

www.astesj.com 136

Distributing the computation in combinatorial optimization experiments over the cloud

Mario Brcic*, Nikica Hlupic, Nenad Katanic

University of Zagreb Faculty of Electrical Engineering and Computing, Zagreb, 10000, Croatia

A R T I C L E I N F O

 A B S T R A C T

Article history:
Received: 26 October, 2017
Accepted: 12 November, 2017
Online: 10 December, 2017

 Combinatorial optimization is an area of great importance since many of the real-world
problems have discrete parameters which are part of the objective function to be optimized.
Development of combinatorial optimization algorithms is guided by the empirical study of
the candidate ideas and their performance over a wide range of settings or scenarios to
infer general conclusions. Number of scenarios can be overwhelming, especially when
modeling uncertainty in some of the problem’s parameters. Since the process is also
iterative and many ideas and hypotheses may be tested, execution time of each experiment
has an important role in the efficiency and successfulness. Structure of such experiments
allows for significant execution time improvement by distributing the computation. We
focus on the cloud computing as a cost-efficient solution in these circumstances. In this
paper we present a system for validating and comparing stochastic combinatorial
optimization algorithms. The system also deals with selection of the optimal settings for
computational nodes and number of nodes in terms of performance-cost tradeoff. We
present applications of the system on a new class of project scheduling problem. We show
that we can optimize the selection over cloud service providers as one of the settings and,
according to the model, it resulted in a substantial cost-savings while meeting the deadline.

Keywords:
Combinatorial optimization
Computational experiments
Cloud computing

1. Introduction

This paper is an extension of work originally presented in
conference MIPRO 2017 [1].

Combinatorial optimization (CO) is a research field with many
important real-world applications. Scheduling [2], auctions [3],
and vehicle routing [4] are just a few notable examples.
Combinatorial optimization is a subfield of mathematical
optimization. It deals with problems where optimal selection needs
to be done from a discrete feasible set. Exhaustive search evaluates
all possible solutions before selecting the best one which is
infeasible for realistic problem sizes. There are special classes of
CO problems that can be solved with polynomial-time algorithms
such as shortest paths, flows, spanning trees, and matching.
However, many interesting problems are NP-complete and for
these problems, unless P=NP, there are no computationally
efficient solving algorithms. For such problems, different search or
metaheuristic algorithms are created in order to get as good as
possible performance in a realistic amount of time. Design of such

algorithms is an intrinsically empirical process, guided by the
experiments while the ranking of different design choices,
hyperparameter values and algorithms depends on the results from
experimental runs, often performed on benchmark test sets.

Each experiment consists of experiment units which denote the
smallest indivisible executable unit. Experiment units are in the
focus of this paper as they tend to be independent during the
execution, which enables a high degree of parallelization. In
deterministic CO problems all the parameters are deterministic.
For them, each sampled instance of CO problem comprises an
experimental unit. In stochastic and robust CO problems, some of
the parameters are uncertain or unknown. In that case, each
combination of sampled problem instance with its sampled
parameter scenarios makes one experimental unit. For that reason,
the number of experimental units in stochastic and robust problems
can grow exponentially in the number of uncertain parameters.
Additionally, the aforementioned set of experimental units is
increased in Cartesian product with other experimental factors, as
shown in Figure 1. Such factors include hyperparameter values,
used algorithm, and algorithm design choices.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Mario Brcic, Unska 3, Zagreb 10000, Croatia,
+38516129951, Email: mario.brcic@fer.hr

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 136-144 (2017)

www.astesj.com

Special issue on Advancement in Engineering Technology

https://dx.doi.org/10.25046/aj020617

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020617

.S. Ahmad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 136-144 (2017)

www.astesj.com 137

Figure 1. Exponential growth of number of experimental units with added factors

which constitute independent dimensions

The experiment requires execution of all experimental units
and empirical data must be recorded over those runs. This can be
expensive operation, depending on the number of experimental
units and the complexity of the underlying problem in each unit.
However, as already mentioned, experimental units tend to be
computationally independent and the process of experiment
execution is inherently parallelizable over the units. In the current
state-of-the-art combinatorial optimization, experimentation is
mostly done on single computer. This was the case in stochastic
variant of vehicle routing problem in [5] and project scheduling in
[6]. There were applications where the problem was of such
complexity that computer cluster had to be employed in order to
make the algorithm practically usable. This was the case for fleet
optimization in [7].

In this paper we present an architecture of a system for
distributing extensive computational experiments over the cloud
that takes advantage of the independence between experimental
units to achieve inexpensive scalability in the cloud. This
architecture can be implemented as a standalone system or it can
use some of the frameworks and systems described in section 2 if
the amount of reuse and alignment of the blueprint with the
implemented functionalities in those systems can be achieved. The
architecture was designed in a way to reduce the amount of
communication to a minimum level while still enabling efficient
load balancing. We explain the distributed design of data storage
for the experimental results. The distributed design reduces the
communication overhead which is a problematic aspect for high-
performance computing (HPC) in the cloud. Storing rich
experimental data is important for further analysis and also
important as a mean of scientific scrutiny by enabling efficient
sampling-based reproducibility. An optimization model is
presented that describes the best choice of settings for running
specific experiments. The model uses data from pilot runs which
execute sampled subset of experiment units. Finally, the proposed
architecture was applied on a specific problem of developing and
validating algorithms for a new type of complex stochastic
combinatorial optimization problem in project scheduling.

