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 The resolution of the Navier-Stokes and Euler equations by the finite element method is the 
focus of this paper. These equations are solved in conservative form using, as unknown 
variables, the so-called conservative variables (density, momentum per unit volume and 
total energy per unit volume). The variational formulation developed is a variant of the 
Petrov-Galerkin method. The nonlinear system is solved by the iterative GMRES algorithm 
with diagonal pre-conditioning. Several simulations were carried out, in order to validate 
the proposed methods and the software developed. 
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1. Introduction 
The mathematical formulation of the conservation laws of 

mass, momentum and energy is the first step in the modelling of 
fluid flow problems by the finite element method. Thus, we obtain 
the Navier-Stokes equations, convection-diffusion transport 
equations, and the Euler equations, convection transport equations. 
In this first step of resolution, it is advisable to make a judicious 
choice of the form and the independent variables. Indeed, there are 
several possible choices [1], mainly: the non-conservative form, 
the conservative form in entropic variables and the conservative 
form. Physically, the conservative formulation is best suited to the 
fact that equations fluid dynamics are solved by perfectly 
respecting the laws of physics; in addition the boundary conditions 
are directly imposed on the physical variables. 

The finite element method is one of the most powerful 
numerical methods conceived to date. The characteristics that have 
led to its popularity include: ease of modelling complex shape 
geometries, natural processing of differential-type boundary 
conditions, and the possibility of being programmed in the form of 
software adaptable to the processing of a wide range of problems. 
The classical formulation of the finite element method is based on 
the Galerkin weighted residual method. Galerkin's formulation has 
proved to be extremely effective in applying structural mechanics 
problems and in other situations such as problems governed by 
diffusion equations. The reason for this success is that in 
application to problems governed by elliptic or parabolic partial 
differential equations, Galerkin's finite element method leads to 
symmetric stiffness matrices. The advantages of the Galerkin's 
finite element method in solving the problems of structural 
mechanics and diffusion transport are not directly exploitable for 

the modelling of fluid flow problems, particularly in the simulation 
of transport phenomena dominated by convection. A major 
difficulty arose because of the presence of convective terms in the 
mathematical formulation when using a kinematic description 
other than the Lagrangian description as this is practically always 
the case in fluid mechanics. In practice, Galerkin's numerical 
solutions for dominant convective problems are frequently 
polluted by non-physical oscillations which can only be eliminated 
by considerably refining the mesh, or in the case of transient 
greatly reducing the time step. This, of course, compromises the 
very usefulness of the Galerkin method and has motivated the 
development of alternative methods that exclude the presence of 
non-physical oscillations independently of any mesh refinement or 
time step [2-6]. 

This article proposes elements of answer to these points. The 
objective analysis of the choice of form and variables independent 
of convection-diffusion transport equations; justifies our choice of 
the conservative form using conservative variables to solve the 
Navier-Stokes and Euler equations. The variational form used is 
based on Galerkin's weighted residual method. For the flow 
problems of dominant convection or pure convection fluids, the 
variational form used is based on a Petrov-Galerkin type 
formulation. Emphasis is placed on the development and 
implementation of these two types of variational formulations. 

2. Mathematical formulation 

We recall in this section the equations of the dynamics of 
compressible and viscous fluids. These equations express 
conservation laws of mass, momentum and energy. By identifying 
conservative variables, namely the density ρ, the momentum per 
unit volume U, and the total energy per unit volume E , as the 
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independent variables, the Navier-Stokes equations, in 
conservative form and dimensionless, are written: 

                           
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ∙ (𝑈𝑈) = 0 = 0                                          (1𝑎𝑎) 

       
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ∙ (𝑢𝑢 ⊗ 𝑈𝑈) + 𝛻𝛻𝛻𝛻 = 𝛻𝛻 ∙ 𝜎𝜎 + 𝑓𝑓                                   (1𝑏𝑏) 

      
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ∙ [(𝐸𝐸 + 𝑝𝑝)𝑢𝑢] = 𝛻𝛻 ∙ �𝜎𝜎 ∙ 𝑢𝑢� − 𝛻𝛻 ∙ 𝑞𝑞 + 𝑟𝑟 + 𝑓𝑓 ∙ 𝑈𝑈     (1𝑐𝑐) 

where u , p , q , r , f  and σ  represent respectively: velocity, 
pressure, heat flux, energy source, external force and tensor of 
viscous stresses. The heat flux and the pressure are expressed, in 
non-dimensional form, as a function of the temperature and of the 
density by the Fourier law and the equation of a perfect gas, 
respectively: 

