

www.astesj.com 821

Using Formal Methods to Model a Smart School System via TLA+ and its TLC Model Checker for
Validation

Nawar Obeidat*, Carla Purdy

College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221-0030, USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 25 December, 2020
Accepted: 24 March, 2021
Online: 04 April, 2021

 Formal methods are one of the efficient tools to verify and validate designs for different kinds
of systems. Smart systems are attracting researchers’ attention due to the rapid spread of
new technologies all over the world. Modeling a smart system requires connecting
heterogeneous subsystems together to build it. Our contribution to this work is in focusing
on using formal methods to prove that a design model meets its specifications. We have
chosen to design a smart school building system due to the lack of research in this particular
area, and to prove that formal methods are appropriate for different systems applications.
In this paper, we have used UML diagrams and the formal specification language TLA+ to
design a smart school building system. We validate our design using the TLC model checker.
The smart school system has many subsystems connected together including a secure access
system, lighting control system, climate control system, and smoke detection system. Safety
is a very important attribute in this system. Our goal is to have a smart system that satisfies
its functional requirements as well as any non-functional requirements like safety. The
system provides safety for employees and students in the smart school.

Keywords:
TLA+
Verification and Validation
Safety

1. Introduction

Smart systems that have been designed and modeled by
researchers include a smart school [1], smart library [2], a smart
office [3], a smart home [4], and a smart campus [5]. The main
focus of these systems was on safety and the ability to achieve
specific goals. This paper is an extension of work originally
presented at the 2020 IEEE 3rd International Conference on
Information and Computer Technologies (ICICT), San Jose, CA,
USA. [1]. In this paper, we modify the old smart school system in
[1] using TLA+ tools to make it a more secure and safe system. To
prove the design correctness, we validate our design using the TLC
model checker.

We used both informal modeling methods like the Unified
Modeling Language (UML) [6] and formal methods [7] to define
system entities, system behavior, and sequence of actions. UML
provides different kinds of modeling diagrams such as state
diagrams, sequence diagrams, and object interaction diagrams. As
well as diagrams, UML has notations and presentation conventions
that have become common in the object-oriented domain and
structured methods. UML can be defined as a set of graphical
models which represents several properties of an object-oriented

design [6]. The structural and behavioral models are UML’s two
most important model types. In this paper we choose to use
behavioral models to represent the behavior of the smart school
system.

To model a complete smart system, we need to integrate
different subsystems together, which makes verification and
validation of the whole system harder to accomplish. Formal
methods are one approach that can provide verification and
validation [7]. Formal methods are valuable due to their ability and
effectiveness in designing systems which are close to bug-free.
Many reputable companies have begun welcoming and using
formal methods in the last decade [8, 9]. Furthermore, many
researchers used formal methods to validate their design systems.
Examples include the work done in [3, 10, 11, 12].

Formal methods support development, specification tools, and
verification in both hardware and software systems [7]. Formal
methods are techniques that are mathematically based and are used
to prove that the system’s specifications meet its implementation.
Formal methods provide simplicity and remove complexity, which
is an important factor in system development, as well as verifying
different system attributes such as reliability, accuracy,
correctness, security, and safety [7]. A formal verification scheme
is used in formal methods to ensure the system will be correct

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Nawar H. Obeidat, University of Cincinnati, Cincinnati,
OH 45221-0030, USA, obeidanh@mail.uc.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 821-828 (2021)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj060295

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060295

N. Obeidat et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 821-828 (2021)

www.astesj.com 822

before accepting the design. All these characteristics of formal
methods make them highly trusted compared to other verification
methods [7]. Formal methods have been used for different systems
applications to guarantee safety and correctness and have been
extensively verified for many of these systems. The strength of
formal methods lies in catching systems bugs and errors which
cannot be caught by other verification methods. This makes them
popular with big industrial companies seeking to verify and
validate their complex systems. Modeling the system using an
abstract mathematical model is the first step in applying formal
methods. This first step describes the system’s requirements using
a formal specification language. In this work, we focus in ensuring
both safety and security for our smart system since having a secure
login system will enhance the overall system’s safety as a result.
We also add in additional safety features such as fire or smoke
detection.