The paper is organized as follows: in section 2 we present the
idea of high-performance computing in the cloud as an alternative
to in-house grids. Section 3 lists the related work. Section 4
presents the general architecture of our system for distributed

experimental runs. In section 5, a distributed design of the storage
is described. Applications of the architecture on a real research
problem are described in section 6. Section 7 drafts future research
ideas and section 8 offers concluding remarks.

2. High-performance computing in the cloud
Distributed computing is unavoidable in high-performance

computing (HPC) where job is divided between many available
processors in order to significantly reduce the runtime with
currently available hardware. Traditionally, dedicated in-house
grids (super-computers) are used. They are difficult to setup,
maintain and operate [8]. In this paper we shall deal with cloud
computing as a flexible and cheap resource alternative that can be
rented on demand instead of being owned the whole time – for a
lower overall cost and a relatively small performance penalty.
Studies have been conducted on the matter of using the cloud for
high performance computing. In [9] and [10] authors concluded
that there is a limit on a number of used computational nodes where
coupled applications are competitive with in-house grids. Beyond
that limit, overheads become overwhelming performance
detractors. In [11] virtualization, latency and system noise are
singled out as the biggest issues in comparison to dedicated
supercomputers. They found that research groups with limited
access to supercomputer resources and with varying demand might
find cloud computing to be a beneficial choice. Latency is
problematic due to used commodity equipment in most of the
cloud infrastructure and network virtualization. Virtualization
introduces performance penalties through network virtualization
and other virtualization overheads while accessing physical
resources. In [11], network virtualization was found to be the
primary bottleneck of the cloud that increases latency, reduces
bandwidth and interferes with processes. System noise affects the
performance due to multi-tenancy which introduces resource
sharing with virtual machines deployed on the same physical
hardware. Service providers can manipulate the degree of multi-
tenancy, which enables greater profit by overallocating resources
to the users. The problems with HPC in the cloud were reiterated
in [12] where authors have put the focus on necessary reductions
in communication overhead and virtualization. For the former,
they propose the implementation of better load balancing, and
using bare-metal containers for the latter. Comparative study in
[13] confirmed raw performance superiority of in-house grids to
Amazon’s Elastic Compute Cloud (EC2) cluster. However,
waiting time in queue on HPC clusters plays a significant role
when taking turnaround time into account . In such circumstances
EC2 cluster could produce better turnaround times. The cost-
effectiveness of running HPC application was observed as
dependable on raw performance and scalability. Cloud computing
enables utilizing available monetary resources to rent practically
as many as possible identical processing instances. This
identicality of processing instances is desirable in running
experiments as it sets all runs in the identical environment. This
keeps most of the variance in measurements related to designed
experimental factors. The effect of system noise on experiment
results can be reduced using effective randomization in the job
balancing.

3. Related work

In the last decade, with advent of Big Data, usage of cloud
computing became all-pervasive. Related to scientific

http://www.astesj.com/

.S. Ahmad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 136-144 (2017)

www.astesj.com 138

applications, authors in [14] presented a reproducible genome
sequencing task that was run in the cloud for a small cost with a
near linear scalability. In [15], a new artificial intelligence
algorithm for complex control tasks has been created. It features
linear speedups with over a thousand workers on a public cloud
service to cut down on total execution time in comparison to other
algorithms. Authors in [16] have created distributed architecture
for deep neural networks in the cloud for sensor fusion and
inference based on the data from multitude of end devices. The
communication cost was reduced by a factor of over 20x compared
to the alternative. All of the aforementioned applications
intentionally achieved low communication requirements between
subtasks, hence avoiding or mitigating problems related to the
communication overhead in cloud computing. Distributed
execution engines have been created to simplify parallelization of
computationally intensive tasks. Ray [17] is a python-based
example of such system which enables computations.

 Existing tools that provide support in design and comparison
of optimization algorithms are listed in this paragraph. Comparing
Continuous Optimizers (COCO) [18] is a platform for continuous
optimization, hence it does not cover combinatorial optimization.
Nevertheless, it has many of the features needed in a tool for our
needs. It has a library of standard benchmark problems on which
optimizers can be compared. Experiments can utilize Shared
Memory Parallelism (SMP), but grid computing is not utilized. For
that reason, big-scale execution in the cloud is not standard feature
of that platform. ParadisEO [19] is a white-box C++ framework
for reusable design of parallel and distributed metaheuristics. It has
features and components helpful for creating new algorithms. The
intent of this framework is to simplify the design of topologies
within a single running system, i.e. a single optimizer that can be
distributed. However, it does not specify the efficient way of
executing distributed experiments. Java Evolutionary
Computation Toolkit (ECJ) [20] is an option similar to ParadisEO.
Multi-Objective Evolutionary Algorithm (MOEA) [21] Java-
based Framework deals with multi-objective optimization by
combining the features of COCO, ParadisEO, and ECJ. We have
pointed out that COCO covers only continuous optimizers, while
other tools enable easier and faster algorithm design. The latter is
achieved through reusability of common algorithmic components
when the optimization problem and algorithm design have
favorable features. These tools do not specify guidelines for
distributing extensive computational experiments over the cloud.