                                               𝑞𝑞 = −
𝛾𝛾

𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃
𝛻𝛻𝛻𝛻                                  (2) 

and 

                                              p = (γ − 1)ρT                                      (3) 

where Re , Pe , γ  and T  represent respectively: Reynolds 
number, Prandlt number, specific heat ratio and temperature. On 
the other hand, the tensor of viscous stresses σ is given by the 
relation: 

                    𝜎𝜎(𝐮𝐮) =
1
𝑅𝑅𝑅𝑅

�∇𝐮𝐮 + (∇𝐮𝐮)𝑡𝑡 −
2
3
𝜇𝜇(∇ ∙ 𝐮𝐮)𝐼𝐼�                    (4) 

where I is the identity matrix. Temperature and velocity are 
related to conservative variables by the following relationships: 

                           𝐸𝐸 = 𝜌𝜌 �𝑇𝑇 + 1
2

|𝐮𝐮|2�                                              (5) 

                                                  𝐮𝐮 =
𝐔𝐔
𝜌𝜌

                                                 (6) 

The substitution of equation (6) in equation (4) decomposes the 
viscous stress tensor in the following form: 

      𝜎𝜎(𝐮𝐮) =
1
𝜌𝜌
𝜎𝜎(𝐔𝐔) + 𝜎𝜎‡                                      (7) 

where 

𝜎𝜎‡ = −
𝜇𝜇

𝑅𝑅𝑅𝑅 𝜌𝜌2
�𝐔𝐔 ∙ (∇𝜌𝜌)𝑡𝑡 + (∇𝜌𝜌) ∙ 𝐔𝐔𝑡𝑡 −

2
3

(𝐔𝐔𝑡𝑡 ∙ ∇𝜌𝜌)𝐼𝐼� 

On the other hand, the substitution of equations (5) and (6) in 
equations (2) and (3) makes it possible to express the heat flux 
and the pressure, as a function of conservative variables (ρ, U and 
E), respectively by the following relationships: 

                             𝐪𝐪 = −
𝛾𝛾

𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃
∇ �
𝐸𝐸
𝜌𝜌
−

|𝐔𝐔|2

2𝜌𝜌2
�                                   (8) 

and 

                             𝑝𝑝 = (𝛾𝛾 − 1) �𝐸𝐸 −
|𝐔𝐔|2

2𝜌𝜌
�                                        (9) 

Equations (1) are strongly nonlinear, their mathematical study 
is a great challenge and their numerical resolution is not easy. The 
variational formulation as well as the finite element approximation 
must respect, inter alia, the implicit condition that temperature, 
pressure and density must be positive. 

Let V be the vector of conservative variables: 

𝐕𝐕 = (𝜌𝜌,𝐔𝐔,𝐸𝐸)𝑡𝑡 

the system of equations (1) can be written in the vector form: 

                                  𝐕𝐕,𝑡𝑡 + 𝐅𝐅i,iconv(𝐕𝐕) = 𝐅𝐅i,idiff(𝐕𝐕) + 𝓕𝓕                  (10) 

where Ficonv(V) and Fidiff(V) are respectively the convection 
and diffusion fluxes in the i direction, and ℱ is the source vector. 
It is also interesting to write the system (1) in the quasi-linear form: 

                         𝐕𝐕,t + 𝐀𝐀i𝐕𝐕,i = �𝐊𝐊ij𝐕𝐕,j�,i
+ 𝓕𝓕                                   (11) 

with Ai the Jacobian matrices of the convection fluxes such that 
Ai = Fi,Vconv and Kij the diffusion matrices such as 

KijV,j = Fi,idiff. 

The flow problems of non-viscous fluids, governed by the 
Euler equations, are a special case of the flow of viscous fluids. To 
find the Euler equations, we suppress the viscous terms in the 
Navier-Stokes equations. 

Fi,idiff(V)    or     �KijV,j�,i
 

The Euler equations can be written respectively in the vector 
form and the quasi-linear form, as follows: 

V,t + Fi,iconv(V) = ℱ            and    V,t + AiV,i = ℱ 

2.1. Boundary and Initial Conditions   

We consider external and internal flows, the domain of calculation 
is denoted Ω of boundary Γ. 

Inlet boundary condition Γ∞− 

The flow is considered uniform: 

ρ = ρ∞ = 1,          U∞ = �cos β
sinβ� ,          E∞ =

1
2

+
1

γ(γ − 1)
1

M∞
2  

where β is the angle of attack and M∞ is the Mach number at 
infinity. 