Formal methods use formal specification languages in the
process of system analysis, requirements analysis, and system
design [13]. Describing a system using a specification language is
different from writing executable code using a programming
language. Specification languages do not describe the “how?”,
they describe the “what?”. Verifying the program correctness by
creating proofs is one of the important features of specification
languages. We can use formal system syntax, proof rules, and
semantics rules when applying a specification language [13]. The
language can be determined by the syntax and semantics, and the
proof system is the result of the proof rules. Specification
languages use expressions to represent specifications. These
specification languages are used to stipulate design of
hardware/software systems, describe a domain formally, or to give
requirements recommendations to the system [13].

In this paper we will use the TLA+ specification language.
TLA stands for “Temporal Logic of Actions”. TLA+ is a high level
mathematically based formal modeling language. It is used to
model distributed and concurrent systems. It is also used to find
design errors which are hard to find in the code level and hard to
correct. The designer of TLA+ is Lamport, who wanted to describe
distributed algorithms formally. He published his book Specifying
Systems [13] in 2002. He describes TLA+ in this book, along with
how to use TLA+, and how to use its efficient tools. TLA+ has
modules that include specifications and can be reused
independently. Most mathematicians consider TLA+ to be a
standard basis to formalize specifications [13]. In TLA+, both
properties and specifications of a system are written as logical
formulas. Actions like hiding of the internal state, refinement, and
composition of the system are performed using logical connectives
of quantification, implication, and conjunction. In order to help a
designer in the formal development process, TLA+ has supporting
tools such as theorem provers and its powerful model checker
TLC, which we used in this work to validate our model [13].

In this work, we will use the TLA+ formal specification
language to model the smart school system. We describe the
system’s abstract model using UML. Extending work in [1], we
improve the TLA+ model, and we use the powerful TLC model
checker to verify and validate our system. Our modified smart
school building system has various subsystems. Students,
employees, and visitors must enter using a secure login sub-system
to ensure security and safety. Each person must enter a correct

username and password to enter the school building using the main
door. Once the first allowed person enters the school, the lighting
sub-system will work automatically, and so will the HVAC sub-
system, which uses temperature sensors to sense the temperature
and adjust it inside the building. The smoke detection sub-system
will work all the time to sense any smoke and guarantee safety in
the building and open all exit doors in case of fire.

In this paper, the related work is described in section 2, the
UML models are described in section 3, the TLA+ formal
specifications using TLA+ are described in section 4, the TLC
verification model which represents the final result will be
described in section 5, and finally the conclusion and future work
will be described in section 6.

2. Related Work

Because of the massive technology evolution going on, smart
systems implementation has become an attractive research area for
researchers [14]. Many smart systems have been modeled by many
researchers. For example, in [4], the author modeled a smart home
system that uses a wifi network based on the AllJoyn framework.
It uses asymmetric elliptic curve cryptography to apply
authentications during system operation. The authentication
process of this system allows the user to interact with the system
and control it using an application program based on Android.
Utilizing a mobile social network, a smart campus was proposed
in [5]. The author set up a collaboration between a flexible system
architecture and social interactions in the campus. His model
addresses the server side represented by social connections and
services and the client side represented by the mobile users. In
[15], the author presented a prototype for a smart office system
which was one of the pilot applications in the FP7 EU project
ELLIOT (Experiential Living Lab for the Internet of Things). He
used the LinkSmart semantic middleware for the solution he
described. In [16], the author proposed a smart parking system. It
uses parking destination and parking cost to reserves a parking
spot. His smart system lowers the average parking time and cost to
reserve a parking spot. For each decision, mixed-integer linear
programming (MILP) was used. As a sub-system for a smart city,
in [10], the author proposed a smart sewage system. He used UML,
Nondeterministic Finite Automata (NFA), and TLA+ to model his
smart sewage system. In [17], the author presented a survey of the
enabling architecture, technologies, and protocols for an urban
Internet of Things (IoT). He discussed best-practice technical
solutions and guidelines for the Padova Smart City project in Italy
[17].