Performance of executing the experiment in the cloud is an
important issue. Predictions can be used in scheduling as well as
in finding optimal settings of computational nodes. The focus of
[22] is on comparing public cloud providers using measurements
on specific applications. These measurements can inform the
processes of provider selection and performance prediction.
Performance prediction using machine learning for improving the
quality of system management decisions has been investigated in
[23]. Authors in [24] used machine learning to predict the
execution time of computational fluid dynamics applications in the
cloud. These predictions were used in scheduling algorithms. A
system for efficient performance prediction for large-scale
analytics on EC2 cloud has been created in [25]. It utilizes optimal
experimental design in order to minimize the resources in building

the model. The system is used to find the optimal configuration in
number of instances. Our architecture uses simple statistical model
for performance prediction in order to calculate cost-optimal
instance-type and number of necessary instances in order to satisfy
desired probabilistic level of satisfying the deadline. In our case,
settings also include the cloud provider, hence combining the
intents of aforementioned works: performance prediction and
optimization of node-selection that takes into account the cloud
provider as well.

4. Architecture

The intended use-case is inherently parallelizable task. This
architecture is designed in a way to use those favorable features of
the task in order to achieve low communication between the
computational nodes. In that way, latency is not an issue and there
is only occasional communication where bandwidth plays the main
role. Communication between the nodes is necessary for creating
the computational nodes, sending instructions for job chunks (that
is, batches) to them, and during migration of the final results.
Instructions for job chunks contain small amount of information.
Chunks are sized in a way to keep the nodes occupied for some
time. There is a tradeoff between achieving good job balancing and
reducing communication overheads in relation to the amount of
computation done on the node. Computational nodes keep all
generated and logged experimental data locally in their part of
distributed database. The results, raw or processed, can be pooled
periodically, upon finalization of the assigned experiment chunk
or at the end of node’s part in the experiment. Aforementioned
features make the problem suitable for cloud deployment as we can
avoid communication-related detrimental effects on performance.

Our pipeline architecture includes five general stages in the
experimental process:

1. Creation of experimental data, that is the data about
experiment units in initial seed database.

2. Creation of node images populated with all the necessary
data and optimized code for executing the experiment units,
logging and storing the results.

3. Optimizing the settings of execution environment. Pilot runs
are used on a small subset of experiment units for different settings
of the nodes, including a service provider to inform the
optimization procedure.

4. Executing the experiment on pre-calculated number of
identical nodes with settings selected in the previous stage.

5. Collecting experimental data from computational nodes,
conducting analysis and getting the results.

In the rest of this section, we shall describe each of the stages
in more details. All steps are enumerated according to their
corresponding figures.

4.1. Creation of the experimental data

The data needed for running an experiment is created in the
first phase, which is depicted in Figure 2. This means creating all
the data that sufficiently describes experiment units so that they
can be created and executed.

http://www.astesj.com/

.S. Ahmad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 136-144 (2017)

www.astesj.com 139

Figure 2. Preparing the seed database

The first step in this stage is optional. It uses standard test set
as a source for creating problem instances. For many well-
researched CO problems, such sets are shared within the
community of the researchers to enable consistent ranking of
algorithms. In case of new CO problems, maybe a standard test
benchmark related to the problem can be found and used for
creation of problem instances. Also, problem-instance generators
are available for some problems and custom test set can be created.
In this step, sampling and transformations of problem instances
can be done to create our own set of problem instances that are
going into an experiment.

Actually used test set is created at this point. The “seed”
database is created and populated with the metadata necessary for
experiment execution. Also, it is filled with all the data about
experiment units needed for execution and result logging. Part of
the data can be in the form of external files if that is more
appropriate, but they must be linked from a database. In order to
enable distributed execution, a database (and external data) is
distributed over the nodes in such a way that each node has its
independent, unsynchronized version of a database. Each such
database is initiated from a singular seed database. Horizontal
fragmentation of writeable relations is employed as a mean of data
distribution over the nodes. Details of a database are given in
section 5.

4.2. Creation of node images

One or more virtual machine (VM) images need to be created
at this stage (shown in Figure 3). The exact number depends on the
requirements in a phase of pilot runs. Each image contains a copy
of a seed database and all the necessary code for running the
experiment chunks on the node. Executable code is tuned to the
intended hardware. After that, image is migrated to the cloud
service from where it can be easily deployed for creation of the
computational nodes.

