bi,j,nBi,j q

−nBi,j

System (5) can be rewritten as:

yi,k = −
nAi∑
τ=1

ai,τ yi,k−τ +
m∑
j=1

nBi,j∑
τ=1

bi,j,τ uj,k−τ

+
m∑
j=1

nBi,j∑
τ=1

N∑
ρ=2

bi,j,τ λi,j,ρu
ρ
j,k−τ

(6)

then:

yi,k = −
nAi∑
τ=1

ai,τ yi,k−τ +
m∑
j=1

nBi,j∑
τ=1

bi,j,τ uj,k−τ

+
m∑
j=1

nBi,j∑
τ=1

N∑
ρ=2

si,j,τ,ρu
ρ
j,k−τ

(7)

Equation (7) can be written in the following form:

yi,k = Φi,k
T θi (8)

with:

Φi,k =

 Yi,kUk
ϕk

 , θi =

 AiBi
Si


Φi,k and θi ∈ RnR ; nR = nAi +

m∑
j=1
NnBi,j

Yi,k =
(
−yi,k−1, − yi,k−2, . . . , − yi,k−nAi

)
∈ RnAi

Uk =
(
U1,k , U2,k , . . . , Um,k

)
∈ Rm×nBi,j

Uj,k =
(
uj,k−1, uj,k−2, . . . , uj,k−nBi,j

)
∈ RnBi,j

ϕk =
(
ϕ1,k , ϕ2,k , . . . , ϕm,k

)
∈ R(N−1)×m×nBi,j

ϕj,k =
(
ϕj,1,k , ϕj,2,k , . . . , ϕj,nBi,j ,k

)
∈ R(N−1)×nBi,j

ϕj,τ,k =
(
u2
j,k−τ , u

3
j,k−τ , . . . , u

N
j,k−τ

)
∈ R(N−1)

Ai =
(
ai,1, ai,2, . . . , ai,nAi

)
∈ RnAi

Bi =
(
Bi,1, Bi,2, . . . , Bi,m

)
∈ Rm×nBi,j

Bi,j =
(
bi,j,1, bi,j,2, . . . , bi,j,nBi,j

)
∈ RnBi,j

Si =
(
Si,1, Si,2, . . . , Si,m

)
∈ R(N−1)×m×nBi,j

Si,j =
(
Si,j,1, Si,j,2, . . . , Si,j,nBi,j

)
∈ R(N−1)×nBi,j

Si,j,τ =
(
si,j,τ,2, si,j,τ,3, . . . , si,j,τ,N

)
∈ R(N−1)

si,j,τ,ρ = bi,j,τ λj,ρ

for i = 1,2, . . . ,p, j = 1,2, . . . ,m, and τ = 1,2, . . . ,nBi,j

The steps of the identification scheme are summa-
rized as follows:

1. choosing an initial values for the adaptation ma-
trix,

2. acquiring the input and output of the system
and form the vector data as shown in (11) us-
ing the present and past values of the input u,
output y, and u power,

3. solving the estimate parameterAi , Bi and Si us-
ing the algorithm RLS,

4. solving λi,j,ρ using the estimated values bi,j,τ
and si,j,τ,ρ as:

λi,j,ρ =


nBi,j∑
τ=1

b2
i,j,τ


−1 

nBi,j∑
τ=1

bi,j,τ si,j,τ,ρ

 (9)

2.2.2 A new coupled structure identification
of MIMO Hammerstein system

The structure of this method is given in Figure 5. Each
output of the system is depended on inputs and all
other system outputs, Figure 4.
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Figure 4: Structure of first model

Each output yi,k , i = 1, 2, . . .p, of the MIMO
Hammerstein model is described by:


Ai

(
q−1

)
yi,k =

m∑
j=1
Bi,j

(
q−1

)
vj,k +

p∑
l=1
l,i

Ci,l
(
q−1

)
yl,k

vi,j,k = Fi,j
(
uj,k

)
= uj,k +

N∑
ρ=2

λi,j,ρu
ρ
j,k

(10)
with:
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Ai
(
q−1

)
= 1 + ai,1q−1 + ai,2q−2 + . . .+ ai,nAi q

−nAi

Bi,j
(
q−1

)
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−nBi,j
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Figure 5: A proposed structure of MIMO Hammer-
stein model

System (10) can be rewritten as:

yi,k = −
nAi∑
τ=1

ai,τ yi,k−τ +
m∑
j=1

nBi,j∑
τ=1

bi,j,τ uj,k−τ

+
m∑
j=1

nBi,j∑
τ=1

N∑
ρ=2

bi,j,τ λi,j,ρu
ρ
j,k−τ +

p∑
l=1
l,i

nCi,l∑
τ=1

ci,l,τ yl,k−τ

(11)
then:

yi,k = −
nAi∑
τ=1

ai,τ yi,k−τ +
m∑
j=1

nBi,j∑
τ=1

bi,j,τ uj,k−τ

+
m∑
j=1

nBi,j∑
τ=1

N∑
ρ=2

si,j,τ,ρu
n
j,k−τ +

p∑
l=1
l,i

nCi,l∑
τ=1

ci,l,τ yl,k−τ

(12)
Equation (12) can be written in the following form:

yi,k = Ψ T
i,kθ

new
i (13)

with:

