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 The current advances in proteomic and transcriptomic technologies produced huge 

amounts of high-throughput data that spans multiple biological processes and 

characteristics in different organisms. One of the important directions in today’s 

bioinformatics research is to discover patterns of genes that have interesting properties. 

These groups of genes can be referred to as functional modules. Detecting functional 

modules can be accomplished by the deep analysis of protein-protein interaction (PPI) 

networks, gene expression profiles, or both. In this work the focus will be on Human 

protein-protein interaction network and genes expression data that represents genes 

behavior in a group of diseases. Two of the most well-established clustering methods 

that target the interaction networks and the expression data will be used in this analysis. 

In addition, and to have more insights, genes molecular functionality will be studied. 

Finally, I will introduce the relation of the extracted modules on biological pathways. 

This study mainly illustrates the importance of including protein interaction activities 

as part of any study that aims at discovering meaningful knowledge about the biological 

scene where many actors play different roles. 
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1. Introduction 

The current advances in proteomic and transcriptomic 

technologies produced huge amounts of high-throughput data 

that spans multiple biological processes and characteristics in 

different organisms. One of the important directions in today’s 

bioinformatics research is to discover patterns of genes or genes 

products that have interesting characteristics that can be related 

to specific activities or functions inside the living organism. 

Researchers believe that those groups of genes are can give 

deeper insights of what is happening inside a living cell than 

studying individual genes in isolation. These groups of genes are 

called functional modules (patterns). Different approaches can 

be employed to discovering functional modules. One of the most 

important approaches is to focus on protein-protein interaction 

(PPI) networks and try to find well connected sub-networks. 

Another approach is to consider gene expression data and try to 

find modules that show similar behavior according to their 

expression levels by calculating correlations. The last approach 

is to integrate both the PPI and the expression data in a 

complementary effort because both PPI and expression data 

suffer from incompleteness and inconsistency problems [1]. 

However, for the expression profiles that are related to 

diseases in specific, most of the available data is in the form of 

genome-wide expression profiles that extracted from microarray 

measurements. A number of methods have been proposed to 

clarify the biological mechanisms from this expression data 

[2,3]. Most of those methods are based on individual genes 

ability to be used as a strong indication of the disease under 

consideration. However, considering only individual genes will 

give limited insights about the molecular mechanisms and 

biology of an organism under different disease conditions. On 

the other hand, studying groups of genes that show specific 

behavior related to some disease will help in grasping more 

comprehensive views about the disease itself and what 

molecular functionality those genes may have and can be 

involved in this disease. The reason for that is the fact that any 

biological process, such as a disease, occurring inside the living 

organism is affected and affects multiple and different biological 

components and pathways of that organism. Patterns of genes, 
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or functional modules, can be discovered in different ways. One 

approach is by applying clustering techniques on PPI networks 

to find patterns of well-connected genes.  One of the most 

established methods used in this field is the stochastic flow-

based clustering (Markov Cluster Algorithm, MCL) [4, 5]. The 

Markov cluster algorithm (MCL) uses a graph’s natural 

transition probability matrix to cluster a graph by combining 

random walks with two alternating operations (expansion and 

inflation). With these operations, the algorithm iteratively 

simulates the dissipation and elimination of stochastic flow 

across the graph structure to produce a non-negative matrix 

representation of a graph clustering. In other words, the nodes of 

the graph are clustered with each other based on the strength of 

connections between these nodes. The MCL method has been 

shown to be significantly robust and superior to other network-

based methods when used to cluster benchmarking biological 

networks [6].  

Another approach is to use gene expression profiles to cluster 

genes that show similar behavior based on their expression levels 

that are extracted from microarray measurements. In this case, 

any clustering method can be used like K-means [7]. K-means 

and its variations are among the most popular iterative methods 

used for clustering data and can be easily applied to biological 

data. The general idea of K-means is that a number of centers are 

specified and a distance metric from these centers is used as a 

dissimilarity measure. The points are grouped towards the 

closest center based on the criteria used. For example, one of the 

widely used metrics is the Euclidean Distance.  The Euclidean 

Distance [8] between values xi and xi’ can be defined as follows: 

Then each of the points, genes in this case, will be assigned to 

cluster so that the distance between these points and the specified 

center is minimized. After that, a new set of centers are 

calculated and the assignment step is repeated. The process 

continues iteratively until the assignments stabilize so that no 

further assignments changes are possible. 

2. Experimental Analysis 

2.1 Datasets 

In order to elucidate the work in this paper, a group of data 

sets were obtained and preprocessed in order to suite the setting 

required for this work. The following is a listing of the datasets 

used in the analysis. 

• Interaction Networks 

The experiments were performed using Homosapiens 

(Humans) protein-protein interaction network. The Human 

network was obtained from the Human Protein Reference 

Database (HPRD), release 9 [9]. The Human PPI network 

has 9465 nodes with 37039 interactions.  