4.3. Optimizing the execution environment

It is hard to know exactly in advance what settings of the
computational node are efficient. For that reason we need an
optimization phase of an experiment with regards to the settings of
the experiment run. This is a stochastic combinatorial optimization
problem as well and it can be stated as a problem of minimizing
the monetary cost of renting cloud instances under a constraint of

Figure 3. Creating the image for virtual machines in computational nodes

achieving desired probability of finishing before the selected
deadline. The problem can be formulated and expressed as:

 min E ∑x∈S Cx(nx) (1)

with the constraints:

 ∑x∈S δx=1, (2)

 P{Tx(nx)≤D}≥δx⋅p, ∀x∈S, (3)

 δx∈{0,1}, ∀x∈S, (4)

 nx∈N0, ∀x∈S. (5)

In the above formulation E is the expectation operator and P is
a probability measure of the set. The above problem (1)-(5) has
several parameters with values known prior to optimization: D is a
desired deadline, S is a set of node-type options, and p is a desired
probability of achieving the deadline. Also, Cx is a random cost of
running the experiment on nx instances of node-type x. The cost is
random as it depends on the utilization durations of nx nodes. Tx is
a random experiment finish time when running it on nx instances
of node-type x. Decision variables are nx and δx where nx represents
a number of instances of type x (5), and δx represents exclusive
choice between the node-types (4). Randomness in this problem
originates from the noise in execution due to hardware reasons and
uncertainty in computational requirements of each experiment
unit. That randomness is reflected in Cx and Tx. These functions
can be created using statistical analysis or machine learning on the
data from pilot runs. The objective function (1) is the expected
value of total cost of the experiment. It sums the costs across all
possible node-types but only one of those costs is going to be non-
zero. The first constraint (2) ensures that only one node-type is
selected. A set of chance-constraints (3) ensures that for selected
node-type x a number nx of nodes is selected so as to achieve a
desired level of safety. All zero-valued δx make these constraints
trivially satisfiable for all non-selected node-types x. For the
selected node-type, a constraint enforces that a probability of
finishing before the deadline must not be lower than the prescribed
p.

We propose to make a parameter search over a set of node
settings by running a simple and small experiment (using only a
subset of experiment units) on each setting in S. A set of options
should be small in order to reduce the cost of doing the pilot runs.
That set can be composed by a careful pre-selection based on
available data from previous general analyses such as [22] and
based on analysis of the code for experiment execution as in [26].

http://www.astesj.com/

.S. Ahmad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 136-144 (2017)

www.astesj.com 140

The settings with the most impact are the selected cloud-
service provider and cloud-instance type. The latter can be further
customized across some set of subsettings, but usually the types
are predefined less flexibly. The most important subsettings
pertain to hardware components: CPU, disk size, RAM, etc. Pilot
runs are identical to executing the experiment described in the
following subsection. The difference from the latter is in the scale;
in pilot runs just one experimental node per different setting is used
, while many experimental nodes with identical settings are used
during the experimental run. Collected data are analyzed by a
procedure described in subsection 4.5. Based on the collected data
and optimization model, economically most efficient node setting
is chosen for the full experiment. Also, for that choice we get an
estimate of the total experiment run time and cost by taking the
summary statistics of Tx and Cx. Based on a desired due date, we
infer the necessary number of computational instances N. N is the
value of only non-zero nx in optimal solution of the the
optimization model.

4.4. Executing the experiment

Figure 4. Execution of the experiment

The experiment is executed by distributing chunks across
computational nodes (Figure 4). Experiment spawner is a script
that balances the load between instantiated computational nodes.
The experiment is partitioned into disjoint experimental chunks.
Each chunk is a set of experiment units to be executed on a single
computational instance.

1. Experiment spawner creates N cloud nodes and sends over
network the parameters that define their workload chunks. These
parameters constitute a small amount of information. Each
experimental node runs a chunk runner which processes its
assigned workload. Each runner, depending on the type of a
problem, can instantiate additional computational nodes to form a
mini-grid using Message Passing Interface (MPI). That is done if

some of the algorithms require such execution architecture by
design. SMP can be switched on by the parameters sent from the
experiment spawner. Each node sets triggers for utilization alarms
at the performance supervisor. Triggers improve the efficiency of
a system by notifying the subscribers of different events. This
information can be used for better, more prompt load balancing
and it can reduce the renting costs.

2. At the end of processing a chunk, a computational node
triggers supervisor’s alarm when it can get another chunk to
execute. When the node finishes with processing, it migrates its
results to a permanent cloud storage and it gets terminated.

4.5. Result analysis

Figure 5. Analysis of experimental results

Users are notified by supervisor's alarm about the finalized
jobs. A procedure is subscribed to notifications and reacts to them
as shown in Figure 5. At first, the data is migrated from a
computational node to some storage, locally or in the cloud. If the
node has no more jobs to process, it is terminated to reduce costs.
Analysis is done iteratively over the partial data as they pool to the
storage. At the end of the process, with all the experimental results
available, concluding results are created.

5. The database

The main objective of our system is to produce detailed
experimental data as fast as possible. We have decided to store all
the data into a database as it simplifies manipulations with
overwhelming amounts of data.

It is assumed that running computational experiments is
expensive both temporally and monetary. Storage, on the other
hand, is much cheaper on both accounts. For that reason, as much
data as possible should be stored for future analyses to avoid
experiment re-runs.

Practicing scrutiny is important in science in order to prune
mistakes and misconduct. Replication studies simply repeat
experiments to check if the results match. In computer science, this

http://www.astesj.com/

.S. Ahmad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 136-144 (2017)

www.astesj.com 141

can be done by sampled replications that repeat small sampled set
of experiment units. In each repetition, the same settings for
pseudo-random number generators (PRNG), algorithms and
problem instances should be used to create near-identical
conditions as with the initial experiment. The results of replication
study must match the stored values for everything except the
execution time which includes incontrollable system noise. This is
more efficient than replications of physical experiments where the
exact conditions cannot be repeated and results should only
statistically match. In the latter case, a greater number, if not all, of
experimental units needs to be repeated in order to make
conclusions. Also, executing experiment units in computational
experiments is often cheaper than for physical experiments. The
probability of non-matching results gets exponentially smaller
with the size of randomly generated sample for replication.