Several researchers worked on modeling a smart campus
system [18-20], focusing on a mobile-learning domain, cloud
learning, E-learning, and an environmentally aware campus. As
for modeling smart school buildings, a few researchers worked on
modeling with focusing on power consumption and power
management [21-24]. Our smart school building model is different
because it has advanced features, including security and safety,
compared to what was modeled so far in the same research area.

In smart systems, a main concept is having sub-systems which
are connected together and work efficiently as one controllable
system. Safety is one of the most important properties is any
system, especially in a smart school system since it is dealing with
human lives (students, teachers, and school employees). Security

http://www.astesj.com/

N. Obeidat et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 821-828 (2021)

www.astesj.com 823

also is an important property to have in a smart school system. It
will enhance the overall system’s safety. Most researchers
modeled their systems focusing on either safety or security, but our
model achieves a system which is both safe and secure.

Formal methods had been used to verify and validate many
smart systems. Researchers used different formal specification
languages to model their systems including TLA+ [13], VDM
[25], Z [26], and Alloy [27]. In [11], the author modeled and
verified a smart parking system using TLA+. In [3], the author
designed and verified a smart office system using the VDM-SL
toolbox. And in [28], the author used Alloy to validate his smart
home system. In this work, we decided to use TLA+ to model and
verify our smart school building system. We choose TLA+ over
other specification languages for many reasons, which we list here.

In comparison to Alloy in modeling nested structures, TLA+
doesn’t need too many layers of identification, which makes it
simpler and more direct. TLA+ is also more expressive than Alloy.
Although Alloy has its efficient Alloy Analyzer model checker that
is faster than the TLC model checker and able to handle important
large analyses that TLC currently is not able to handle, Alloy
Analyzer crashes or hangs in some cases that are needed for larger
systems. Also, using TLA+ allows users to trace every single state
and get results for each one using its Trace Explore feature, which
makes tracing bugs, finding bugs, and fixing them much simpler
and easier. Alloy has the same advantage, but the results for
systems with more than a few variables or a few time-steps are not
clear-cut. Some other features make TLA+ a better choice than
Alloy and other specification languages including VCC and Z.
TLA+ is flexible when there is a need to support high-level
functions and edit details to the specifications, unlike VCC that
would require us to write “ghost code” which is a superset of the
C programming language and Alloy that does not support high-
level functions like recursive functions. One important feature in
TLA+ is its powerful TLC model checker that can operate over
massive state-spaces with reasonable throughput. The TLC model
checker is also fast because of its ability to use multi-cores
efficiently, unlike B, VCC, and Event-B model checkers, which
are not able to use more than one core. TLA+ is also a very
expressive language, and it supports the liveness property better
than any other formal specification language [9].

In the following section, we will illustrate how to use UML as
a first step to model our smart school building system.

3. UML Modeling for Smart School Building System

Unified Modeling Language (UML) is one of the most
common languages used to represent the informal abstract model
of a system. UML captures system properties and provides
graphical notations. Smart school system outputs and inputs are
shown in Figure 1 [1]. As shown in Figure 1, the smart school
inputs are taken from a user or different kinds of sensors and
reactions to these inputs appear as outputs from the system. The
login input is handled by entering a valid username and password
by the user, who can be a student, an employee, or a visitor and it
may or may not open the main door based on the validation of the
username and the password. The smoke sensor senses any smoke
in the building and gives an alarm as an output, and in this work,
we added a new output that in case of smoke all exit doors will be
opened to increase the safety of our system. The temperature

sensor senses the building’s temperature and turns the heat or the
AC on or keeps them off. The light sensor senses the natural light
inside the building and adjusts the lights based on it. The system
may have multiple sensors depending on the size, orientation, and
architecture of the building. The outputs of the system depend on
the inputs. For example, if the username and password were
entered correctly as an input, the main door will automatically
open to allow entrance to the school building as an output. If the
HVAC sub-system receives an input from the temperature sensor
that is the temperature is too low (e.g., 60 F), the output will be to
automatically turn on the heat in the building. If the smoke
detection sub-system receives an input from the smoke sensor that
there is smoke in the building, the output will be to turn on the
smoke alarm and open the exit doors to let everyone leave the
school building immediately.