Ψi,k =


Yi,k
Uk
ϕk
YL,k

 , θnewi =


Ai
Bi
Si
Ci



Φi,k and θi ∈ RnR ; nR = nAi +
m∑
j=1
NnBi,j +nCi,l ×(p−1)

YL,k
L,i

=
(
Y1,k , Y2,k , . . . ,Yp,k

)
∈ R(p−1)×nCi,l

Yl,k =
(
−yl,k−1, − yl,k−2, . . . , − yl,k−nCi,l

)
∈ RnCi,l

Ci =
(
Ci,1, Ci,2, . . . , Ci,p

)
∈ R(p−1)×nCi,l

Ci,j =
(
ci,j,1, ci,j,2, . . . , ci,j,nCi,l

)
∈ RnCi,l

for i = 1,2, . . . ,p, j = 1,2, . . . ,m, and τ = 1,2, . . . ,nBi,j ,
and l = 1,2, . . . ,p, such as l , i.

Parametric identification consists to determine the
parameters of the system based on vectors of inputs
and outputs, using the recursive least squares algo-
rithm.

3 Application: quadruple-tank
process

A quadruple-tank process is used to illustrate the per-
formance of the proposed structures of the MIMO
Hammerstein model.

3.1 System description

The system setup is a model of a chemical plant frag-
ment. Very often tanks are coupled through pipes and
the reactant level and flow has to be controlled. The
type of the experiments was performed on the 33-041
Coupled Tanks System of Feedback Instruments [24].
This plant, a variant of the quadruple tank process
originally proposed in [25], is a model of a fragment
of a chemical plant, Figure 6.

Figure 6: Plant of four coupled tanks [26]

The line diagram of the reservoir system is shown
in Figure 7. The coupled tanks unit consists of four
tanks placed on a rig. Another reservoir tank is
placed at the bottom. In the reservoir two submersible
pumps are placed, which pump the water on com-
mand to the tanks. The water flows freely to the bot-
tom tanks through the configurable orifice. The way
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the water flows through the setup can be configured in
many ways with manual valves label led (MVA, MVB,
MVC, MVD, MVE, MVF, MVG, MV1, MV2, MV3 and
MV4).

P2P1

T4T2

T1 T3

MVA

MVF

MV1

MV2

MV3

MV4

MVC

MVB

MVD

MVE

MVG

Figure 7: Line diagram for quadruple-tank process

3.2 Mathematical modelling

The quadruple-tank process admits the following
nonlinear model [25] which has been assembled in
simulink:

ḣ1(t) = ηv1 (t)− a1
A

√
2gh1 (t)− a13

A

√
2g (h1 (t)− h3 (t))

ḣ2(t) = a1
A

√
2 g h1 (t)− a2

A

√
2 g h2 (t)

ḣ3(t) = ηv2 (t)− a3
A

√
2gh3 (t)− a13

A

√
2g (h1 (t)− h3 (t))

ḣ4(t) = a3
A

√
2 g h3 (t)− a4

A

√
2 g h4 (t)

(14)
where hi , for i = 1,2,3,4, denote the water level in the
corresponding tank and vi , for i = 1,2, are voltages ap-
plied to the pumps. ai , for i = 1,2,3,4, are the outlet
area of the tanks, a13 is the outlet area betwixt tanks
1 and 3; η constant relating the control voltage with
the water flow from the pump, A is the cross-sectional
area of the tanks and g is the gravitational constant.

3.3 Simulation and results

The proposed structures has been tested with the
model parameters presented in table 1.

Value Unit Description
hi 0− 25 cm Water level of tank i
vi 0− 5 V Voltage level of pump i
S 0.014 m2 Cross-sectional area
ai 5e − 5 m2 Outlet area of tank i
a13 5e − 5 m2 Outlet area betwixt T 1 and T 3
η 2e − 3 m3

V .s Water level of tank i
g 9.81 m−2 Gravitational constant

Table 1: Parameters of the plant

The inputs u1 and u2 are show in Figure 8. They
are set to [0 . . .+ 5V ]. The sample time used for all
simulations is Te = 1s.
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Figure 8: Inputs u1 and u2
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Figure 9: Response of the real and estimated h1
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Figure 10: Response of the real and estimated h2
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Figures 9 to 12 show the results of the experiments
with two method from a comparative point of view.
Each of them shows a superposition of the actual out-
put and the two outputs estimated as their two er-
ror curves. Solid line represents the real output, dot-
ted line represents the estimated systems output sig-
nals with the decoupled structure and the dash dot
lines represent the estimated systems output signals
with the coupled structure in all four graphs. The re-
sponses of the original system and the results of the
proposed method are very similar. It is clear that the
error corresponds to the proposed structure is smaller
than that corresponding to the decoupled structure.
On inspection, the proposed structure is seen to work
better than the decoupled structure. Thus, the feasi-
bility and superiority of this proposed identification
method are validated.
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Figure 11: Response of the real and estimated h3
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Figure 12: Response of the real and estimated h4

4 Conclusion

In this study, a new coupled structure identification
of MIMO Hammerstein model with separate nonlin-
earities has been developed. The method is based
on RLS algorithm. A comparative study using sim-
ulation results for quadruple-tank process, between
the proposed structure and the decoupled structure is
discussed. Simulation results reveal the performance
and effectiveness of the proposed method.
As a perspective, we will judge the performance of the
method used in the presence of perturbations
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