5.1. Design

As described in section 2, communication overheads are
serious performance detractors to scalability in the cloud in
comparison to the in-house grids. Grids have tight interconnection
and synchronization. For that reason, we have decided to minimize
communication frequency between the cloud instances. All
instances have their own database for storing results that springs
from the initial seed database which is copied to all instances
during creation of the node image as described in subsection 4.2.
Seed database holds metadata and identification/replication data.
The former defines all necessary structures to store the experiment
data. The latter are the basic data necessary for identification of
experiment units. Such data include the shared information for all
instances of CO problems, used optimization algorithms, PRNG
types and uncertainty scenarios in the case of stochastic or robust
CO. Hence, all the data that define and describe experiment units
(Figure 1) are present in a seed database.

Each node is created with a separate copy of a seed database.
These copies make up a distributed database. The writeable
relations, which record the experimental run data, are horizontally
fragmented. Horizontal fragmentation keeps table schemas and
distributes table rows across the nodes, as depicted in Figure 6.

Figure 6. An illustrative example of horizontal fragmentation

During the experiment execution, each node saves two types of
data: identification/replication data, and performance data. The
former describe the settings of an executed experiment unit. This
consists of the settings of the used optimization algorithm, PRNGs
and other components that hold the key to replicating the execution
of the experimental unit during replication studies. Performance
data track decisions made during the execution and measurements

of their effects. Quantitatively they make up the majority of
generated and stored data, and the final conclusions are based on
them.

Distributed data uses the identification scheme that combines
together node-specific identification/replication information with
shared information that originated from a seed database. That
scheme makes data aggregation from all chunks unambiguous.

6. Application

The primary motivation for creating previously described
architecture was a practical problem. As a result of different branch
of research, we have worked with the new type of stochastic
project scheduling problem, Cost-based Flexible Stochastic
Resource Constrained Project Scheduling Problem (CBF-
SRCPSP), defined in [27]. This problem deals with proactive-
reactive project scheduling which makes the synchronization
between project collaborators easier. It uses an agreed upon
baseline schedule that stores the time-agreements for starting times
of different project activities. Deviations of real start times from
these agreements are penalized for inflexible, change-sensitive
activities. The additional element in this model is that the changes
to the baseline schedule can be profitable if they can be undertaken
sufficiently far into the future. This extension to the features of
baseline schedule makes the solution space much more complex
due to the aforementioned proactive rescheduling operations.
Searching the solution space becomes more time-consuming,
though it pays off. We were lead empirically through the design
and creation of optimization algorithms for CBF-SRCPSP.

The experimental set was created based on the standard Project
Scheduling Problem Library (PSPLIB) set of instances for
deterministic resource constrained project scheduling problems
[28]. Cluster sampling was used to select sets of template instances
from J30, J60, and J120 problem sets. The latter consist of projects
that have 30, 60, and 120 project activities, respectively. The
templates were expanded to fit CBF-SRCPSP model by modeling
the stochasticity in activity durations with discretized beta
distributions with a combination of selected and randomly
generated distribution parameters. Additional parameters for each
activity were randomly generated, according to the selected
triangular distributions. After this procedure we ended up with 300
instances of each size which sprang up from template instances
extended to fit the new model. The templates were instantiated
according to the two experimental factors regarding to the project
deadline: tightness of the deadline and bonus for early-finishing
the project. For each instance, we generated 1000 activity duration
scenarios from the discretized beta distributions. Activity
durations were the only source of uncertainty. All of this data:
project instances and uncertainty scenarios per each project were
fed into a seed database. The used database was sqlite3 as it fit the
needs of our experiment. Its simplicity trades-off well with its
shortcomings in comparison to the more elaborate database
management systems.

The seed database was also populated with the metadata about
used PRNGs and CO algorithms. We have used two PRNGs:
Mersenne twister with careful parameterization [29] and Threefry
[30]. Several search algorithms were developed during the
algorithm design. We had at our disposal implementations of
optimization algorithms from the CO literature that were already

http://www.astesj.com/

.S. Ahmad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 136-144 (2017)

www.astesj.com 142

available in the used simulation library [26]. The final experiment
included one benchmark CO algorithm from the literature and two
selected newly-developed algorithms that were hypothesized to
significantly outperform the benchmark. However, the analysis
necessary for proving the hypothesis necessitated sufficient
number of samples. The newly-developed algorithms were
computationally expensive due to a search in more complex
solution space than the benchmark.

The node images used Linux with gcc and necessary libraries.
New algorithms were developed upon the C++ simulation library
from [26]. This means that the most computationally intense parts,
namely simulation-based experimentation and database logging
were coded in C++ for better performance. The mini-grids were
not used, since all the algorithms used only shared memory
parallelization with two threads using OpenMP to speed up the
search. This choice was based on the experiment in [26] regarding
the parallel efficiency of the used simulation library. That also
determined the number of computational cores per instance.