Figure 1: Inputs and Outputs of the Smart School Building System [1]

Figure 2 shows the UML use case diagram of the system. This
diagram shows when the actors (student, employee, and visitor)
login to the system by entering the username and password
correctly, the main door will open, and they will have access to the
sub-systems in the building.

Figure 3 [1] shows the UML activity diagram of the smart
school building. The activity diagram will help in better
understanding how the system works.

Figure 4 provides a UML sequence diagram of the smart
school building system. It illustrates the sequence of all actions that
happen in the system. As an extension of work in [1] and in order
to increase system’s security and eventually safety, the new smart
school model requires that each person entering the school has to
has a unique username and password. These usernames and
passwords will be given by school or school district to each person.
Visitors must request a username and password from the school
before their visit, i.e., visitors to the school building must have a
valid login username and password to be allowed to enter the
building.

If the username and password are correct, the main door will
automatically be opened. Once the first person enters the building,
all systems, including the lighting sub-system and the HVAC sub-

http://www.astesj.com/

N. Obeidat et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 821-828 (2021)

www.astesj.com 824

system, will automatically start working. The smoke detection
system will work all the time, even after school hours, to guarantee
safety in the building in case of fire.

Figure 2: UML Use Case Diagram of the Smart School System

Figure 3: UML Activity Diagram of the Smart School Building System [1]

4. Formal Specification Using TLA+

This section illustrates the formal specification of our
extended smart school system model. We use the TLA+ toolbox to

write the system’s specifications and the TLC model checker to
validate our system. We represent all of the system’s operations
using TLA+.

Figure 4: Sequence Diagram for the Smart School Building System

In TLA+, the system’s specifications are called spec, and they
are written in a module which we have called in our case
smartSchoolSystem. In the module, we include the system’s
variables that we will use inside the module as shown in Figure 5.

Figure 5: smartSchoolSystem Module Variables

The top module of the smart school system is represented by
smartSchoolSystem. The module has the set of variables shown in
Figure 5. For example, person variable represents anyone who is
allowed to enter the building (employee, visitor, or student). The
main_door variable represents the main door for people to enter
the school building, and exit_doors represents the doors which will
be opened in case of fire/smoke. The username and password
variables represent the values of the person’s username and
password, and these values must be unique for each individual
person.

In any TLA+ module, declaring the Init function, invariants,
and Next function is a must. The Init function represents the initial
values of the system’s variables, the invariants represent the
limitations and conditions in the system, and the Next function
represents the next-state action.

In the smartSchoolSystem module, we declared the Init
function with the range of all possible values of each variable in
the module as shown in Figure 6. For example, main_door variable
may take on either open or closed values only. Similarly, person
variable may take either student, employee, or visitor values in this
spec. The pc variable represents the current state, and pc’
represents the next state as we will see later in the spec.

To ensure that the school building in our system is always safe
in case of fire, we designed our system to have a smoke detection
sub-system working all the time in and out of school hours. To
apply this safety functionality in our system, we added a system
invariant and called it safe as shown in Figure 7. This invariant

http://www.astesj.com/

N. Obeidat et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 821-828 (2021)

www.astesj.com 825

guarantees that the smoke detection system will be working all the
time.

Figure 6: Init Function

Figure 7: System Invariant

The function enter_school is the function that represents any
of the employees, students, and visitors entering the school. This
function requires the person desiring entry to enter a valid
username and password as input in order to open the main door for
entrance as an output. If the username and/or the password is
wrong, the main door will not open, and the system will ask the
person to retry to enter valid values. Figure 8 shows the
enter_school function.

Figure 8: enter_school Function

Figure 9: Smoke Function

We set smoke_detect_sys to be on all the time as an invariant
in our system as mentioned before. If there is smoke detected from

the smoke detection sub-system, in this case smoke function will
be on and all exit doors will open automatically to allow all people
inside the school to leave immediately for their safety. OF course,
the smoke detection sub-system will have a built-in alarm in case
smoke is detected. Figure 9 shows the Smoke function.