Wall boundary condition Γ𝐵𝐵 

The condition of adhesion (U = 0) is imposed in the case of 
viscous fluid flow problems and a sliding condition (U ∙ n = 0) in 
the case of flow problems of non-viscous fluids. In addition, one 
imposes either a natural condition of Neumann type on the 
temperature (adiabatic wall): q ∙ n = 0, or a uniform distribution 
of the temperature TB in order to represent a thermal equilibrium 
condition to the wall; which amounts to imposing the Dirichlet 
condition: E = ρTB . In the case of a uniform temperature 
distribution, for Mach numbers less than 3, we take TB equal to the 
stagnation temperature: 

TB = T∞ �1 +
γ − 1

2
1

M∞
2 � 
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Since ρ is unknown, the boundary condition E = ρTB is non-
linear. During the resolution, the value of the energy at the wall 
must therefore be continuously updated as a function of the 
density. 

Outlet boundary condition Γ∞+ 

Two cases must be distinguished. If the local Mach number is 
less than unity, subsonic regime, then at least one condition at the 
Dirichlet boundary (on density or on pressure or on total energy) 
is required. If the local Mach number is greater than unity, 
supersonic regime, then no boundary condition is necessary. 

The initial conditions are: 

ρ(x, 0) = ρ0(x),    U(x, 0) = U0(x),     E(x, 0) = E0(x) 

3. Galerkin formulation   

Let Ω  be a bounded one of the Euclidean space ℝn , of 
boundary Γ . In order to determine a solution numerically, we 
cancel the projection of the system of equations (1) onto a set of 
weighting functions according to the Galerkin method. The 
weighting functions of the conservative variables (ρ, U, E) are 
denoted by  ψρ , ψU  and ψE , respectively. By multiplying the 
equations (1) in turn by weighting functions, we have: 

                  �ψρ,
∂ρ
∂t
� + �ψρ,∇ ∙ (U)� = 0                                  (12a) 

�ψU,
∂U
∂t
� + �ψU,∇ ∙ (u ⊗ U)� + (ψU,∇p) + (ψU, U, ρ)

= (ψU, f) + 〈ψU,σ〉                                     (12b) 

�ψE,
∂E
∂t
� + (ψE,∇ ∙ [(E + p)u]) + �∇ψE, �σ ∙ u�� − (∇ψE, q)

= (ψE, r + f ∙ U) − 〈ψE, q〉
+ 〈ψE, �σ ∙ u�〉                                               (12c) 

where (, ) denotes the scalar product in L2(Ω), and: 

(ψU, U, ρ) = �∇ψU:σ dΩ
 

Ω
      

〈ψU,σ〉 = �ψU�σ ∙ n� dΓ
 

Γ
 

〈ψE, q〉 = �ψE(q ∙ n) dΓ
 

Γ
 

The integration by parts of the terms of diffusion makes it 
possible to reduce the derivation order from two to one. The 
appearance of contour integrals can be used to impose natural 
boundary conditions such as adiabatic wall conditions and sliding 
conditions. Using vector notation (10), the variational formulation 
(12) is written as follows: 

��W ∙ �V,t + Fi,iconv(V) − ℱ� + W,iFidiff� dΩ
 

Ω

−  �W ∙ �Fidiffni� dΓ
 

Γ
= 0                            (13) 

with W = (ψρ,ψU,ψE)t the vector of the weighting functions. 
Also, using the quasi-linear form (11), we establish the following 
variational formulation: 

� �W ∙ �V,t + AiV,i − ℱ� + W,i�KijV,j�,i
�  dΩ

 

Ω

−  �W ∙ �Fidiffni� dΓ
 

Γ
= 0 

4. Petrov-Galerkin formulation 

4.1. Artificial Viscosity  

The method of artificial viscosity used consists in replacing the 
dynamic viscosity μ by: 

μ∗ = μ + μart 

where μart is defined in a similar way as artificial diffusion widely 
used in finite difference schemes: 

μart =
‖u‖h

2
ζ(Rh)Ca 

where h is the size of the element, Ca is the weighting coefficient 
of the viscosity and Rh is the local Reynolds number: 

Rh =
‖u‖h

2μ
 

The function ζ(Rh) is particularly sensitive to zones with dominant 
convection; it is defined as follows: 

ζ(Rh) = min �
Rh

3
, 1� 

Thus, the modified system of equations includes an artificial 
viscosity term whose importance depends on the function ζ(Rh) 
and the weighting coefficient Ca. By experience, it is necessary to 
increase the viscosity in the zones with dominant convection (ie 
local Reynolds number is large). The effect of this artificial 
viscosity is to create additional energy dissipation, thus 
guaranteeing the positivity of temperature, density and pressure. 
This method has the advantage of being easy to implement and 
does not require any additional calculations, however it has the 
disadvantage of containing an arbitrary coefficient Ca whose value 
influences the quality of the solution. We essentially use this 
method to quickly obtain a solution, although diffusive, converges 
towards the final solution. This solution subsequently serves to 
initialize the stabilized formulation by Petrov-Galerkin finite 
element method which we describe in the following section. 