The total experiment was run on two occasions. The second
experiment was done due to improvements to the developed
algorithms and the results from the second study were used in the
final experiment report. Here we shall cover both experiment runs
as they utilized different experimental choices. In both cases, the
raw results were downloaded locally using the python script.
Statistical language R was used for results analysis. RSQLite R
package was used to query the databases for the relevant data and
to gather them together from all the sources.

6.1. The first experimental run

During the first experiment run we have selected Amazon Web
Services (AWS) [31] as a service provider. Therefore, we did not
use service provider as the experimental factor in pilot runs during
the selection of the ideal instance type. We have used EC2 for
computations, and have opted, after pilot runs, for c3.large
instances with 2 dedicated physical cores of Intel Xeon E5-2680
v2 (Ivy Bridge) processors and 3.75 GiB of RAM. Simple Storage
Service (S3) was used to store experimental results. The
combination of CloudWatch (CW) and Simple Notification
Service (SNS) was used for supervision and utilization
notifications. Experiment spawner was coded in python, using the
boto API [32] for accessing AWS and paramiko module [33] for
controlling SSH2 connections.

Experiment consisted of 1.6 million experiment units.
Experiment chunking was done across the problem instances. The
chunk runner accepts parameters that describe chunk boundaries.
These parameters are just several bytes in size and it is all the
information needed for initiating the experiment execution on a
computational instance. The total computational workload of the
experiment was estimated based on running small sample of
experiment units during the pilot run. It was estimated that the total
workload is three and a half months of computational labor on the
available hardware. The deadline was set to 7 days which we
wanted to achieve with 90% probability. We calculated the
necessary number of computational instances to satisfy this
requirement. This resulted in using up to 26 cloud instances and
reducing the total duration to 6 days. The database for each
instance was migrated to S3 at the end of chunk execution and it

awaited further analysis there. The cost of the first experiment was
445$.

6.2. The second experimental run

The second experiment was run on improved algorithms. The
number of the most computationally expensive units was
significantly increased, resulting in the total of 2.1 million
experimental units. The optimization stage was used to select the
node-type, also taking into account the service provider. We have
used prior knowledge of the characteristics of our experiment
runner - low working memory consumption (under 500MB) and
high CPU utilization - to narrow down a range of instances. We
tested the instances with 2 processors and as close as possible to
2GiB of memory. Market research was used to select the small set
of service providers: Online Virtual Hosting (OVH), AWS (due to
the use in the first experiment), and Linode. The selected instance-
types are listed in Table 1.
Table 1. Members of alternative set S for optimization of execution environment

 OVH Amazon EC2 Linode

instance-type

2vCores@

2.4GHz
8GB RAM

c3.large
2vCores@

2.8GHz
3.75GB RAM

2vCores@

2.5GHz
4GB RAM

price 13.49$
(monthly)

0.105
$(hourly) 20$ (monthly)

The identical pilot run was used on all instance-types. Seven
different types of experiment units were sampled into the pilot’s
unit set. The price of pilot runs in the optimization stage was 1.1$.
The measurements were used to model execution durations for
each combination of instance-type x and unit type u as Gaussian
random variables dx,u. Then, the total experiment duration for each
instance-type is Gaussian random variable where wu is the number
of units of type u in our experiment. We approximated Tx by
assuming that the total work modeled by dx is simply equally
divided among nx computational instances.

It was estimated with the probability of 90% for the fastest
option that the total workload is just above three years. The ranking
and the necessary number of instances were calculated in order to
satisfy the selected deadline of 30 days with the probability of
90%. The deadline was set to 30 days to take advantage of the
monthly pricing. Figure 7 shows the optimal expected total costs
for each option in Table 1. The results in Figure 7 were
anonymized due to the legal concerns. Based on the available data,
we have selected the C3 type instance as the most efficient with
the estimated cost just below 500$. The experiment was run and it
finished after 23 days of executing.

7. Future work

Possible future research ideas include improvement to the
robustness of the total workload estimator. In our application,
different simplifying assumptions were made and the error of their
approximation effect should be investigated.

In order to reduce costs of the research community, general
data about computational experiments (duration and prices) could
be shared online with the public. This data can be useful for

http://www.astesj.com/

.S. Ahmad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 136-144 (2017)

www.astesj.com 143

creating promising and efficient alternative sets for optimizing the
execution environment.

Figure 7 Estimates of total expected cost for anonymized permutation of options

from Table 1

An automated tool for the composition of alternative sets could be
utilized based on the experiment requirements. There is a potential
in using pilot run on just one carefully selected instance type and
then utilizing machine learning to find the best option and the
number of necessary instances N for the desired target duration and
the probability of achieving it. More advanced notions of risk and
chance constraints can be used to account for the uncertainty in
estimations and its economic effect. That can inform budget
planning and the project management that undertakes the
experiment.

Many parts of the architecture presented in section 4 are
abstracted from the details of the particular experiments and can
be reused in different settings. Component-based framework for
general experimenting can be created. In that way, reuse of existing
components can be increased and a code generator for repetitive
parts can speed up the development, especially if the user does
most of the manual process through an intuitive graphical user
interface. Cloud costs can be reduced further by better node
tracking and possibly using the cheaper spot instances for non-
critical computations, especially during the algorithm design,
prototyping and various pilot runs. The performance penalty in
case of using such instances should be investigated in order to
drive recommendations for configurations that utilize them.