Once the first person enters the school, the lighting and
HVAC sub-systems will automatically start working. In the light
function, the light sensor will start sensing the natural
outside_light brightness to control the light inside the building.
The outside_light could have two values, clear or cloudy. If it is
clear outside, the lights inside the building will be turned on by
the system in a low_mode. If it is cloudy outside, the lights inside
the building will be turned on by the system in a high_mode. This
lighting sub-system will help in managing and controlling power
consumption in the system. Figure 10 shows the Light function.
In practice there will be multiple light sensors for multiple sides
of the building.

Figure 10: Light Function

The HVAC sub-system helps in controlling the temperature
inside the school building. In the HVAC function, the temperature
inside the building has been sensed by the temperature sensor and
the HVAC sub-system acts based on that. If the inside_temp is
more than 74 F, the HVAC sub-system will turn on the AC in the
building. If the inside_temp is less than 69 F, the HVAC sub-
system will turn on the Heat in the building. If the inside_temp is
more than 69 F and less than 74 F, the HVAC sub-system will be
turned off. Figure 11 shows the HVAC function.

Figure 11: HVAC Function

Figure 12 includes housekeeping functions which are
essential for writing good specifications for a system. Some of
these functions must be in any TLA+ spec, e.g., the Next function.
The Next function enables collection and execution of all
functions in the spec and moving to the next state in the system
after initialization. The Termination function guarantees the

http://www.astesj.com/

N. Obeidat et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 821-828 (2021)

www.astesj.com 826

termination when pc reaches Done state. In TLA+, the Spec
function is the main function that is responsible to run all system
specifications in the main execution of the system.

Figure 12: Terminating, Next, and Spec functions

In order to verify that the module is correct and there are no
syntax errors in our system, we have used the TLA+ toolbox to
write these specifications and save the module. Figure 13 shows
the parsed model. As shown in the figure, the green box on the
bottom right corner of the screen proves that this model is
correctly parsed via the TLA+ toolbox. The next section will
describe the system that will be verified through the TLC model
checker.

Figure 13: TLA+ Parsed Model for Smart School System

5. Formal Verification Using TLC

In the previous section, we illustrated the smart school system
specifications, and we parsed the module correctly using the
TLA+ toolbox. We did this in order to verify the model is correct
and to validate our work. We used the powerful TLC model
checker to debug a TLA+ specification. It checks the
specification’s invariance properties of its finite state model [13].
TLC checks for deadlock and the system invariants. In our TLC
model, we set the safety invariant to keep the smoke detection
sub-system working all the time, as shown in Figure 14. This
means that this invariant will guarantee that the smoke detector
will work all the time, whether there is someone in the school or
not, day and night, to enhance the safety in the school building.
As shown in Figure 14 as well, the TLC model checker has a
feature to check for a deadlock in the design. It’s an optional
feature. In this model, we choose to check for deadlock and it
returns that there is no deadlock.

After setting-up the TLC model checker, we ran it to verify
our smartSchoolSystem module. Figure 15 shows the TLC model
checker while running.

Figure 14: Safety Invariants Setup in TLC

Figure 15: TLC Model Checker While Running

Figure 16 shows the final result for the smartSchoolSystem
model. In order to validate a system using the TLC model checker,
the model must be parsed, and the model checker should run to
completion, and no errors should be detected. Our smart school
system was verified and validated correctly using the TLC model
checker since, as shown in Figure 16, the TLC model is parsed
correctly with no errors, which proves our system’s validation.

Figure 16: TLC Verification Model

6. Conclusion

This work is an extension of the work in [1]. We have
modeled a smart school building system using UML and TLA+.

http://www.astesj.com/

N. Obeidat et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 821-828 (2021)

www.astesj.com 827

We used UML to define the system’s components and to illustrate
the sequence of actions in the system. TLA+ defines the system’s
specifications and the system’s behavior. The TLA+ toolbox was
used to capture the system’s behavior and to parse the model. The
final result was to verify the model using the TLC model checker.
The model was successfully verified and validated with the TLC
model checker. We used formal methods to validate our design
and to make sure there are no errors in the design. In this design a
failure may still happen. For example, if we simulated the design
and built the school from this model, we could have a failure in
the lighting system because in practice we will need a light sensor
in each room. But our design assumes that the light will be the
same in the whole building. This design is an initial and general
design to show and explain our methodology, details such as the
more complex lighting system would be needed in the final design.