4.2. SUPG Method 

The Petrov-Galerkin formulation that we use is a variant of the 
Streamline Upwind Petrov-Galerkin (SUPG) method [2-6]. The 
SUPG method is based on a Petrov-Galerkin formulation, this 
method is widely used for the resolution of convection-diffusion 
transport equations. As already mentioned in the introduction, 
when convection dominates, the use of the Galerkin method 
generates non-physical oscillations which can only be eliminated 
by considerably refining the mesh, or by greatly reducing the time 
step in the transient case. The SUPG method consists in adding an 
additional perturbation term to the Galerkin standard formulation. 
On the other hand, the use of the Petrov-Galerkin formulation 
amounts to modifying the weighting functions of the Galerkin type 
by weighting functions having more weight upstream; thus 
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introducing artificial diffusion in the direction of the flow. The 
variational formulation (13) is modified as follows: 

��W ∙ �V,t + Fi,iconv(V) − ℱ� + W,iFidiff� dΩ
 

Ω

−  �W ∙ �Fidiffni� dΓ
 

Γ
= 0 

+�� �Ai
t ∙ W,i�τ �V,t + Fi,iconv − �KijV,j�,i

− ℱ�  dΩ
 

Ωee

 

where Ωe  is an element of the triangulation of the 
computational domain Ω. The matrix τ, for the conservative form 
using the conservative variables, is written in the following form: 

                                   τ = ���cijAj�
i

�
−1

ζ(Pe)                             (14) 

In equation (14), the coefficients cij represent the elements of 
the Jacobian matrix of the geometric transformation of the real 
element to the reference element. The operator | |  applied to a 
matrix B defines its absolute value �B� by: �B� = S|⋀|S, where S 
and ⋀ are respectively the matrices of the eigenvectors and the 
eigenvalues of B. In order to compute τ from equation (14) we 
must obtain the absolute values of matices Bi = �cijAj� . The 
definition of the matrix τ  therefore requires the solving of a 
problem with eigenvalues. It should also be recalled that the 
Jacobian matrices Ai and A�i of the convection flux in direction i 
with respect to the conservative and non-conservative variables 
respectively are connected by the following relation: 

Ai = MA�iM−1 

with 

M =
∂V
∂V�

 

In two dimensions, the vectors of conservative and non-
conservative variables are written respectively: 

V = �

ρ
ρu1
ρu2

E
�                                              V� = �

ρ
u1
u2
p
� 

Analytically, the matrices M and M−1 can be obtained in the two-
dimensional case 

M = �

1   0
u1   ρ

0
0

0
0

u2   0 ρ 0
u2/2 ρu1 ρu2 1/(γ − 1)

� 

and 

M−1 =

⎝

⎜
⎛

1                 0
−u1/ρ            1/ρ

0
0

0
0

−u2/ρ               0 1/ρ 0
(γ − 1)

2
u2 (1 − γ)u1 (1 − γ)u2 (γ − 1)

⎠

⎟
⎞

 

with u2 = u12 + u22. The expressions of A�1 and A�2 are given in 
the two-dimensional case by: 

A�1 = �

u1 ρ 0 0
0 u1 0 1/ρ
0
0

0
ρc2

u1
0

0
u1

� 

and 

A�2 = �

u2 0 ρ 0
0 u2 0 0
0
0

0
0

u2
ρc2

1/ρ
u2

� 

with c = �γp/ρ the velocity of sound. 

5. Resolution algorithm 

The spatial-temporal discretization of the variational problem 
leads to the solution of a system of algebraic equations of the form: 

[M] �V,t� +  [K(V)] {V} =  {ℱ} 

This system of equations has several types of non-linearities. 
Some are due to convective terms, others are related to the 
compressibility of the fluid. In addition, the use of the Petrov-
Galerkin method introduces strong non-linearities. Given the set of 
nonlinear equations, stability of the solution and convergence, the 
use of a robust algorithm is therefore crucial. Given its 
convergence properties, the Newton-Raphson algorithm coupled 
to the chosen implicit time scheme can be effective in solving this 
problem. However, in the present situation, the implementation of 
the Newton-Raphson method requires the calculation of the first 
variations of all the functional ones present in the formulation. 
These exact analytical expressions are difficult to obtain, 
especially in the presence of a stabilization method. To solve the 
problem, we use a variant of the GMRES algorithm [7]. To 
accelerate the convergence of the GMRES algorithm, pre-
conditioning techniques are used. 