8. Conclusion

Cloud computing is still not a simple and clear choice for high
performance computing due to the issues pointed out in [11]:
communication overhead, virtualization and system noise. The
efficiency of cloud depends greatly on the specifics of the problem
that we are trying to solve.

We have presented a system for distributing combinatorial
optimization experiments over the cloud. Doing computational
experiments for validation and guiding the design of CO
algorithms has a specific property that it can be parallelized across
experimental units that tend to be independent. This allows for low
coupling between the simultaneous tasks and circumvents the
issues related to the communication overhead.

Our system records rich data about the experimental runs in
order to reduce the need for re-runs of experiments which may be

computationally and monetarily expensive. In order to keep
communication overhead to the minimum, distributed database
with horizontal fragmentation was used. Each cloud node
populates only the data related to its assigned disjoint experiment
chunk. The unambiguity of the data across the system is, hence,
kept without additional effort. When the tested algorithms use
distributed computations in mini-grids, they should keep the grid
size within the limits of recent studies, such as given in [11], to get
the best performance benefits. It is expected that additional tuning
and advances in cloud computing technology will increase the
limits found by these studies.

We described two successful applications of our proposed
system on the newly developed algorithms for complex stochastic
combinatorial optimization problem, CBF-SRCPSP. Initial
estimated sequential duration of several months to several years
was reduced to under a month (the first experiment under a week)
by distributing the execution. The optimization stage of our
architecture finds the best settings for the execution environment.
This enables the selection of the best instance-type across different
cloud-service providers. In our case, that significantly reduced the
cost of running the experiment.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] M. Brcic and N. Hlupic, “Cloud-distributed computational experiments for
combinatorial optimization,” in 2017 40th International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2017, pp. 197–201., http://doi.org/
10.23919/MIPRO.2017.7973417

[2] S. Westphal, “Scheduling the German Basketball League,” Interfaces, vol. 44,
no. 5, pp. 498–508, Oct. 2014.

[3] Y. Sheffi, “Combinatorial Auctions in the Procurement of Transportation
Services,” Interfaces, vol. 34, no. 4, pp. 245–252, Aug. 2004.

[4] G. Kant, M. Jacks, and C. Aantjes, “Coca-Cola Enterprises Optimizes Vehicle
Routes for Efficient Product Delivery,” Interfaces, vol. 38, no. 1, pp. 40–50,
Feb. 2008.

[5] J. C. Goodson, J. W. Ohlmann, and B. W. Thomas, “Rollout Policies for
Dynamic Solutions to the Multivehicle Routing Problem with Stochastic
Demand and Duration Limits,” Oper Res, vol. 61, no. 1, pp. 138–154, Jan.
2013., http://dx.doi.org/10.1287/opre.1120.1127

[6] P. Lamas and E. Demeulemeester, “A purely proactive scheduling procedure
for the resource-constrained project scheduling problem with stochastic
activity durations,” J. Sched., vol. 19, no. 4, pp. 409–428, Aug. 2016.,
http://doi.org/ 10.1007/s10951-015-0423-3

[7] H. P. Simão, A. George, W. B. Powell, T. Gifford, J. Nienow, and J. Day,
“Approximate Dynamic Programming Captures Fleet Operations for
Schneider National,” Interfaces, vol. 40, no. 5, pp. 342–352, Jul. 2010.,
http://doi.org/ 10.1287/inte.1100.0510

[8] C. Vecchiola, S. Pandey, and R. Buyya, “High-Performance Cloud
Computing: A View of Scientific Applications,” in 2009 10th International
Symposium on Pervasive Systems, Algorithms, and Networks, 2009, pp. 4–
16., http://doi.org/ 10.1109/I-SPAN.2009.150

[9] C. Evangelinos and C. N. Hill, “Cloud Computing for parallel Scientific HPC
Applications: Feasibility of Running Coupled Atmosphere-Ocean Climate
Models on Amazon’s EC2,” in In The 1st Workshop on Cloud Computing
and its Applications (CCA), 2008.

[10] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson, “Cost-
benefit analysis of Cloud Computing versus desktop grids,” in 2009 IEEE
International Symposium on Parallel Distributed Processing, 2009, pp. 1–12.,
http://doi.org/ 10.1109/IPDPS.2009.5160911

http://www.astesj.com/

.S. Ahmad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 136-144 (2017)

www.astesj.com 144

[11] A. Gupta et al., “The Who, What, Why, and How of High Performance
Computing in the Cloud,” in 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science, 2013, vol. 1, pp. 306–314.,
http://doi.org/ 10.1109/CloudCom.2013.47

[12] D. Tomić, Z. Car, and D. Ogrizović, “Running HPC applications on many
million cores Cloud,” in 2017 40th International Convention on Information
and Communication Technology, Electronics and Microelectronics
(MIPRO), 2017, pp. 209–214., http://doi.org/
10.23919/MIPRO.2017.7973420

[13] A. Marathe et al., “A Comparative Study of High-performance Computing on
the Cloud,” in Proceedings of the 22Nd International Symposium on High-
performance Parallel and Distributed Computing, New York, NY, USA,
2013, pp. 239–250., http://doi.acm.org/10.1145/2462902.2462919

[14] S. S. Shringarpure, A. Carroll, F. M. D. L. Vega, and C. D. Bustamante,
“Inexpensive and Highly Reproducible Cloud-Based Variant Calling of 2,535
Human Genomes,” PLOS ONE, vol. 10, no. 6, p. e0129277, Jun. 2015.,
http://doi.org/ 10.1371/journal.pone.0129277

[15] “[1703.03864] Evolution Strategies as a Scalable Alternative to
Reinforcement Learning.” [Online]. Available:
https://arxiv.org/abs/1703.03864. [Accessed: 10-Sep-2017].