• Disease Gene profiles 

In order to perform the planned analysis, gene expression 

profiles for 16 diseases were obtained from the GEO 

database [10]. Table 1 shows the names and identification 

numbers of these diseases. 

• OMIM dataset 

The OMIM, Online Mendelian Inheritance in Man, 

database [11] was used to extract genes-disease data. The 

data includes 4022 different diseases. Each disease is 

represented by the genes causing it or in relation to that 

disease. 

• Human protein complexes 

The human protein complexes are groups of proteins that 

have strong evidence that they are interact with each other. 

The protein complexes were extracted from HPRD (Human 

Protein Reference Database), release 9 [9]. This data set 

contains 1521 of manually curated protein complexes. 

• Molecular Functionality 

For studying Molecular functions of the Human genes, the 

Molecular Functions from the GO annotation database were 

used (release date of the data base: 11/15/2011, version: 

1.216) [12]. 

2.2 Performing Experiments 

After obtaining all the datasets needed for this work, both 

MCL and K-means were employed to discover the interesting 

patterns. 

Firstly, the MCL algorithm was applied to the HPRD 

interaction network. MCL uses a parameter that controls its 

operation. That parameter is called inflation. I used an inflation 

of 1.75 which is considered optimal according to [6]. I only 

considered the resulting patterns of sizes greater than or equal to 

4 genes. The MCL produces connected modules when applied 

to the interaction network. The result contains 776 modules.  

Table 1. Disease Datasets for expression profiles 

GEO 

Series ID 

GEO DataSet 

ID   
Disease Name 

GSE2503  GDS2200  Actinic keratosis  

GSE1420 GDS1321 Adenocarcinoma of esophagus 

GSE1297 GDS810 Alzheimer's disease 

GSE5388  GDS2190 Bipolar disorder  

GSE475 GDS289 Chronic obstructive lung disease  

GSE1462 GDS1065 
Chronic progressive 

ophthalmoplegia  

GSE1629 GDS1850 Complex dental cavity  

GSE3585 GDS2205 Congestive cardiomyopathy 

GSE3365 GDS1615 Crohn's disease  

GSE5370 GDS2153 Dermatomyositis  

GSE2006 GDS1376 Essential thrombocythemia 

GSE1751 GDS1331 Huntington's disease 

GSE2018 GDS999 Lung transplant rejection  

GSE3189 GDS1375 Malignant melanoma 

GSE3868 GDS1746 Malignant neoplasm of prostate 

GSE2549 GDS1220 Malignant pleural mesothelioma 

2.3 Performing Experiments 

After obtaining all the datasets needed for this work, both 

MCL and K-means were employed to discover the interesting 

patterns. 

Firstly, the MCL algorithm was applied to the HPRD 

interaction network. MCL uses a parameter that controls its 
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operation. That parameter is called inflation. I used an inflation 

of 1.75 which is considered optimal according to [6]. I only 

considered the resulting patterns of sizes greater than or equal to 

4 genes. The MCL produces connected modules when applied 

to the interaction network. The result contains 776 modules.  

Secondly, the K-means algorithm was applied to the gene 

disease expression profile data. In order to have comparable 

number of modules to the one produced by the MCL, the number 

of modules resulting from the MCL was used as the number of 

K-means initial centers (clusters). Then, the analysis was 

performed with clusters of sizes greater than 4 genes (similar to 

what was done in MCL). K-means produced 1039 module of 

size ≥ 4 genes. The genes in these modules show similar 

behavior according to the disease expression data used in this 

study. 

2.4 Human protien complexes 

The following analysis was performed to assess the quality 

of the MCL and K-means produced modules in predicting 

known protein complexes. Those complexes are proved to have 

biological significance. Therefore, more matched complexes by 

the produced patterns means higher quality patterns from the 

biological point of view.    

For assessing complex matching, I used the matching criteria 

introduced by [13]. The overlap score was computed by the 

formula w = i2/a*b, where i is the size of the intersection set 

between the discovered patterns and the known complex, a is the 

size of the discovered protein pattern and b is the size of known 

protein complex. The overlap threshold between produced 

patterns and the protein complexes   ranged from 0.1 to 1.0 with 

0.1 increments; 1.0 implies a 100% match between the module 

and the protein complex. The range was chosen to make the 

overlapping abilities of the discovered patterns a tangible 

amount illustrating the quality of these patterns. Furthermore, we 

have not considered any overlap to be considered as a match 

which would may be seen as an overstatement of these results. 

More overlap indicates a better match with protein complexes, 

however knowing that more protein complexes are yet to be 

identified, even a lower match percentage can highlight some 

promising results. Figure 1 illustrates the MCL performance. 