6. Numerical results 

A first series of numerical tests concerning external flows of 
viscous and non-viscous fluids around a NACA0012 profile was 
carried out to validate the methods described above. The mesh 
used comprises 8150 elements. This mesh is illustrated in figure 1, 
with an enlargement around the profile NACA0012 in figure 2. 

 
Figure 1: Mesh over the entire domain 
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Figure 2: Mesh around profile NAC0012 

Viscous flow 

The first problem presented is a viscous flow at M = 0.85 and 
Re = 2000 with a zero angle of attack. The initial solution used is 
a uniform field except at the wall. The resolution strategy consists 
in fixing the Reynolds and Mach numbers to their maximum 
values and to solve the problem over 200 time steps (∆t = 0.1) 
with an artificial viscosity (Ca = 1). The resulting solution serves 
as the initial field for the computation sequence in which the 
artificial viscosity is canceled by imposing (Ca = 0 ), and the 
SUPG method is applied until converges of the temporal scheme. 
The iso-Mach and iso-density curves are shown in figures. 3a and 
3b. The pressure coefficients Cp = 2(p − p∞)/(ρu2)  on the 
profile are compared in figure 3c with those obtained by a finite 
element method using non-conservative variables [8]. 

 
Figure 3a: Iso-Mach lines 

 
Figure 3b: Iso-density lines 

 
Figure 3c: Pressure coefficient 

Non-viscous flow 

The Euler equations are now solved for M = 0.80 and for an 
angle of attack of β = 1.25 degrees; these conditions are similar 
to those defined in the [6, 9]. The initial solution used is a uniform 
field except at the wall where we impose the normal component of 
the velocity at zero. The resolution strategy consists in using the 
SUPG method from the beginning of the resolution to the 
convergence in time. The mesh is identical to that shown above. 
The iso-Mach and iso-pressure curves are shown in FIGS. 4a and 
4b. The presence of two zones of low pressure followed by normal 
shocks is noted, as can be expected conventionally in transonic 
flow. FIG. 4c shows the evolution of the pressure coefficient along 
the profile, these results are compared with those obtained by [6, 
10] with Roe schemes in finite volumes. We note that for our 
results the shocks are well defined on the intrados as on the 
extrados. Obviously, the resolution of shocks can be further 
improved by using mesh adaptation methods.  

 
Figure 4a: Iso-Mach lines 

 
Figure 4b: Iso-pressure lines 
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Figure 4c: pressure coefficient 

The same problem is then dealt with for an angle of attack of 
β = 8.34  degrees. The iso-Mach, iso-pressure curves and the 
distribution of the pressure coefficient for this test case are 
presented in figures 4d, 4e and 4f. The presence of a strong shock 
on the extrados is noted. 

 
Figure 4d: iso-Mach lines 

 
Figure 4e: iso-pressure lines 

 
Figure 4f: pressure coefficient 

Flow around a half cylinder 

The simulation of this flow is aimed at validating the methods 
described above in the case of supersonic flows. The test consists 
of simulating the flow around a half cylinder at a Mach number of 
M = 3.0 without angle of incidence. The calculation domain and 
the boundary conditions used are illustrated in figure 5a. The 
resolution strategy is identical to that used in the previous example. 
In addition, the mesh has been refined during the resolution. The 
final mesh consists of 15 148 elements. The iso-pressure is shown 
in figure 5b, this figure is very similar to that presented by [11]. A 
section of the iso-Machs at the line of symmetry is shown in figure 
5c. 

  
Figure 5a: Meshing around a half cylinder 

 
Figure 5b: Iso-pressure lines 

 
Figure 5c: iso-Mach section at the line of symmetry 

7. Conclusion 

We have presented a finite element method for solving the 
Navier-Stokes and Euler equations using conservative variables 
and a Petrov-Galerkin variational formulation. Particular emphasis 
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was placed on the effective definition and implementation of the 
Stabilization Matrix. The use of the pre-conditioned GMRES 
algorithm with an adequate resolution strategy allows a relatively 
fast convergence. The numerical results obtained show that the 
present finite element method gives results at least as good as those 
obtained with other methods. However, it seems imperative for 
shock problems to use a conservative method; the use of 
conservative variables is indeed an essential ingredient. The 
condition of the conservation of the mass at the level of each 
element is also respected. 
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