To enhance security and safety in the system, the system
requires each person who enters the building to login by entering
a valid username and password. To enhance the safety as well, the
smoke detection sub-system is working all the time. To control
the power in the system, the lighting sub-system will use natural
light when possible to reduce the power consumption in the
building.

In future, we will work on improving the system by adding
more sub-systems to it to enhance system security and safety.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

Figure 2 and Figure 4 were made using chart-making tools at
www.lucidchart.com and the authors would like to thank the
website. Figures 5,6,7,9,10,11,12 were taken from the TLA+ tool
that uses LaTeX translator to generate pretty-printed specs.
Figures 8,13,14,15,16 were taken from the TLA+ toolbox. The
authors would like to thank Mr. Leslie Lamport for the TLA+ tool
which is essential in this work. The authors would also like to
thank the University of Cincinnati for its support.

References

[1] N.H. Obeidat, C. Purdy, “Modeling a smart school building system using
UML and TLA+,” in Proceedings - 3rd International Conference on
Information and Computer Technologies, ICICT 2020, Institute of Electrical
and Electronics Engineers Inc.: 131–136, 2020,
doi:10.1109/ICICT50521.2020.00028.

[2] P.S. Aithal, Smart Library Model for Future Generations (June 30, 2016).
International Journal of Engineering Research and Modern Education
(IJERME),1(1), 693-703. ISSN (Online): 2455 - 4200, (2016)., Available at
SSRN: https://ssrn.com/abstract=2822978

[3] A. Rehman, S. Latif, N.A. Zafar, “Formal modeling of smart office using
activity diagram and non deterministic finite automata,” in 2019
International Conference on Information Science and Communication
Technology, ICISCT 2019, Institute of Electrical and Electronics Engineers
Inc., 2019, doi:10.1109/CISCT.2019.8777444.

[4] F.K. Santoso, N.C.H. Vun, “Securing IoT for smart home system,” in
Proceedings of the International Symposium on Consumer Electronics, ISCE,
Institute of Electrical and Electronics Engineers Inc., 2015,
doi:10.1109/ISCE.2015.7177843.

[5] Z. Yu, Y. Liang, B. Xu, Y. Yang, B. Guo, “Towards a smart campus with
mobile social networking,” in Proceedings - 2011 IEEE International
Conferences on Internet of Things and Cyber, Physical and Social
Computing, iThings/CPSCom 2011, 162–169, 2011,
doi:10.1109/iThings/CPSCom.2011.55.

[6] A. Clark, A. Evans, “Foundations of the Unified Modeling Language.,” In
Proceedigs of the 2nd Northern Formal Methods Workshop. Springer, 1997.

[7] L. Pierre, T. Kropf, Correct Hardware Design and Verification Methods:
10th IFIP WG10.5 Advanced, 1999.

[8] S. Tasiran, Y. Yu, B. Batson, S. Kreider, Using formal specifications to
monitor and guide simulation: Verifying the cache coherence engine of the
Alpha 21364 microprocessor, 2002.

[9] C. Newcombe, “Why Amazon chose TLA+,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Springer Verlag: 25–39, 2014,
doi:10.1007/978-3-662-43652-3_3.

[10] S. Latif, A. Rehman, N.A. Zafar, “Modeling of sewerage system linking
UML, automata and TLA+,” in 2018 International Conference on
Computing, Electronic and Electrical Engineering, ICE Cube 2018, Institute
of Electrical and Electronics Engineers Inc., 2019,
doi:10.1109/ICECUBE.2018.8610971.

[11] S. Latif, A. Rehman, N.A. Zafar, “NFA based formal modeling of smart
parking system using TLA +,” in 2019 International Conference on
Information Science and Communication Technology, ICISCT 2019,
Institute of Electrical and Electronics Engineers Inc., 2019,
doi:10.1109/CISCT.2019.8777445.