While Figure 2 shows the performance of K-means prediction 

capability. Clearly, MCL has superiority over the K-means and 

was able to predict protein complexes even with higher overlap 

thresholds. This can be referred to the fact that many of the 

complexes are known to be well connected sub-graphs 

originally, and MCL aims at producing connected modules. 

Furthermore, K-means does not care about patterns connectivity. 

It is only concerned of expression similarity. 

Another note about the results that I found interesting is that 

the larger the produced pattern the more penalty it will face in 

the complex matching process. This is because the average size 

of protein complexes is ≈ 5 genes and the criteria used for 

matching penalizes large patterns. 

2.5 OMIM disease modules 

The OMIM dataset provides a comprehensive collection of 

diseases that relates a large number of known diseases to the 

genes that are causing them or have a strong involvement in the 

cause and the mechanisms of the disease, in other words the 

Etiology and Pathogenesis of a disease. To evaluate the 

produced patterns and to have more insights that they can 

provide in the disease domain, both MCL and K-means 

produced patterns were tested against the OMIM disease dataset. 

This analysis aimed at discovering modules that might be related 

to known diseases.  

 
Figure 1. MCL protein complex prediction 

 

Figure 2. K-means protein complex prediction 

As expected, the K-means slightly outperformed the MCL in 

this case. In this work, the patterns in the OMIM dataset are 

referred to as disease modules. 

MCL produced patterns matched 68 disease modules while 

K-means matched 134 disease modules. The reason is that K-

means patterns were originally based on data that is disease 

related. Some of the diseases that were used to create expression 

profile dataset were among the ones that were found from the 

OMIM dataset. As mentioned above, this study used only 16 

diseases expression data, while the resultant matched diseases 

were multiples of that number.  An explanation is that some 

genes can be involved in multiple diseases. This note means that 

some genes play the rule of a link between different diseases. 

 Thus, targeting these specific genes can illuminate hidden 

information that might lead interesting results; the cure for 

example. However, this statement needs more investigation by 

intensive research that is out of the scope of this work. In 

addition, a produced pattern can match more than one disease. 

Figure 3 shows the performance of MCL when used with the 

OMIM dataset. Figure 4 is similar but for K-means. Table 2 and 

Table 3 show some of the disease matched by the MCL and K-

means modules respectively. More specifically, Table 3 shows 

that some produced modules by K-means has matched multiple 

types of disease. 
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Figure 3. MCL matching performance against the OMIM data  (0.0 means that 

the threshold is ≤ 0.1) 

 
Figure 4. K-means matching performance against the OMIM data (0.0 means 

that the threshold is ≤ 0.1) 

Table 2. Some of the MCL matched disease  

Module’s Genes Related Disease 

CDK2AP1 CDK2AP2 WARS PC 

GOT2 MDH2 CS ZDHHC6 FH 

NDUFS1 

Thrombophilia due to protein C 
deficiency autosomal dominant 

FANCC FANCA FANCE 
FANCG FANCF HES1 SAMD3 

CYP19A1     

Fanconi anemia complementation 

GORASP2 RAB2A BLZF1 MIF 
NQO2 KCTD5 FAM71C 

Persistent Mullerian duct syndrome 
type I 

LYST SEMA4C DGCR14 
MRPL17 NCDN DNAJC14 

CNTROB  

Chediak-Higashi syndrome 

SHH PTCH1 PTCH2 IHH SMO 

DHH HHIP 
Basal cell carcinoma somatic 

NSF GABBR1 NAPG ATF5 

GABBR2 PTPN9  
Nicotine dependence susceptibility 

CYP17A1 POR CYP2C19 

CYP1A2 CYP2C9 CYP2E1   
Mephenytoin poor metabolizer 

NHEJ1 LIG4 XRCC4 APLF 

IRX5  

Multiple myeloma resistance, Severe 

combined immunodeficiency with 
sensitivity to ionizing radiation 

KDR ITGA9 FLT4 FIGF VEGFC  
Hemangioma capillary infantile 

somatic 

DHX9 SERPINB2 C6 MGEA5 

PRPF8    
Combined C6/C7 deficiency 

 

3. Molecular functionality 

As a further step, the Molecular Functionality (MF) of the 

genes can be considered as a useful source of information in 

many aspects. First, knowledge about the MF of the genes in the 

produced patterns is informative especially if some of the genes 

in the pattern are not well studied and their functions are not well 

known, but the association in the pattern may result in new data 

about these genes. Second, the combination between the MF of 

the patterns and the disease expression data can lead to 

meaningful indications about the disease mechanisms inside the 

living organism, the human in this case. Molecular Functions 

Gene Ontologies were extracted from the Gene Ontology project 

[12]. Studying the resulting modules showed that modules span 

multiple molecular functionalities and they did not show any 

tendency towards some particular biological processes. 