[16] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed Deep Neural
Networks Over the Cloud, the Edge and End Devices,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS), 2017,
pp. 328–339., http://doi.org/10.1109/ICDCS.2017.226

[17] “Ray — Ray 0.2.0 documentation.” [Online]. Available:
http://ray.readthedocs.io/en/latest/. [Accessed: 11-Sep-2017].

[18] N. Hansen, A. Auger, O. Mersmann, T. Tusar, and D. Brockhoff, “COCO: A
Platform for Comparing Continuous Optimizers in a Black-Box Setting,”
ArXiv160308785 Cs Stat, Mar. 2016.

[19] S. Cahon, N. Melab, and E.-G. Talbi, “ParadisEO: A Framework for the
Reusable Design of Parallel and Distributed Metaheuristics,” J. Heuristics,
vol. 10, no. 3, pp. 357–380, May 2004., http://doi.org/
10.1023/B:HEUR.0000026900.92269.ec

[20] D. R. White, “Software review: the ECJ toolkit,” Genet. Program. Evolvable
Mach., vol. 13, no. 1, pp. 65–67, Mar. 2012., http://doi.org/ 10.1007/s10710-
011-9148-z

[21] “MOEA Framework, a Java library for multiobjective evolutionary
algorithms.” [Online]. Available: http://moeaframework.org/index.html.
[Accessed: 05-Feb-2017].

[22] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing Public
Cloud Providers,” in Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement, New York, NY, USA, 2010, pp. 1–14.,
http://doi.acm.org/10.1145/1879141.1879143

[23] A. S. Ganapathi, “Predicting and Optimizing System Utilization and
Performance via Statistical Machine Learning,” University of California at
Berkeley, Berkeley, CA, USA, 2009.

[24] D. N. Hieu, T. T. Minh, T. V. Quang, B. X. Giang, and T. V. Hoai, “A
Machine Learning-Based Approach for Predicting the Execution Time of
CFD Applications on Cloud Computing Environment,” in Future Data and
Security Engineering, 2016, pp. 40–52., http://doi.org/ 10.1007/978-3-319-
48057-2_3

[25] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica, “Ernest:
Efficient Performance Prediction for Large-scale Advanced Analytics,” in
Proceedings of the 13th Usenix Conference on Networked Systems Design
and Implementation, Berkeley, CA, USA, 2016, pp. 363–378.

[26] M. Brčić and N. Hlupić, “Simulation library for Resource Constrained Project
Scheduling with uncertain activity durations,” in 2014 37th International
Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2014, pp. 1041–1046., http://doi.org/
10.1109/MIPRO.2014.6859722

[27] M. Brčić, D. Kalpić, and M. Katić, “Proactive Reactive Scheduling in
Resource Constrained Projects with Flexibility and Quality Robustness
Requirements,” Comb. Optim., pp. 112–124, Aug. 2014., http://doi.org/
10.1007/978-3-319-09174-7_10

[28] R. Kolisch and A. Sprecher, “PSPLIB - A project scheduling problem library:
OR Software - ORSEP Operations Research Software Exchange Program,”
Eur. J. Oper. Res., vol. 96, no. 1, pp. 205–216, Jan. 1997.

[29] M. Matsumoto and T. Nishimura, “Dynamic Creation of Pseudorandom
Number Generators,” presented at the Proceedings of the Third International
Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing, 1998, pp. 56–69.

[30] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel random
numbers: As easy as 1, 2, 3,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International Conference for, 2011, pp. 1–
12., http://doi.org/ 10.1145/2063384.2063405

[31] “Amazon Web Services (AWS) - Cloud Computing Services,” Amazon Web
Services, Inc. [Online]. Available: //aws.amazon.com/. [Accessed: 14-Dec-
2014].

[32] “boto GitHub repository,” GitHub. [Online]. Available:
https://github.com/boto/boto. [Accessed: 29-Sep-2014].

[33] “Welcome to Paramiko! — Paramiko documentation.” [Online]. Available:
http://www.paramiko.org/. [Accessed: 25-Oct-2017].

http://www.astesj.com/

	2. High-performance computing in the cloud
	3. Related work
	4. Architecture
	4.1. Creation of the experimental data
	4.2. Creation of node images
	4.3. Optimizing the execution environment
	4.4. Executing the experiment
	4.5. Result analysis

	5. The database
	5.1. Design

	6. Application
	6.1. The first experimental run
	6.2. The second experimental run

	7. Future work
	8. Conclusion
	Conflict of Interest
	References