[12] J.-R. Abrial, “Formal methods in industry,” in Proceeding of the 28th
international conference on Software engineering - ICSE ’06, Association
for Computing Machinery (ACM), New York, New York, USA: 761, 2006,
doi:10.1145/1134285.1134406.

[13] L. Lamport, Specifying Systems Preliminary Draft, 2001.
[14] R. Adner, D. Levinthal, “Demand heterogeneity and technology evolution:

Implications for product and process innovation,” Management Science,
47(5), 611–628, 2001, doi:10.1287/mnsc.47.5.611.10482.

[15] K. Furdik, G. Lukac, T. Sabol, P. Kostelnik, “The Network Architecture
Designed for an Adaptable IoT-based Smart Office Solution,” International
Journal of Computer Networks and Communications Security, 1(6), 216–
224, 2013.

[16] Y. Geng, C.G. Cassandras, “New ‘smart parking’ system based on resource
allocation and reservations,” IEEE Transactions on Intelligent
Transportation Systems, 14(3), 1129–1139, 2013,
doi:10.1109/TITS.2013.2252428.

[17] A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, “Internet of things
for smart cities,” IEEE Internet of Things Journal, 1(1), 22–32, 2014,
doi:10.1109/JIOT.2014.2306328.

[18] B. Hirsch, J. WP. Ng., "Education beyond the cloud: Anytime-anywhere
learning in a smart campus environment." IEEE International Conference for
Internet Technology and Secured Transactions. , 2011.

[19] Smart Campus: The Developing Trends of Digital Campus-- 《 Open
Education Research》2012年 04 期, Mar. 2021

[20] M.R.M. Veeramanickam, M. Mohanapriya, “IOT enabled Futurus Smart
Campus with effective E-Learning : i-Campus,” GSTF Journal of
Engineering Technology (JET), 3(4), 2016, doi:10.5176/2251-3701_3.4.164.

[21] L. Pocero, D. Amaxilatis, G. Mylonas, I. Chatzigiannakis, “Open source IoT
meter devices for smart and energy-efficient school buildings,” HardwareX,
1, 54–67, 2017, doi:10.1016/j.ohx.2017.02.002.

[22] D. Amaxilatis, I. Chatzigiannakis, G. Mylonas, Design and Implementation
of a Platform for Smart Connected School Buildings, 2015.

[23] Y. Qu, H. Wang, S.M. Lun, H.D. Chiang, T. Wang, “Design and
implementation of a Web-based Energy Management Application for smart
buildings,” in 2013 IEEE Electrical Power and Energy Conference, EPEC
2013, IEEE Computer Society, 2013, doi:10.1109/EPEC.2013.6802931.

[24] M. Brogan, A. Galata, The VERYSchool Project: Valuable EneRgY for a
smart School-Intelligent ISO 50001 Energy Management Decision Making
in School Buildings.

[25] P.G. Larsen, W. Pawlowski, “The formal semantics of ISO VDM-SL,”
Computer Standards and Interfaces, 17(5–6), 585–601, 1995,
doi:10.1016/0920-5489(95)00026-Q.

http://www.astesj.com/
https://ssrn.com/abstract=2822978

N. Obeidat et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 2, 821-828 (2021)

www.astesj.com 828

[26] The Object-Z Specification Language - Graeme Smith - Google Books, Mar.
2021.

[27] D. Jackson, “Alloy: A Lightweight Object Modelling Notation,” ACM
Transactions on Software Engineering and Methodology, 11(2), 256–290,
2002, doi:10.1145/505145.505149.

[28] T. De Champs, B. Abdulrazak, H. Pigot, M. Ouenzar, M. Frappier, B. Fraikin,
“Pervasive safety application with model checking in smart houses: The
INOVUS intelligent oven,” in 2011 IEEE International Conference on
Pervasive Computing and Communications Workshops, PERCOM
Workshops 2011, 630–635, 2011, doi:10.1109/PERCOMW.2011.5766965.

http://www.astesj.com/

	2. Related Work
	3. UML Modeling for Smart School Building System
	4. Formal Specification Using TLA+
	5. Formal Verification Using TLC
	6. Conclusion
	Conflict of Interest
	Acknowledgment

	References