However, modules gene members have shown high similarities 

in what biological processes they share.  

Table 3. Some of the K-means matched disease  

Module’s Genes  Related Disease 

PKD2 IGBP1 TXNL4A 
NID1  

Polycystic kidney disease 

PKD2 IGBP1 TXNL4A 

NID1  

Corpus callosum agenesis of with mental 

retardation ocular ,coloboma and 
micrognathia 

SLC9A1 ADAM2 GMPS 

HIVEP2  
Leukemia acute myelogenous 

PCSK7 TES BSN COL10A1  Metaphyseal chondrodysplasia Schmid 

PHEX INSL3 WDR61 
APPL1   

Cryptorchidism idiopathic 

SI PDX1 BNIP2 DNAJA2   Sucraseisomaltase deficiency congenital 

SI PDX1 BNIP2 DNAJA2    Lacticacidemia due to PDX1 deficiency 

PTRF MPP3 TSPAN4 
SERPIND1 GRIP1 

Thrombophilia due to heparin cofactor II 
deficiency 

AKAP4 MDK SH2D1A 

SLC12A3 RPP40 
Mesomelic dysplasia Kantaputra 

GADD45G TRO NPR1 
BACH1   

Breast cancer early-onset 

 

Figure 5 has an example module that is enriched in a number 

of multiple molecular functions such as, GO:0008601: 

Modulation of the activity of the enzyme protein phosphatase 

type 2A. GO:0019888: Modulates the activity of a protein 

phosphatase, an enzyme which catalyzes of the removal of a 

phosphate group from a protein substrate molecule 

GO:0019208: Modulates the activity of a phosphatase, an 

enzyme which catalyzes of the removal of a phosphate group 

from a substrate molecule. GO:0005488: The selective, non-

covalent, often stoichiometric, interaction of a molecule with 

one or more specific sites on another molecule. GO:0004512: 

Catalysis of the reaction: D-glucose 6- phosphate = 1D-myo-

inositol 3-phosphate. This reaction requires NAD, which 

dehydrogenates the CHOH group to CO at C-5 of the glucose 6-

phosphate, making C-6 into an active methylene, able to 

condense with the aldehyde at C- 1. Finally, the enzyme-bound 

NADH reconverts C-5 into the CHOH form. GO:0005515: 

Interacting selectively and non-covalently with any protein or 

protein complex. The above results were obtained using The 

Database for Annotation, Visualization and Integrated 

Discovery (DAVID) [14] [15]. 

 

Figure 5. A module that was extracted from the network where all the genes 

have similar molecular functionality. 
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Figure 6. The prostate cancer pathway. 

 
 

 
Figure 7. The Melanoma pathway. 
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Figure 8. The Glioma pathway. 

 

 
Figure 9. This discovered pattern above shows a module that is overlapped with multiple disease pathways 
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4. Pathways 

Many of the discovered modules have biological pathways 

associations. Biological pathway is a group of actions that occur 

between the molecules in the cell that result in the formation of 

a new product or change in the cell. This association with 

pathways was checked against the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) [16]. To illustrate the idea further, some 

example pathways chosen were very interesting in that they have 

a relation with different types of diseases. Figure 6, 7, 8, and 9 

have some examples of disease-related pathways like: Prostate 

cancer pathway, Glioma pathway, and Melanoma pathway. In 

addition, another example (not shown here) matched the Notch 

Signaling Pathway. Notch signaling has been related to a number 

of malignancies including leukemia, lymphomas and 

carcinomas of the breast, skin, lung, cervix and kidneys [9]. It is 

clear from Figure 6, that one of the discovered modules has 

several genes that are highly incorporated in multiple disease 

pathways. Furthermore, we can see that not all of the module 

genes are present in those pathways; this raises an interesting 

question; can future research prove that those absent genes are 

related to the same pathway and therefore to the diseases because 

they were clustered with several of the pathway genes?  

5. Conclusion 

The availability of large amounts of microarray data in, both 

interaction networks and expression profiles, has been used to 

have deeper insights of what biological processes are taking 

place inside an organism. Much of this data is related to different 

aspects of the living cell activities. In addition, this expression 

data can be extracted from organism or tissues under a group of 

experimental, environmental, or any kind of stress conditions. 

Diseases expression data can be considered a very useful source 

of information regarding what genes are involved in or affected 

by them. In this study I tried to shed some lights about modules 

extracted from two separate sources of information and what 

relations they may have with known diseases and try to uncover 

some of new connections between genes and diseases. Both of 

the two methods employed here, MCL and K-means, have its 

strength sides and weakness sides. When it comes to interaction 

networks, MCL was superior. However, K-means has shown 

acceptable performance with expression profile data. The 

method has produced interesting patterns when they are tested 

against several biological concepts such as protein complexes, 

disease modules, molecular functionality, and biological 

pathways. 
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